高中数学必修三3.1.1随机事件的概率强化练习新人教A版必修3
人教新课标A版高中数学必修3第三章概率3.1.1随机事件的概率同步测试C卷

人教新课标A版高中数学必修3 第三章概率 3.1.1随机事件的概率同步测试C卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·会宁期中) 一个家庭有两个小孩,则所有可能的基本事件有()A . (男,女),(男,男),(女,女)B . (男,女),(女,男)C . (男,男),(男,女),(女,男),(女,女)D . (男,男),(女,女)2. (2分)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},下列关系不正确的是()A . A⊆DB . B∩D=C . A∪C=DD . A∪B=B∪D3. (2分)下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为()A . ①②B . ③④C . ①④D . ②③4. (2分) 12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是()A . 3个都是正品B . 至少有一个是次品C . 3个都是次品D . 至少有一个是正品5. (2分)下列事件为随机事件的是()A . 平时的百分制考试中,小强的考试成绩为105分B . 边长为a,b的长方形面积为abC . 100个零件中2个次品,98个正品,从中取出2个,2个都是次品D . 抛一个硬币,落地后正面朝上或反面朝上6. (2分)甲、乙、丙位教师安排在周一至周五中的天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外两位教师前面值班的概率是()A .B .C .D .7. (2分) (2016高一下·汉台期中) 下列事件中是随机事件的事件的个数为()①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,那么第二次生男孩;⑤在标准大气压下,水加热到90℃是会沸腾.A . 1B . 2C . 3D . 48. (2分) (2017高一下·咸阳期末) 将一根长为a的铁丝随意截成三段,构成一个三角形,此事件是()A . 必然事件B . 不可能事件C . 随机事件D . 不能判定9. (2分)下列事件为随机事件的是()A . 同性电荷,互相吸引B . 某人射击一次,射中9环C . 汽车排放尾气,污染环境D . 若a为实数,则|a|<010. (2分)下列事件是随机事件的有()A . 若a、b、c都是实数,则a•(b•c)=(a•b)•cB . 没有空气和水,人也可以生存下去C . 抛掷一枚硬币,出现反面D . 在标准大气压下,水的温度达到90℃时沸腾11. (2分)有下面的试验:①如果 a,b∈R,那么a•b=b•a;②某人买彩票中奖;③实系数一次方程必有一个实根;④在地球上,苹果抓不住必然往下掉;其中必然现象有()A . ①B . ④C . ①③D . ①④12. (2分)在区间[0,]上随机取一个数x,则事件“sinx cosx”发生的概率为()A .B .C .D . 113. (2分)从1、2、3、4这四个数中一次随机取两个,则取出的这两数字之和为偶数的概率是()A .B .C .D .14. (2分) (2016高二下·武汉期中) 袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球的次数为随机变量ξ,则ξ的可能值为()A . 1,2,…,6B . 1,2,…,7C . 1,2,…,11D . 1,2,3…15. (2分)下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A . ②③④B . ①③⑤C . ①②③⑤D . ②③⑤二、填空题 (共5题;共8分)16. (1分)给出下列事件:①今天下雨或不下雨;②天河电影城某天的上座率达到60%;③从1,3,5三个数字中任选2个数相加,其和为偶数;④从一副不包括大小王的52张扑克牌中任取4张,恰好四种花色各一张;⑤从一个正方体的八个顶点中任取三个顶点,这三个顶点不共面.其中必然事件有________,不可能事件有________,随机事件有________.(填序号)17. (1分)同时抛掷两枚均匀硬币,正面都同时向上的概率是________.18. (1分)如果天气状况分为阴、小雨、中雨、大雨、晴五种,它们分别用数字1、2、3、4、5来表示,用ξ来表示一天的天气状况.若某天的天气状况是阴天有小雨,则用ξ的表示式可表示为________.19. (3分)判断以下现象是否是随机现象:①某路中单位时间内发生交通事故的次数;________②冰水混合物的温度是0℃;________③三角形的内角和为180°;________④一个射击运动员每次射击的命中环数;________⑤n边形的内角和为(n﹣2)•180°.________20. (2分)在条件S下,可能发生也可能不发生的事件,叫做相对于条件S下的________事件.三、解答题 (共3题;共15分)21. (5分)设人的某一特征(如眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1) 1个孩子显露显性特征的概率是多少?(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?22. (5分)(2020·海南模拟) 某公司组织开展“学习强国”的学习活动,活动第一周甲、乙两个部门员工的学习情况统计如下:学习活跃的员工人数学习不活跃的员工人数甲1812乙328(1)从甲、乙两个部门所有员工中随机抽取1人,求该员工学习活跃的概率;(2)根据表中数据判断能否有的把握认为员工学习是否活跃与部门有关;(3)活动第二周,公司为检查学习情况,从乙部门随机抽取2人,发现这两人学习都不活跃,能否认为乙部门第二周学习的活跃率比第一周降低了?参考公式:,其中 .参考数据:,, .23. (5分) (2015高二下·东台期中) 甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共8分) 16-1、17-1、18-1、19-1、20-1、三、解答题 (共3题;共15分) 21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
【专业资料】新版高中数学人教A版必修3习题:第三章概率 3.1.1 含解析

3.1.1随机事件的概率课时过关·能力提升一、基础巩固1.事件A发生的概率P(A)满足()A.P(A)=0B.P(A)=1C.0≤P(A)≤1D.0<P(A)<12.下列事件:①对任意实数x,有x2<0;②三角形的内角和是180°;③从装有1号,2号,3号球的袋中取一个球为1号球;④某人购买福利彩票中奖;其中是随机事件的为()A.①③B.③④C.①②④D.①③④x∈R时,x2≥0,则①是不可能事件;由三角形内角和定理知,②是必然事件;取到1号球与彩票中奖都是随机的,则③④是随机事件.3.下列说法正确的是()A.任何事件的概率总在(0,1)内B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定D.随着试验次数的增加,频率一般会越来越接近概率[0,1]内,频率与试验次数有关,C中概率是客观存在的,故A,B,C都不正确.4.某人将一枚硬币连掷10次,正面朝上的情况出现了8次.若用A表示正面朝上这一事件,则A的()A.概率为45B.频率为45C.频率为8D.概率接近于8n次随机试验,事件A发生了m次,则事件A发生的频率为mn.如果多次进行试验,事件A发生的频率总在某个常数附近摆动,那么这个常数才是事件A的概率.故810=45为事件A的频率.5.从3双鞋子中任取4只,其中至少有两只鞋是一双,这个事件是(填“必然”“不可能”或“随机”)事件.3只不同,所以取4只时,一定有两只是一双.6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000辆汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似是.=0.03.=60020000.037.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了次试验.=0.02,解得n=500.n次试验,则10n8.从某自动包装机包装的白糖中随机抽取20袋,测得各袋的质量分别为(单位:g): 492496494495498497501502504496 497503506508507492496500501499则该自动包装机包装的袋装白糖质量在[497.5,501.5)g内的概率约为.[497.5,501.5)g内的有5袋,所以该自动包装机包装的袋装白糖质量在=0.25,则概率约为0.25.[497.5,501.5)g内的频率为520.259.下表是某灯泡厂某车间生产的灯泡质量检查表:填写合格品频率表,估计这批灯泡是合格品的概率是多少.(保留两位小数)0.98,0.97,0.985,0.984,0.981,0.982.估计灯泡是合格品的概率是0.98.二、能力提升1.给出关于满足A⫋B的非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确命题的个数为()A.1B.2C.3D.4①③④是正确命题,②是假命题.2.在掷一枚硬币的试验中,共掷了100次,若“正面向上”的频率为0.49,则“正面向下”的次数为()A.0.49B.49C.0.51D.5149,则正面向下的次数为51.3.下列事件是随机事件的有 .(填序号) ①北京每年1月1日刮西北风; ②当x 为实数时,2x+1>0; ③手电筒的电池没电,灯泡发亮; ④函数f (x )=3x 没有零点.4.5个小朋友玩枪击气球的游戏,每个小朋友射击10次,击中气球的频率分别为0.34,0.29,0.31,0.28,0.29,则从这5个小朋友中任选一个小朋友,令其射击一次,则他击中气球的概率约为 .5个小朋友击中气球的频率都在0.30附近摆动,所以任选一个小朋友,令其射击一次,他击中气球的概率约为0.30. .30★5.从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到的卡片的号码为奇数的频率是 .13+5+6+18+11=53,则所求的频率为53100=0.53..536.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:事件A 为6.90<d ≤6.91,事件B 为6.88<d ≤6.90,事件C 为d>6.91.求:f 100(A ),f 100(B ),f 100(C ). 100(A )=10100=0.1,f 100(f )=1+2100=0.03,f 100(C )=17+17+26+15+8+2+2100=0.87.★7.某批乒乓球产品质量检查结果如下表:(1)计算表中乒乓球优等品的频率,填入上表;(2)从这批乒乓球产品中任取一个,估计质量检查为优等品的概率是多少.(结果保留到小数点后三位)依据公式可算出表中乒乓球优等品的频率依次为0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n不同,计算得到的频率值虽然不同,但却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率约为0.950.。
高中数学 3.1.1随机事件及其概率练习案 新人教a版必修3

第三章概率1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.通过实例,了解两个互斥事件的概率加法公式.3.通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义.5.通过阅读材料,了解人类认识随机现象的过程.1.概率教学的核心问题是让学生了解随机现象与概率的意义.教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活中遇到的一些错误认识(如“中奖率为1/1 000的彩票,买1 000张一定中奖”).2.古典概型的教学应让学生通过实例理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性.让学生初步学会把一些实际问题化为古典概型.教学中不要把重点放在“如何计数”上.3.鼓励同学们尽可能运用计算器、计算机来处理数据,进行模拟活动,更好地体会统计思想和概率的意义.例如,可以利用计算器产生随机数来模拟掷硬币的试验等.知识结构3.1 随机事件的概率3.1.1 随机事件及其概率1.了解随机事件、必然事件、不可能事件的概念.2.正确理解事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.3.利用概率知识正确理解现实生活中的实际问题.基础梳理1.必然事件:在条件S下,________的事件,叫相对于条件S的必然事件.答案:一定会发生2.不可能事件:在条件S下,一定________的事件,叫相对于条件S的不可能事件.答案: 不会发生3.随机事件(事件):在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件.4.确定事件:______________统称为相对于条件S的确定事件.答案: 必然事件和不可能事件5.频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的________;称事件A出现的比例f n(A)=__________为事件A出现的频率,且f n(A)范围是__________,对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率f n(A)稳定在某个常数上,把这个__________,称为事件A的概率.答案: 频数 n A n0≤f n (A )≤1 常数记作P (A ) 6.频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n A n,它具有一定的稳定性,总在某个__________附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的__________,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.答案: 常数 概率例如:投掷一枚硬币正面向上的概率是:______.答案:12自测自评1.下列事件:(1)同一门大炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标(2)某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意拨了一个数字,恰巧是朋友的电话号码(3)直线y =2x +6是定义在R 上的增函数(4)若|a +b |=|a |+|b |,则a 、b 同号(5)奥巴马当选美国下届总统.其中随机事件的个数为( D )A .1个B .2个C .3个D .4个2.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( D )A .3个都是正品B .至少有一个是次品C .3个都是次品D .至少有一个是正品3.一个家庭有两个小孩,则所有可能的基本事件有( C )A .(男,女)(男,男)(女,女)B .(男,女)(女,男)C .(男,男)(男,女)(女,男)(女,女)D .(男,男)(女,女)4.同时投掷两枚大小相同的骰子,可以得到的试验结果个数为( )A .6B .12C .18D .36解析:同时投掷两枚骰子,共有36种不同的结果.答案:D5.已知随机事件A 发生的频率是0.02,事件A 出现了10次,那么共进行了________次实验.答案:500基础达标1.下列事件中不是随机事件的是( C)A.某人购买福利彩票中奖B.从10个杯子(8个正品,2个次品)中任取2个,2个均为次品C.在标准大气压下,水加热到100℃沸腾D.某人投篮10次,投中8次2.一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个事件( B)A.是必然事件 B.是随机事件C.是不可能发生事件 D.不能确定是哪种事件3.下列说法不正确的是( )A.不可能事件的概率为0,必然事件的概率为1B.某人射击了10次,击中靶心8次,则他击中靶心的频率为0.8C.“直线y=k(x+1)过定点(-1,0)”是必然事件D.势均力敌的两支足球队,甲队主场作战,则甲队必胜无疑解析:势均力敌的两支足球队,甲队主场作战,只能说明甲队有主场优势,获胜的机会大些,但不能确保获胜.答案:D4.一个盒子中仅有2只白球和3只黑球,从中任取一只球.(1)“取出的球是白球”是______事件.(2)“取出的球是黑球”是________事件.(3)“取出的球是白球或黑球”是______事件.(4)“取出的球是黄球”是________事件.答案:(1)随机(2)随机(3)必然(4)不可能5.指出下列事件是随机事件、必然事件还是不可能事件.(1)如果a<b,那么a-b<0;(2)一个骰子连掷三次,三次都是6点;(3)设a>1,y=a x(x∈R)是增函数;(4)抛一小球下落;(5)连抛两个骰子,点数之和大于12;(6)我国东南沿海明年将受到3次台风侵袭;(7)某人开车经过3个路口都遇到绿灯;(8)三个小球全部放入两个盒子中,必有一个盒子的球多于另一个;(9)在常温下,焊锡熔化;(10)在条件A、B、C∈R且A2+B2≠0下,直线Ax+By+C=0不经过原点.解析:当a<b时,a-b<0一定成立,则(1)是必然事件;一个骰子连掷三次,每一次都有可能出现6点,但不一定出现6点,故(2)是随机事件;当a>1时,y=a x一定是增函数,故(3)是必然事件;抛掷出的小球,受地球引力作用,一定下落,故(4)是必然事件(这里不考虑其他情形);每一个骰子出现的最大点数为6,故两颗骰子点数之和不可能大于12.故(5)是不可能事件;明年我国东南沿海受到台风侵袭次数可能为0次,1次,2次,3次等,故(6)为随机事件;某人开车经过3个路口,可能遇到红灯,也可能遇到绿灯,故(7)为随机事件;三个小球放入两个盒子中,无论怎样放法,总有一个盒子的球多于一个,故(8)是必然事件;在常温下,焊锡达不到熔点,不可能熔化,故(9)为不可能事件;随着C=0与C≠0的变化,直线Ax+By+C=0可能经过原点,也可能不经过原点,故(10)为随机事件.巩固提升6.甲、乙、丙三人坐在一排三个位置上,讨论甲、乙两人的位置情况.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件总数;(3)写出事件“甲、乙相邻”和事件“甲在乙的左边”(不一定相邻)所包含的基本事件.解析:(1)从左到右记这三个位置为1,2,3,i=“坐的座号是i”,则这个试验的基本事件空间是Ω={(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)},其中第1个数表示甲坐的位置号,第2个数表示乙坐的位置号.(2)这个试验的基本事件总数是6.(3)事件“甲、乙相邻”包含4个基本事件:(1,2),(2,1),(2,3),(3,2).事件“甲在乙的左边”包含3个基本事件:(1,2),(1,3),(2,3).7.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?解析:这个试验的基本事件空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”包含4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”包含6个基本事件:(1, 2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含3个基本事件:(1,4),(2,2),(4,1);“a =b ”这一事件包含4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax +by =0的斜率k =-a b >-1,∴a <b ,故包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).8.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率.假设此人射击一次,问中靶的概率约是多少?解析:∵射击10次,∴n =10,有9次中靶,∴m =9.∴中靶频率为m n=0.9,故假设此人射击一次,中靶概率为0.9.9.如果某种彩票中奖的概率为11 000,那么买1 000张彩票一定能中奖吗?请用概率的意义解释.解析:不一定能中奖.买1 000张彩票,相当于1 000次试验,因为每次试验的结果都是随机的,所以做1 000次试验的结果也是随机的,也就是说,买1 000张彩票有可能没有一张中奖.也可能有一张、两张乃至多张中奖.10.做投掷红、蓝两枚骰子的试验,用(x ,y )表示结果,其中x 表示红色骰子出现的点数,y 表示蓝色骰子出现的点数.(1)写出这个试验的所有可能的结果;(2)求这个试验一共有多少种不同的结果;(3)写出事件“出现的点数之和大于8”;(4)写出事件“出现的点数相同”.解析:(1)这个试验的所有可能的结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6);(2) 由(1)知这个试验的结果有36种;(3)事件“出现的点数之和大于8”为{(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)};(4)事件“出现的点数相同”为{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}.1.随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大;反之,常数越接近于0,事件A发生的可能性就越小.2.概率就是用来度量某事件发生的可能性大小的量,根据随机事件发生的频率只能得到概率的估计值.素养.。
高中数学 第三章 概率 3.1 随机事件的概率教材习题点拨 新人教A版必修3

高中数学 第三章 概率 3.1 随机事件的概率教材习题点拨 新人教A 版必修3练习1.解:(1)试验可能出现的结果有3个,两个均为正面,一个正面一个反面,两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右.由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2.点拨:自己动手通过做试验填表,填表之后分析结果.3.解:(1)如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖等.(2)在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数中任选一个数,选到的数大于1.练习1.解:例如,计算机键盘上各键位置的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率.2.解:通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的.而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3.解:这种说法是错误的.因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能2一次都不出现,也可能出现1次,2次,…,6次.练习1.P =1-0.3=0.7.2.615.0200123==P . 3.4.03012==P . 4.D 点拨:事件“至少有一次中靶”的含义为“两次都中靶”或“有一次中靶”,显然与事件“两次都不中靶”对立,而对立必互斥,所以选D.5.B 点拨:每人分得一张“红牌”的事件分别是“甲分得红牌”“乙分得红牌”“丙分得红牌”“丁分得红牌”,所以事件“甲分得红牌”与事件“乙分得红牌”是互斥而不对立事件.习题3.1A 组1.D2.(1)0;(2)0.2;(3)1.3.(1)067.064543≈;(2)140.064590≈;(3)891.0645701≈-. 4.点拨:P (“预测下一页中字母E”)本页中的字母总数出现的频数本页中字母E ≈,实际数出后计算所得概率应该非常接近预测值,因为一页英文书中的字母会有很多个,相当于做大量重复试验,而大量重复试验下的频率值非常接近概率值,此时可以把该频率值当作概率的近似值. 一般情况下,按频率大小顺序的结论为E >A >O >I >U.5.0.136.解:(1)有放回和无放回摸球时第4次摸到红球的频率应该相差不大,概率应该相等,都为101;(2)第4次摸到红球的频率和第1次摸到红球的频率也相差不大,大约都是101,因为不管是哪一种摸法,摸到红球的频率与摸的先后顺序无关.B 组1.D2.点拨:通过大量试验,调查同学的生日情况,从而体会每个人的生日的随机性与等可能性.。
人教新课标A版 高中数学必修3 第三章概率 3.1随机事件的概率 3.1.2概率的意义 同步测试(I

人教新课标A版高中数学必修3 第三章概率 3.1随机事件的概率 3.1.2概率的意义同步测试(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高二下·黑龙江开学考) 连续投掷两次骰子得到的点数分别为m,n,向量与向量的夹角记为α,则α 的概率为()A .B .C .D .2. (2分)将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是()A .B .C .D .3. (2分) (2018高三上·大连期末) 给出以下命题:⑴“ ”是“曲线表示椭圆”的充要条件⑵命题“若,则”的否命题为:“若,则”⑶ 中, . 是斜边上的点, .以为起点任作一条射线交于点,则点落在线段上的概率是⑷设随机变量服从正态分布,若,则则正确命题有()个A .B .C .D .4. (2分) (2016高一下·江门期中) 已知函数,其中,则使得f(x)>0在上有解的概率为()A .B .C .D . 05. (2分)抛掷一枚质地均匀的硬币,如果连续抛掷1000次,则第999次出现正面朝上的概率是()A .B .C .D .6. (2分)已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为()A . 0.35B . 0.25C . 0.10D . 0.157. (2分) (2017高二下·临泉期末) 在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A .B .C .D .8. (2分)一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采取分层抽样的方法。
人教A版高中数学必修3课后习题 3.1.1 随机事件的概率

第三章概率3.1 随机事件的概率3.1.1 随机事件的概率课后篇巩固提升基础巩固①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.A.1个B.2个C.3个D.4个A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.2.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品8件正品2件次品的10件产品中,任意抽取3件, 在A中,3件都是正品是随机事件,故A错误;在B中,至少有1件次品是随机事件,故B错误;在C中,3件都是次品是不可能事件,故C错误;在D中,至少有1件正品是必然事件,故D正确.3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.6是正面朝上的频率不是概率.4.一个家庭前后育有两个小孩儿,则可能的结果为( )A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的结果,故选C.5.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )A.49B.51C.0.49D.0.510.49,所以摸到白球的频率为0.51,从而摸到白球的次数为100×0.51=51.6.我国古代数学有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( )A.6B.7C.8D.9,n≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.2357.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.=0.03.P=6008.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为.4,即4,5的频数为13+22=35.所以频率为35=0.35.100①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若log a(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.恒成立,∴①正确;奇函数y=f(x)只有当x=0有意义时才有f(0)=0,∴②正确;由log a(x-1)>0知,当a>1时,,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2) ,(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”这一事件包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”这一事件包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1);“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax+by=0的斜率k=-ab>-1,即a<b,所以包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).能力提升1.随机事件A的频率mn满足( )A.mn =0 B.mn=1 C.mn>1 D.0≤mn≤1n次试验中,事件A不发生时,频率mn=0;当事件A发生n次时,频率m n =1;当发生次数为m,0<m<n时,频率mn满足0<mn<1,故D正确.2.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡1 2 3456 7 8 9 10则取到号码为奇数的频率是( ) A.0.53 B.0.5 C.0.47 D.0.37=53100=0.53.3.某个地区从某年起n 年内的新生婴儿数及其中男婴数如表所示(单位:个):时间范围 1年内 2年内 3年内 4年内(1)填写表中的男婴出生频率(结果精确到0.01); (2)这一地区男婴出生的概率约是 . 频率f(A)=nA n ,各频率为0.49,0.54,0.50,0.50.(2)可以利用频率来求近似概率.由(1)得概率约为0.50. 0.54 0.50 0.50 (2)0.504.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%,一旦失败,一年后将丧失全部资金的50%,下表是去年200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的平均数是 元.x,如果成功,x 的取值为5×12%,如果失败,x 的取值为-5×50%,一年后公司成功的概率为192200=2425,失败的概率为8200=125,所以一年后公司收益的平均数是(5×12%×2425-5×50%×125)×10000=4760(元).5.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.n,假定每只天鹅被捕到的可能性是相等的,从保护区中任捕一只,设事件A={带有记号的天鹅},则P(A)=200n, ①第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=20150, ②由①②两式,得200n =20150,解得n=1500,所以该自然保护区中天鹅的数量约为1500只.6.李老师在某大学连续3年主讲经济学院的《高等数学》,下表是李老师统计的这门课3年来的学生考试成绩分布:经济学院一年级的学生王小慧下学期将选修李老师的《高等数学》,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.43+182+260+90+62+8=645,根据公式可计算出选修李老师的《高等数学》的人的考试成绩在各个段上的频率依次为:43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012.用已有的信息,可以估计出王小慧下学期选修李老师的《高等数学》得分的概率如下:(1)将“90分以上”记为事件A,则P(A)≈0.067.(2)将“60分~69分”记为事件B,则P(B)≈0.140.(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.。
高中数学必修三3.1.1随机事件的概率练习新人教A版必修3

射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为 ( )
A.①② B .③④ C .①④
D.②③
[ 答案 ] D
[ 解析 ] ①是必然事件;②中 a>1 时, y= log ax 单调递增, 0<a<1 时, y= log ax 为减函
数,故是随机事件;③是随机事件;④是不可能事件.
高中数学 3.1.1 随机事件的概率练习
基础巩固
一、选择题
1.下列事件中,不可能事件为 (
)
A.钝角三角形两个小角之和小于 90°
B.三角形中大边对大角,大角对大边
C.锐角三角形中两个内角和小于 90°
D.三角形中任意两边的和大于第三边
[ 答案 ] C
[ 解析 ] 若两内角的和小于 90°, 则第三个内角必大于 90°, 故不是锐角三角形, ∴ C
时间里挡风玻璃破碎的概率近似为 [ 答案 ] 0.03
________.
三、解答题
9.设集合 M= {1,2,3,4} , a∈ M, b∈ M,( a, b) 是一个基本事件. (1) “ a+ b=5”这一事件包含哪几个基本事件?“ a<3 且 b>1”呢?
(2) “ ab=4”这一事件包含哪几个基本事件?“ a= b”呢?
(3) 直线 ax+ by= 0 的斜率 k=- b>- 1,
∴ a<b,∴包含以下 6 个基本事件: (1,2) ,(1,3) , (1,4) , (2,3) , (2,4) , (3,4) . 10.夏季奥运会将在巴西的里约热内卢举行, 为备战奥运会, 某射击队统计了平日训练中两 名运动员击中 10 环的次数,如下表:
高中数学 第三章 概率 3.1.1 随机事件的概率学业分层测评 新人教A版必修3(2021年整理)

2017-2018版高中数学第三章概率3.1.1 随机事件的概率学业分层测评新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018版高中数学第三章概率3.1.1 随机事件的概率学业分层测评新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018版高中数学第三章概率3.1.1 随机事件的概率学业分层测评新人教A版必修3的全部内容。
3.1.1 随机事件的概率(建议用时:45分钟)[学业达标]一、选择题1.下列事件中,是随机事件的是( )A.长度为3,4,5的三条线段可以构成一个三角形B.长度为2,3,4的三条线段可以构成一直角三角形C.方程x2+2x+3=0有两个不相等的实根D.函数y=log a x(a>0且a≠1)在定义域上为增函数【解析】A为必然事件,B,C为不可能事件.【答案】D2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对【解析】任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.【答案】C3.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为()A.男女、男男、女女B.男女、女男C.男男、男女、女男、女女D.男男、女女【解析】用列举法知C正确.【答案】C4.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A.0。
53 B.0.5C.0。
47 D.0.37【解析】取到号码为奇数的频率是错误!=0.53。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 的频率是 10= 0.3.
三、解答题
10.从含有两个正品 a1,a2 和一件次品 b1 的三件产品中, 每次任取一件, 每次取出后不放回,
连续取两次.
(1) 写出这个试验的所有可能结果.
B.某人射击 10 次,击中靶心 7 次,则他击不中靶心的频率是 0.7 1
C.某人射击 10 次,击中靶心的频率是 2,则他应击中靶心 5 次
D.某人射击 10 次,击中靶心的频率是 0.6 ,则他击不中靶心的次数应为 4
[ 答案 ] B
6.从存放号码分别为 1,2 ,…, 10 的卡片的盒子里,有放回地取 100 次,每次取一张卡片,
(2) 设 A 为“取出两件产品中恰有一件次品” ,写出事件 A 对应的结果.
[ 解析 ] (1) 试验所有结果: a1, a2; a1, b1; a2, b1; a2,a1; b1, a1; b1, a2. 共 6 种.
(2) 事件 A 对应的结果为: a1, b1; a2,b1 ;b1, a1; b1, a2.
13+ 5+ 6+18+ 11= 53( 次 ) ,所以取到号码为奇
二、填空题
7.已知随机事件 A 发生的频率是 0.02 ,事件 A 出现了 10 次,那么共进行了 ________次试
验.
[ 答案 ] 500
[ 解析 ] 设共进行了 n 次试验,
10 则 n = 0.02 ,解得 n= 500.
高中数学 3.1.1 随机事件的概率强化练习
一、选择题
1.下列事件中,不可能事件为 (
)
A.钝角三角形两个小角之和小于 90°
B.三角形中大边对大角,大角对大边
C.锐角三角形中两个内角和小于 90°
D.三角形中任意两边的和大于第三边
[ 答案 ] C
[ 解析 ] 若两内角的和小于 90°, 则第三个内角必大于 90°, 故不是锐角三角形, ∴ C
8.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了
20 000 部汽车,时间从某年
的 5 月 1 日到下一年的 5 月 1 日,共发现有 600 部汽车的挡风玻璃破碎, 则一部汽车在一年
时间里挡风玻璃破碎的概率近似为 ________.
[ 答案 ] 0.03
[ 解析 ] 在一年里汽车的挡风玻璃破碎的频率为
600 20 000 = 0.03 ,所以估计其破碎的概率
约为 0.03. 9.某人进行打靶练习,共射击
10 次,其中有 2 次 10 环, 3 次 9 环, 4 次 8 环, 1 次脱靶,
在这次练习中,这个人中靶的频率是 ________,中 9 环的概率是 ________.
[ 答案 ] 0.9 0.3 9
11. (201 3·天津高考节选 ) 某产品的三个质量指标分别为 x、 y、 z,用综合指标 S= x
+y+ z 评价该产品的等级.若 S≤ 4,则该产品为一等品.现从一批该产品中,随机抽取
10
件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指数 ( x, y, z)
(1,1,2)
3 A.概率为
5
3 B.频率为
5
C.频率为 6
D.概率接近 0.6
[ 答案 ] B
[ 解析 ] 抛掷一次即进行一次试验,抛掷 10 次,正面向上 6 次,即事件 A 的频数为 6,
63 ∴A 的频率为 10= 5. ∴选 B.
5.下列说法中,不正确的是 (
)
A.某人射击 10 次,击中靶心 8 次,则他击中靶心的频率是 0.8
本的一等品率,再估计该批产品的等品率.
[ 解析 ] 计算 10 件产品的综合指标 S,如下表:
产品编号A1A2A3 NhomakorabeaA4
A5
A6
A7
A8
A9
A10
S
4
4
6
3
4
5
4
5
3
5
6 其中 S≤ 4 的有 A1,A2,A4,A5, A7, A9,共 6 件,故该样本的一等品率为 10= 0.6 ,从而
可估计该批产品的一等品率为 0.6.
D.②③
[ 答案 ] D
[ 解析 ] ①是必然事件;②中 a>1 时, y= log ax 单调递增, 0<a<1 时, y= log ax 为减函
数,故是随机事件;③是随机事件;④是不可能事件.
4.某人将一枚硬币连掷了 10 次,正面朝上的情形出现了 6 次, 若用 A 表示正面朝上这一事
件,则 A 的( )
12.在生产过程中, 测得纤维产品的纤度 ( 表示纤维粗细的一种量 ) 共有 100 个数据, 将数据
分组如下表:
分组
频数
[1.30,1.34)
4
[1.34,1.38)
25
[1.38,1.42)
30
[1.42,1.46)
29
[1.46,1.50)
并记下号码,统计结果如下:
卡片号码
1 2 34 5 6
7
8
9 10
取到的次数
13 8 5 7 6 13 18 10 11 9
则取到号码为奇数的频率是 (
)
A. 0.53
B. 0.5
C. 0.47
D. 0.37
[ 答案 ] A
[ 解析 ] 取到号码为奇数的卡片共有 53
数的频率为 100= 0.53.
可能事件,“至少有一个是正品”是必然事件.
3.下列事件:
①如果 a>b,那么 a- b>0. ②任取一实数 a( a>0 且 a≠ 1) ,函数 y= log ax 是增函数.③某人
射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为 ( )
A.①② B .③④ C .①④
为不可能事件,而 A、 B、 D 均为必然事件.
2. 12 个同类产品中含有 2 个次品,现从中任意抽出 3 个,必然事件是 ( )
A. 3 个都是正品 B .至少有一个是次品 C .3 个都是次品
D.至少有一个是正品
[ 答案 ] D
[ 解析 ] A、 B 都是随机事件,因为只有 2 个次品,所以“抽出的三个全是次品”是不
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指数 ( x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
利用上表提供的样本数据估计该批产品的一等品率.
[ 分析 ] 先计算 10 件产品的综合指标以及其中满足 S≤ 4 的产品个数, 算出这次统计样