2007-2014年历年三角函数高考试题汇编
高考数学试题分类汇编三角函数

高考数学试题分类汇编——三角函数一、选择题:1、(2007福建 理科)已知函数f(x)=sin()()的最小正周期为,则该函数的图象A 关于点(,0)对称B 关于直线x =对称C 关于点(,0)对称D 关于直线x =对称 答案:2、(2007山东 理科) 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为(A ),1π (B ) π (C )2,1π (D ) 2π答案:B3、(2007安徽 理科)函数)3π2sin(3)(--x x f 的图象为C ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数;③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .(A )0(B )1(C )2 (D )3答案:C4、 (2007广东 理科)若函数21()sin (),()2f x x x R f x =-∈则是 A.最小正周期为2π的奇函数 B.最小正周期为π的奇函数C.最小正周期为π2的偶函数D.最小正周期为π的偶函数答案:D5、(2007湖北 理科)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭答案:A6、(2007江西 理科)若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.2答案:A7、(2007江西 理科)若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x <D.224sin πx x >答案:D8、(2007全国1 理科)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-答案:9、(2007全国1 理科)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭, B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,答案:10、(2007全国2 理科)sin 210=( )A .2B .2-C .12D .12-答案:D11、(2007全国2 理科)函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 答案:C12、 (2007陕西 理科)已知sin α=55,则sin 4α-cos 4α的值为 (A )-51(B)-53 (C)51 (D)53 答案:A13、(2007天津 理科) “2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( )A.充分而不必要条件B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件答案:A14、(2007浙江 理科)若函数()2sin(),f x x x R ωϕ=+∈,(其中0,||2πωϕ><)的最小正周期是π,且(0)f =(A )1,26πωϕ== (B )1,23πωϕ== (C )2,6πωϕ== (D )2,3πωϕ== 答案:D15、(2007江苏 理科)下列函数中,周期为2π的是(D ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 16、(2007江苏 理科)函数()sin ([,0])f x x x x π=∈-的单调递增区间是(B ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 18、 (2007浙江 文科)已知cos()2πϕ+=,且||2πϕ<,则tan ϕ= (A)-3(B) 3 (C)(D)答案:C二、填空题:1、(2007湖南 理科)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b,c =π3C =,则B = . 答案:5π62、(2007上海 理科)函数⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πs i n3πs i nx x y 的最小正周期=T .答案:π3、 (2007四川 理科)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 ) 答案:① ④4、(2007江苏 理科)若13cos(),cos()55αβαβ+=-=,.则tan tan αβ= 1/2 . (12) (2007浙江 文科)若sin θ+cos θ=15,则sin 2θ的值是________.答案:[0,1)5、(2007安徽 文科)函数)32s in (3)(π-=x x f 的图象为C ,如下结论中正确的是(写出所有正确结论的编号). ①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称; ③函数125,12()(ππ-在区间x f )内是增函数;④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C. 答案:①②③三、计算题:1、 (2007浙江 文科) (本题14分)已知△ABC+1,且sinA +sin Bsin C(I)求边AB 的长;(Ⅱ)若△ABC 的面积为16sin C ,求角C 的度数.答案:本题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.满分14分.解:(I)由题意及正弦定理,得AB+BC+AC1. BC+ACAB ,两式相减,得 AB =1.(Ⅱ)由△ABC 的面积=12BC ·ACsinC =16sin C ,得 BC ·AC =13,由余弦定理,得2221cos 22AC BC AB C AC BC +-==⋅ 所以C =600.2、(2007福建 文科)(12分)在ABC ∆中,13tan ,tan 45A B ==。
高考真题汇编三角函数

2011、2012、2013年高考文科数学真题汇编-三角函数一、选择题1(11辽宁文)已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf(A )2+3 (B )3(C ) 33(D )23-2(11全国新课标文)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x=上,则cos2θ=(A ) 45- (B )35- (C ) 35 (D )453(11全国大纲文)7.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .94(11湖北文)6.已知函数()3s i n c o s,f x x x x R=-∈,若()1f x ≥,则x 的取值范围为A .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D .5|,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭5(11山东文)6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A)23 (B)32(C) 2 (D)3 6.【2012高考新课标文9】已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π47.【2012高考重庆文5】sin 47sin17cos30cos17-(A )32-(B )12-(C )12(D )32 8.【2012高考上海文17】在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( )A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 9.【2012高考辽宁文6】已知sin cos 2αα-=,α∈(0,π),则sin 2α=(A) - 1 (B) 22-(C) 22(D) 1 10.【2012高考江西文4】若sin cos 1sin cos 2αααα+=-,则tan2α=A. -34B. 34C. -43D. 4311.【2102高考福建文8】函数f(x)=sin(x-4π)的图像的一条对称轴是A.x=4πB.x=2πC.x=-4πD.x=-2π12(2013年高考陕西卷(文))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定13(2013年高考湖北卷(文))将函数3cos sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 ( )A .π12B .π6C .π3D .5π614(2013年高考四川卷(文))函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是 ( )A .2,3π-B .2,6π-C .4,6π-D .4,3π15(2013年高考辽宁卷(文))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1s i n c o ss i n c o s ,2a B C cB A b +=,a b B >∠=且则( ) A .6πB .3πC .23πD .56π16(2013年高考天津卷(文))函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值( ) A .1- B .22-C .22D .0二、填空题17(11全国新课标文) ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为________.18(北京文)(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 19.【2102高考北京文11】在△ABC 中,若a =3,b=3,∠A=3π,则∠C 的大小为_________。
三角函数高考题题目+答案

高考文科数学试题分类汇编:三角函数一、选择填空题1.[2014·全国新课标卷Ⅰ2]若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0【答案】C2.[2014·全国卷2]已知角α的终边经过点(-4,3),则cosα=()A.B.C.-D.-【答案】D3.[2014·陕西卷2]函数f(x)=cos的最小正周期是()A.B.πC.2πD.4π【答案】B4.[2014·四川卷3]为了得到函数y=sin(x+1)的图像,只需把函数y=sin x的图像上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度【答案】A5.[2014·浙江卷4]为了得到函数y=sin3x+cos3x的图像,可以将函数y=cos3x的图像()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】A6.[2014·福建卷7]将函数y=sin x的图像向左平移个单位,得到函数y=f(x)的图像,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图像关于直线x=对称D.y=f(x)的图像关于点对称【答案】D7.[2014·全国新课标卷Ⅰ7]在函数①y=cos|2x|,②y=|cos x|,③y=cos,④y=tan中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③【答案】A8.[2014·天津卷8]已知函数f(x)=sinωx+cosωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A.B.C.πD.2π【答案】C9.[2014·安徽卷7]若将函数f(x)=sin2x+cos2x的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是()A.B.C.D.【答案】C10.[2014·辽宁卷11]将函数y=3sin的图像向右平移个单位长度,所得图像对应的函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增【答案】B11.[2014·江苏卷5]已知函数y=cos x与y=sin(2x+φ)(0≤φ<π),它们的图像有一个横坐π标为的交点,则φ的值是________.【答案】612.[2014·山东卷12]函数y=sin2x+cos2x的最小正周期为________.【答案】π13.[2014·重庆卷13]将函数f(x)=sin(ωx+φ)图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sin x的图像,则f=________.【答案】214.[2014·新课标全国卷Ⅱ14]函数f(x)=sin(x+φ)-2sinφcos x的最大值为________.【答案】115.[2014·全国卷14]函数y =cos2x +2sin x 的最大值为________.【答案】3216.[2014·全国卷16]直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.【答案】43 二、解答题:1.[2014·江苏卷15]已知α∈,sin α=.(1)求sin 的值;(2)求cos 的值.解:(1)∵()sin 2ααπ∈π,,,∴cos α== ()sin sin cos cos sin sin )444αααααπππ+=++=; (2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-= 2.[2014·江西卷16]已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f =0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f =-,α∈,求sin 的值.解:(1)因为()f x ()()22cos cos 2a x x θ=++而y 1=a+2cos 2x 为偶函数,所以y 1=()cos 2x θ+为奇函数,又()0,θπ∈,得.2πθ=所以()f x =2sin 22cos x x a -⋅+()由04=⎪⎭⎫ ⎝⎛πf ,得-(a+1)=0,即 1.a =-(2)由(1)得:()1sin 4,2f x x =-因为12sin 425f αα⎛⎫=-=- ⎪⎝⎭,得4sin ,5α=又2παπ⎛⎫∈ ⎪⎝⎭,,所以3cos ,5α=-因此sin sin cos sin cos 333πππααα⎛⎫+=+= ⎪⎝⎭ 3.[2014·四川卷17]已知函数()sin(3)4f x x π=+(Ⅰ)求()f x 的单调递增区间; (Ⅱ)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值。
【山东8年高考】2007-2014年高考数学真题分类汇编(名师整理):三角函数

三角函数(一)选择题1、(07山东理5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( ) A .π,1B .π,2C .2π,1D .2π,2答案:A2、(07山东文4)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位答案:A3.(08山东卷5)已知cos (α-6π)+sin α=473,sin()56πα+则的值是 (A )-532 (B )532 (C)-54 (D) 54答案:C4.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选B.答案:B【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.5.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x =B. 22sin y x =C.)42sin(1π++=x y D. cos 2y x =【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选A.答案:A【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.6、(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= (A )()f x (B)()f x - (C) ()g x (D)()g x - 答案:D7、(2011山东3)若点(a,9)在函数3xy =的图象上,则tan6a π的值为 A .0 B .33C .1D .3答案:D8、(2011山东理数6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .3B .2C .32D .23 答案:C9、(2011山东文数6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .23 B .32C .2D .3答案:B10、(2012山东卷文(5))设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 答案:C11、(2012山东卷文(8))函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为A (A)23- (B)0 (C)-1 (D)13-- 答案:A12(2013山东数学理)8.函数cos sin y x x x =+的图象大致为答案:8.D13、(2013山东数学文)(9)、函数x x x y sin cos +=的图象大致为答案:D(二)填空题1.(08山东卷15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =答案:6π. 2、(2010山东数)2、已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,a=2b=2sin +cos =2=B B A 若,,,则3.(2014山东文12)函数23sin 2cos 2y x x =+的最小正周期为 . 答案:π4.(2014山东理12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为________. 答案:61(三)解答题1、(07山东理20)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里? 解法一:如图,连结11A B ,由已知22102A B =,122030210260A A =⨯=, 1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1212102A B A A ∴==,北1B2B1A2A120 105 乙 甲北 1B2B1A2A120 105甲乙由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos45B B A B A B A B A B =+-22220(102)2201022=+-⨯⨯⨯ 200=.12102B B ∴=.因此,乙船的速度的大小为1026030220⨯=(海里/小时). 答:乙船每小时航行302海里.解法二:如图,连结21A B ,由已知1220A B =,122030210260AA =⨯=,112105B A A =∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=-2(13)4-=,sin105sin(4560)=+sin 45cos60cos 45sin 60=+2(13)4+=.在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-222(13)(102)202102204-=+-⨯⨯⨯北1B2B1A2A120 105 乙甲100(423)=+.1110(13)A B ∴=+.由正弦定理1112111222202(13)2sin sin 4210(13)A B A A B B A A A B +===+∠∠, 12145A A B ∴=∠,即121604515B A B =-=∠,2(13)cos15sin1054+==.在112B A B △中,由已知12102AB =,由余弦定理,22212112221222cos15B B A B A B A B A B =++2222(13)10(13)(102)210(13)1024+=++-⨯+⨯⨯200=.12102B B ∴=,乙船的速度的大小为1026030220⨯=海里/小时. 答:乙船每小时航行302海里.2、(07山东文17)在ABC △中,角A B C ,,的对边分别为tan 37a b c C =,,,. (1)求cos C ;(2)若52CB CA =,且9a b +=,求c . 解:(1)sin tan 3737cos C C C=∴=,又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角.1cos 8C ∴=.(2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=.又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.3.(08山东卷17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin (-ϕω+x -6π)=sin (ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)4.(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+3π)+sin 2x. (1) 求函数f(x)的最大值和最小正周期. (2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24c f =-,且C 为锐角,求sinA. 解: (1)f(x)=cos(2x+3π)+sin 2x.=1cos 213cos 2cos sin 2sin sin 233222x x x x ππ--+=- 所以函数f(x)的最大值为132+,最小正周期π. (2)()2c f =13sin 22C -=-41, 所以3sin 2C =, 因为C 为锐角, 所以3C π=,又因为在∆ABC 中, cosB=31, 所以 2s i n33B =, 所以2113223sin sin()sin cos cos sin 232326A B C B C B C +=+=+=⨯+⨯=. 【命题立意】:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系. 5.(2009山东卷文)(本小题满分12分)设函数f(x)=2)0(sin sin cos 2cossin 2πϕϕϕ<<-+x x x 在π=x 处取最小值.(3) 求ϕ.的值;(4) 在∆ABC 中,c b a ,,分别是角A,B,C 的对边,已知,2,1==b a 23)(=A f ,求角C.. 解: (1)1cos ()2sin cos sin sin 2f x x x x ϕϕ+=⋅+- sin sin cos cos sin sin x x x x ϕϕ=++- sin cos cos sin x x ϕϕ=+ sin()x ϕ=+因为函数f(x)在π=x 处取最小值,所以sin()1πϕ+=-,由诱导公式知sin 1ϕ=,因为0ϕπ<<,所以2πϕ=.所以()sin()cos 2f x x x π=+=(2)因为23)(=A f ,所以3cos 2A =,因为角A 为∆ABC 的内角,所以6A π=.又因为,2,1==b a 所以由正弦定理,得sin sin a b A B =,也就是sin 12sin 222b A B a ==⨯=, 因为b a >,所以4π=B 或43π=B .当4π=B 时,76412C ππππ=--=;当43π=B 时,36412C ππππ=--=. 【命题立意】:本题主要考查了三角函数中两角和差的弦函数公式、二倍角公式和三角函数的性质,并利用正弦定理解得三角形中的边角.注意本题中的两种情况都符合. 6、(2010山东文数)(17)(本小题满分12分) 已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π, (Ⅰ)求ω的值;(Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值.7、(2010山东理数)8、(2011山东理数17)在 ABC中,内角A,B,C的对边分别为a,b,c.已知cos A-2cos C 2c-a =cos B b. (I )求sin sin C A的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
三角函数历年高考题汇编(附答案)

1、函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2、已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数3.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )4.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.函数()(1)cos f x x x =的最小正周期为( )A .2π B .32π C .π D .2π6.若3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,则φ的最小值为A.6πB.4πC. 3πD. 2π 7.函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3,32 D. -2,321、已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式;(2)已知,(0,)2παβ∈, 且312(),(),513f f αβ==求()f αβ-的值。
8.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )1.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
2.函数22cos sin 2y x x =+的最小值是_____________________ .3.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =12、已知函数()sin sin(),2f x x x x R π=++∈.I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值;(III)若3()4f α=,求sin2α的值. 30.已知函数()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.答案1.A 2.D 3.D 4.A 5.A 6.A 7.C 8.A 二1.0 2. 1 3.32。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)

专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2014年全国个省市高考理科数学分类汇编:三角函数

一、选择题 1、(新课标全国卷Ⅰ)8题 设)2,0(πα∈,)2,0(πβ∈,且ββαcos sin 1tan +=,则( ) A.23πβα=- B. 22πβα=- C. 23πβα=+ D. 22πβα=+2、(新课标全国卷Ⅱ)4题 钝角三角形ABC 的面积是21,2,1==BC AB ,则=AC ( ) A.5 B.5 C.2 D. 12'、(新课标全国卷Ⅱ)12题设函数mx x f πsin 3)(=.若存在)(x f 的极值点0x 满足[]22020)(m x f x <+,则m 的取值范围是( )A.),6()6,(+∞⋃--∞B. ),4()4,(+∞⋃--∞C. ),2()2,(+∞⋃--∞D. ),1()1,(+∞⋃--∞ 3、(大纲卷-广西卷)3题设︒=33sin a ,︒=55cos b ,︒=55tan c ,则( ) A.c b a >> B.a c b >> C.a b c >> D. b a c >> 4、(安徽卷)6题设函数))((R x x f ∈满足x x f x f s i n )()(+=+π.当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D. 21- 5、(湖南卷)9题已知函数)sin()(ϕ-=x x f ,且0)(320=⎰dx x f π,则函数)(x f 的图像的一条对称轴是( )A.65π=x B. 127π=x C. 3π=x D. 6π=x 6、(四川卷)3题为了得到函数x y x y 2sin )12sin(=+=的图像,只需把函数的图像上所有的点( )A.向左平行移动21个单位长度 B. 向右平行移动21个单位长度 C.向左平行移动1个单位长度 D. 向右平行移动1个单位长度7、(浙江卷)4题 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3cos 2=的图像( )A.向右平移4π个单位B. 向左平移4π个单位 C.向右平移12π个单位 D. 向左平移12π个单位8、(陕西卷)2题 函数)62cos()(π-=x x f 的最小正周期是( )A.2πB.πC. π2D. π4 9、(辽宁卷)9题将函数)32sin(π+=x y 的图像向右平移2π个单位长度,所得图像对应的函数( )A.在区间]127,12[ππ上单调递减B. 在区间]127,12[ππ上单调递增 C. 在区间]3,6[ππ-上单调递减 D. 在区间]3,6[ππ-上单调递增二、填空题1、(新课标全国卷Ⅰ)16题已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,2=a ,且C b c B A b s i n )()s i n )(s i n 2(-=-+,则△ABC 面积的最大值为 .2、(新课标全国卷Ⅱ)14题函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为 . 3、(大纲卷-广西卷)16题若函数x a x x f sin 2cos )(+=在区间)2,6(ππ是减函数,则a 的取值范围是 .4、(安徽卷)11题 若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 5、(广东卷)12题在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知,2cos cos b B c C b =+则=ba. 6、(四川卷)13题如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 m.C(用四舍五入法将结果精确到个位,参考数据: 7、(陕西卷)13题 设20πθ<<,向量)1,(cos ),cos ,2(sin θθθ==,若//,则=θtan .8(山东卷)12题在 △ABC 中,已知A tan =⋅,当6π=A 时,△ABC 的面积为 .9、(福建卷)12题在 △ABC 中,60=A ,32,4==BC AC ,则△ABC 的面积为 . 10、(天津卷)12题△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知C B a c b sin 3sin 2,41==-,则A cos 的值为 . 11、(江苏卷)5题已知函数x y cos =与)2sin(ϕ+=x y (πϕ<≤0),它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 12、(江苏卷)14题若△ABC 的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是 . 三、解答题 1、(新课标全国卷Ⅰ)未考 2、(新课标全国卷Ⅱ)未考 3、(大纲卷-广西卷)17题共10分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知31tan ,cos 2cos 3==A A c C a ,求B . 4、(安徽卷)16题12分设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且3=b ,1=c ,B A 2=. (Ⅰ)求a 的值; (Ⅱ)求)4sin(π+A 的值.5、(广东卷)16题12分已知函数,),4sin()(R x x A x f ∈+=π且23)125(=πf . (1) 求A 的值; (2) 若),2,0(,23)()(πϑθθ∈=-+f f 求)43(ϑπ-f . 6、(广东卷)18题12分如图,在平面四边形ABCD 中,7,2,1===AC CD AD .(Ⅰ)求CAD ∠cos 的值; (Ⅱ)若621sin ,147cos =∠-=∠CBA BAD ,求BC 的长. BD7、(四川卷)16题12分 已知函数)43sin()(π+=x x f .(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若α是第二象限角,,2cos )4cos(54)3(απαα+=f 求ααsin cos -的值. 8、(浙江卷)18题14分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知b a ≠,3=c ,B B A A B A cos sin 3cos sin 3cos cos 22-=-.(Ⅰ)求角C 的大小; (Ⅱ)若54sin =A ,求△ABC 的面积. 9、(湖北卷)17题11分某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系: )24,0[,12sin12cos310)(∈--=t t t t f ππ.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在那段时间实验室需要降温? 10、(陕西卷)16题12分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .(Ⅰ)若a 、b 、c 成等差数列,证明:)sin(2sin sin C A C A +=+; (Ⅱ)若a 、b 、c 成等比数列,求B cos 的最小值. 11、(江西卷)16题12分已知函数)2cos()sin()(θϑ+++=x a x x f ,其中R a ∈,)2,2(ππϑ-∈.(Ⅰ)当4,2πθ==a 时,求)(x f 在区间],0[π上的最大值与最小值;(Ⅱ)若)2(πf =0,1)(=πf ,求a ,θ的值.12、(重庆卷)17题共13分,(Ⅰ)小问5分,(Ⅱ)8分 已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (Ⅰ)求ϖ和ϕ的值; (Ⅱ)若43)2(=αf (326παπ<<),求)23cos(πα+的值. 13、(山东卷)16题12分已知向量),,2(sin ),2cos ,(n x x m ==函数x f ⋅=)(,且)(x f y =的图像过点(3,12π)和点(2,32-π). (Ⅰ)求n m ,的值(Ⅱ)将)(x f y =的图像向左平移ϕ(0<ϕ<π)个单位后得到函数)(x g y =的图像,若)(x g y =的图像上各最高点到点(0,3)的距离的最小值为1,求)(x g y =的单调递增区间.14、(福建卷)16题13分已知函数21)cos (sin cos )(-+=x x x x f . (Ⅰ)若20πα<<,且22sin =α,求)(αf ; (Ⅱ)求函数)(x f 的最小正周期及单调递增区间. 15、(北京卷)15题13分 如图,在△ABC 中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD . (Ⅰ)求BAD ∠sin ; (Ⅱ)求BD ,AC 的长.F16、(天津卷)15题13分 已知函数R x x x x x f ∈+-+⋅=,43cos 3)3sin(cos )(2π. (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在闭区间]4,4[ππ-上的最大值和最小值. 17、(辽宁卷)17题12分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a >c .已知.3,31c o s ,2===⋅b B 求:(Ⅰ)a 和c 的值; (Ⅱ))cos(C B -的值. 18、(江苏卷)15题14分 已知),2(ππα∈,55sin =α. (1) 求)4sin(απ+的值;(2) 求)265cos(απ-的值.。
最新三角函数高考题汇编

三角函数高考题汇编一、选择题1.设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A 、3-B 、1-C 、1D 、32.把函数12cos +=x y 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是( )3.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A 、15[,]24B 、 13[,]24C 、 1(0,]2D 、(0,2]4.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5155.若42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2=8θ,则sin θ=( )A 、35 B 、45 C 、74 D 、346.已知sin cos 2αα-=,),0(πα∈,则tan α=( )A 、 -1B 、 22-C 、22D 、1 7.若tan θ+1tan θ= 4,则sin2θ=( )A .15 B. 14 C. 13 D. 128.函数)6cos(sin )(π+-=x x x f 的值域为 ( )A .,9.已知α为第二象限角,33cos sin =+αα,则cos2α=( )A 、 -3 B 、-9 C 、 9 D 、310、设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A 、31B 、3C 、6D 、9 11、角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y=2x 上,则cos2θ=( )A 、54-B 、53-C 、 53D 、 5412、设函数()⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+=42cos 42sin ππx x x f ,则 ( ) A 、()x f y =在⎪⎭⎫⎝⎛2,0π单调递增,其图象关于直线4π=x 对称B 、()x f y =在⎪⎭⎫⎝⎛2,0π单调递增,其图象关于直线2π=x 对称 C 、()x f y =在⎪⎭⎫⎝⎛2,0π单调递减,其图象关于直线4π=x 对称D 、()x f y =在⎪⎭⎫⎝⎛2,0π单调递减,其图象关于直线2π=x 对称 13、已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,ππϕ-<≤.若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数 C .()f x 在区间[]3π,5π上是减函数 D .()f x 在区间[]4π,6π上是减函数14、若函数()()0sin >=ωωx x f 在区间⎥⎦⎤⎢⎣⎡3,0π上单调递增,在区间⎥⎦⎤⎢⎣⎡2,3ππ上单调递减,则ω= ( ) A 、32 B 、23C 、 2D 、3 15、若0,2πα⎛⎫∈ ⎪⎝⎭,且21sin cos 24αα+=,则tan α的值等于( ). A 、22 B 3 C 2 D 316、已知函数()3i n c o s,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为( ) A.|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B.|,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C.5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ D.5|,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ 17、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )A 、向左平移4π个长度单位B 、向右平移4π个长度单位C 、向左平移2π个长度单位D 、向右平移2π个长度单位18.函数x x x f cos sin 2)(=是 ( )A 、最小正周期为2π的奇函数B 、最小正周期为2π的偶函数C 、最小正周期为π的奇函数D 、最小正周期为π的偶函数19.设0ω>,函数sin()23y x πω=++图像向右移43π个单位后与原图像重合,则ω的最小值是 ( )A 、23 B 、 43 C 、 32D 、3 20.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )A 、sin(2)2y x π=+B 、cos(2)2y x π=+C 、sin()2y x π=+D 、cos()2y x π=+ 21、将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 ( ) A 、sin(2)10y x π=- B 、sin(2)5y x π=- C 、1sin()210y x π=- D 、1sin()220y x π=-22.已知函数)2,0)(sin(πϕωϕ<>+=wx y 的部分图象如图所示,则 ( )A.1=ω 6πϕ=B.1=ω 6πϕ-=C.2=ω 6πϕ=D.2=ω 6πϕ-=23、5y Asinx x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点 ( )A 、向左移3π个单位长度,再把横坐标缩短到原来的12倍,纵坐标不变B 、 向左移3π个单位长度,再把横坐标伸长到原来的2倍,纵坐标不变C 、向左移6π个单位长度,再把横坐标缩短到原来的12倍,纵坐标不变D 、向左平移6π个单位长度,再把横坐标伸长到原来的2倍,纵坐标不变24、记cos(80)k -︒=,那么tan100︒= ( )A.21k k -B. -21k k -C. 21k k -D. -21k k-25.函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数26.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,||ϕ的最小值为( ) A 、6π B 、4π C 、3π D 、2π27、若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为 ( )A 、61B 、41C 、31D 、2128.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( ) 29.已知函数()3cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是 ( )A 、5[,],1212k k k Z ππππ-+∈B 、511[,],1212k k k Zππππ++∈C 、[,],36k k k Z ππππ-+∈ D 、2[,],63k k k Zππππ++∈30.函数()(13)cos f x x x =的最小正周期为 ( )A .2πB .32π C .π D .2π31.若函数()(13)cos f x x x =,02x π≤<,则()f x 的最大值为( )A .1B .2C 31D 32 32.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A 、2π B 、83π C 、4π D 、8π33.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 ( ) A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数34、将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于 ( )A .6πB .56π C. 76π D.116π35.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = ( ) A 、23- B 、23 C 、21- D 、1236、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象 ( )A 、 向左平移8π个单位长度 B 、 向右平移8π个单位长度 C 、 向左平移4π个单位长度 D 、 向右平移4π个单位长度二、填空题1、当函数)20(cos 3sin π<≤-=x x x y 取得最大值时,=x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007-2011高考三角函数及解三角形考题汇总20073.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是( )9.若cos 2πsin 4αα=⎛⎫- ⎪⎝⎭cos sin αα+的值为( )A.- B.12- C.1217.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 200811、函数()cos22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,3217、(本小题满分12分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2。
(1)求cos ∠CBE 的值;(2)求AE 。
2009(16)已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
x--A.B.C.D.(17)(本小题满分12分)如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。
2010(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(10)若sin a = -45,a 是第一象限的角,则sin()4a π+=(A ) (B ) (C ) (D )(16)在△ABC 中,D 为BC 边上一点,3BC BD =,AD =,135ADB ο∠=.若AC =,则BD=_____ 2011(7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=(A )45- (B )35- (C) 35 (D) 45(11)设函数)42cos()42sin()(ππ+++=x x x f ,则( )(A )y=)(x f (0,2π)在单调递增,其图像关于直线x = 4π对称(B )y=)(x f 在(0,2π)单调递增,其图像关于直线x = 2π对称(C )y= )(x f 在(0,2π)单调递减,其图像关于直线x = 4π对称(D )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 2π对称(15)△ABC 中B=120°,AC=7,AB=5,则△ABC 的面积为 。
三角函数的概念、同角三角函数的基本关系、诱导公式1. [2012·大纲全国,文12]正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =13.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A .8B .6C .4D .32. [2012·上海,文18]若S n =sin π7+sin 2π7+…+sin nπ7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( )A. 16 B . 72 C. 86 D. 1001. [2012·大纲全国,文3]若函数f (x )=sin x +φ3(φ∈[0,2π]) 是偶函数,则φ=( )A. π2B.2π3 C. 3π2D. 5π32. [2012·福建,文8]函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A. x =π4B. x =π2C. x =-π4D. x =-π21. [2012·安徽,文7]要得到函数y =cos(2x +1)的图象,只要将函数y =cos2x 的图象( )A. 向左平移1个单位B. 向右平移1个单位C. 向左平移12个单位D.向右平移12个单位2. [2012·天津,文7]将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝ ⎛⎭⎪⎫3π4,0,则ω的最小值是( )A. 13 B. 1 C. 53D. 2 3. [2012·浙江,文6]把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )4. [2012·课标全国,文9]已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A. π4 B. π3 C. π2D.3π45. [2012·山东,文8]函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A. 2- 3 B . 0 C. -1 D. -1- 36. [2012·陕西,文17]函数f (x )=A sin(ωx -π6)+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝ ⎛⎭⎪⎫0,π2,f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 7. [2012·湖南,文18]已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间.8. [2012·安徽,文21]设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .9. [2012·重庆,文19]设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在x =π6处取得最大值2,其图象与x 轴的相邻两个交点的距离为π2.(1)求f (x )的解析式;(2)求函数g (x )=6cos 4x -sin 2x -1f ⎝ ⎛⎭⎪⎫x +π6的值域. 10. [2012·湖北,文18]设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )的值域.1. [2012·四川,文5]如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC ,ED ,则sin ∠CED =( )A.31010B.1010 C. 510 D. 5152. [2012·重庆,文5]sin47°-sin17°cos30°cos17°=( )A. -32 B. -12 C. 12 D . 323. [2012·江西,文4]若sin α+cos αsin α-cos α=12,则tan2α=( )A. -34B. 34C. -43 D . 434. [2012·大纲全国,文4]已知α为第二象限角,sin α=35,则sin2α=( )A. -2425 B. -1225 C. 1225 D. 24255. [2012·辽宁,文6]已知sin α-cos α=2,α∈(0,π),则sin2α=( ) A. -1 B. -22 C. 22D. 1 6. [2012·江西,文9]已知f (x )=sin 2⎝ ⎛⎭⎪⎫x +π4.若a =f (lg5),b =f ⎝ ⎛⎭⎪⎫lg 15,则( )A. a +b =0B. a -b =0C. a +b =1D. a -b =17. [2012·大纲全国,文15]当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.8. [2012·江苏,11]设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.9. [2012·北京,文15]已知函数f (x )=(sin x -cos x )sin2xsin x.(1)求f (x )的定义域及最小正周期;2)求f (x )的单调递减区间. 10. [2012·四川,文18]已知函数f (x )=cos 2x 2-sin x 2cos x 2-12.(1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin2α的值. 解三角形1. [2012·广东,文6]在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( )A. 43B. 23C. 3D.322. [2012·湖南,文8]在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332 C. 3+62 D. 3+3943. [2012·上海,文17]在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定 4. [2012·湖北,文8]设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A. 4∶3∶2B. 5∶6∶7C. 5∶4∶3D. 6∶5∶45. [2012·北京,文11]在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.6. [2012·福建,文13]在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________.7. [2012·陕西,文13]在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.8. [2012·重庆,文13]设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.9. [2012·江西,文16]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c .10. [2012·大纲全国,文17]△ABC 中,内角A ,B ,C 成等差数列,其对边a ,b ,c 满足2b 2=3ac ,求A .11. [2012·辽宁,文17]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.12. [2012·浙江,文18]在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 13. [2012·江苏,15]在△ABC 中,已知AB →·AC →=3BA →BC →. (1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值. 14. [2012·安徽,文16]设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sin B cos A =sin A cos C +cos A sin C .(1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 15. [2012·课标全国,文17]已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .16. [2012·天津,文16]在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a =2,c =2,cos A =-24.(1)求sin C 和b 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A +π3的值. 17. [2012·山东,文17]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列;(2)若a =1,c =2,求△ABC 的面积S . 2013年上海5.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 (结果用反三角函数值表示). 9.若1cos cos sin sin 3x y x y +=,则()cos 22x y -= .21.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数()2sin()f x x ω=,其中常数0ω>.(1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.重庆卷9已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =(A )5- (B )1- (C )3 (D )415.设0απ≤≤,不等式28(8sin )cos20x x αα-+≥对x R ∈恒成立,则a 的取值范围为 . 18.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c a b =+.(Ⅰ)求A ;(Ⅱ设a =S 为△ABC 的面积,求3c o s c o s S B C +的最大值,并指出此时B 的值. 浙江6.函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是 A .π,1 B .π,2 C .2π,1 D .2π,2 18.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 且2asinB=3b .(Ⅰ)求角A 的大小; (Ⅱ) 若a=6,b+c=8,求△ABC 的面积.(天津卷) 6.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1- (B) (C)(D) 016.(本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3,2cos 3B =. (Ⅰ) 求b 的值; (Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值. (四川卷) 6.函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π 14.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos()cos sin()sin()5A B B A B A c ---+=-.(Ⅰ)求sin A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.陕西9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 直角三角形(B) 锐角三角形 (C) 钝角三角形 (D) 不确定16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(山东卷)7.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =,则c =(A) (B) 2 (C) (D)1 9.函数x x x y sin cos +=的图象大致为18.(本小题满分12分)设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π, (Ⅰ)求ω的值(Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值辽宁卷6.在ABC ∆,内角,,A B C 所对的边长分别,,.a b c 1sin cos sin cos ,2a B C c B A b +=,a b B >∠=且则A .6π B .3π C .23π D .56π17.(本小题满分12分)设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值; (II )设函数()(),.f x a b f x =求的最大值 新课标Ⅱ卷4.△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为 (A )2+2(B )+1 (C )2-2(D )-16.已知sin2α=,则cos 2(α+)=(A ) (B ) (C ) (D ) 16.函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函sin(2)3y x π=+的图像重合,则||ϕ=___________.新课标 9函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10 (B )9 (C )8 (D )5 16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.江西卷3. sincos 2αα==若( )A. 23- B. 13- C. 13 D.2310.如图。