2017年秋季新版北师大版八年级数学上学期7.2、定义与命题教案5
北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。
教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。
二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。
但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。
因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。
2.学会如何书写和阅读命题。
3.学会从命题中提取信息。
四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。
2.难点:如何从命题中提取信息。
五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
六. 教学准备2.PPT。
3.教学案例。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。
例如,定义一个三角形:由三条线段首尾相连围成的图形。
然后,给出一个命题:所有的三角形都有三个顶点。
让学生思考这个命题是否正确。
2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。
让学生理解定义与命题的关系。
3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。
教师通过提问,引导学生理解命题的构成要素。
4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。
教师通过提问,检查学生对定义与命题的理解。
5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。
例如,给出一个命题,让学生判断其是否正确,并说明理由。
6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。
7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。
北师大版八年级数学上册7.2定义与命题优秀教学案例

3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。
八年级上册-初中数学北师大【核心素养目标】7.2.2定义与命题 教学设计

证明:∵ ∠B和∠C是∠A的补角,
∴∠B=180°-∠A,∠C=180°-∠A.
∴∠B=∠C(等量代换).
∴同角的补角相等.
2.1 已知:∠B和∠C是∠A的余角,
求证:∠B=∠C
证明:∵ ∠B和∠C是∠A的余角,
∴∠B=90°-∠A,∠C=90°-∠A.
∴∠B=∠C(等量代换).
∴同角的余角相等.
要说明一个命题是正确的,无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性,其实在数学发展史上,数学家们也遇到过类似的问题.今天我们就来共同学习.
此处教师讲,学生听,在听故事的过程中抓住学生的质疑与好奇,引出新课内容,揭示课题
通过引人入胜的数学故事,方便与学生活动交流,拉近与学生之间的距离.同时结合故事内容调动学生学习的兴趣,激发学生学习的热情,吊足学生胃口,引入新课,揭示课题.
学生归纳本节所学内容,并体验核心素养的形成。
训练学生总结归纳能力;升华知识,拓展知识面,开阔思维。
板书
课题:定义与命题
证明的一般步骤:
①审题,分清命题的条件和结论;
②画图,结合图形写出已知和求证;
③分析因果关系,找出证明途径;
④有条理地写出证明过程.
学生独立思考,解答,书写步骤
通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.
证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.
巩固所学的知识
课堂练习
1.“两点之间,线段最短”这个语句是( )
7.2.2定义与命题教学设计
课题
八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题说课稿(新版北师大版)一. 教材分析八年级数学上册7.2定义与命题是北师大版教材中的一节重要课程。
这部分内容主要介绍了定义与命题的概念、分类和判断方法。
教材通过丰富的实例和练习,使学生掌握定义与命题的基本知识,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和命题有一定的认识。
但学生在学习过程中,往往对抽象的定义与命题理解不深,容易混淆。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生理解定义与命题的本质,提高学生的数学思维能力。
三. 说教学目标1.知识与技能目标:使学生理解定义与命题的概念,掌握定义与命题的分类和判断方法。
2.过程与方法目标:通过自主学习、合作交流,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:定义与命题的概念、分类和判断方法。
2.教学难点:对定义与命题的理解和运用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过生活实例,引导学生思考什么是定义与命题,激发学生的学习兴趣。
2.自主学习:让学生阅读教材,了解定义与命题的概念、分类和判断方法。
3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。
4.教师讲解:针对学生不易理解的知识点,进行详细讲解,突破教学难点。
5.练习巩固:布置课后练习,让学生运用所学知识解决问题。
6.课堂小结:总结本节课所学内容,加深学生对定义与命题的理解。
七. 说板书设计板书设计如下:判断方法:……八. 说教学评价1.学生自主学习能力的评价:观察学生在自主学习过程中的表现,如学习态度、问题解决能力等。
2.学生合作交流能力的评价:评价学生在小组讨论中的参与程度、观点阐述等。
8年级上册-初中数学北师大【新课标】7.2.2定义与命题 课件(共26张PPT)

新知讲解
正确的命题是真命题,不正确的命题是假命题. 想一想:
要说明一个命题是假命题,只需举一个反例,那么如何证实一个命题 是真命题呢?
新知讲解
用我们以前学过的观察、实验、 验证特例等方法.
想一想
(7)两角及其夹边分别相等的两个三角形全等. (8)三边分别相等的两个三角形全等. 另外一条基本事实我们将在后面的学习中认识它.此外,数与式的运 算律和运算法则、等式的有关性质,以及反映大小关系的有关性质 都可以作为证明的依据. 例如,如果a=b,b=c, 那么a=c,这一性质 也可以作为证明的依据,称为“等量代换”.又如,如果a>b,b>c, 那么a>c,这一性质同样可以作为证明的依据.
7.2.2定义与命题
北师大版八年级上册
教学目标
1.了解命题中的真命题、假命题、定理的含义; 2.解命题的构成,能区分命题中的条件和结论。 3.经历实际情境,初步体会公理化思想和方法,了解本教材所采 用的公理.
复习导入
1.什么是定义? 对名称和术语的含义加以描述,作出明确规定.也就是给出它们的定义. 2.什么是命题? 判断一件事情的句子,叫做命题.
∴同角的余角相等.
新知讲解
2.2 已知:∠A=∠B,∠C和∠D分别是∠A、∠B的余角. 求证:∠C=∠D
证明:∵ ∠C和∠D分别是∠A、∠B的余角. ∴∠C=90°-∠A,∠D=90°-∠B. ∵∠A=∠B(已知). ∴∠C=∠D(等量代换). ∴等角的余角相等.
新知讲解
3.已知:AB,AC是△ABC的两边 求证:AB+AC>BC
7.2第1课时定义与命题(新教案)-2023-2024学年八年级上册数学(北师大版)

1.理论介绍:首先,我们要了解命题的基本概念。命题是能够明确判断真假的陈述句。它是数学逻辑推理的基础,帮助我们分析和解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“所有的矩形都是平行四边形”这一命题,了解命题在实际中的应用,以及如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对于命题的定义和构成这部分内容掌握得相对较好。通过引入日常生活中的例子,他们能够较快地理解命题的概念,并能够分辨出命题的题设和结论。这一点让我感到很欣慰,说明学生们具备了一定的抽象思维能力。
然而,在讲解命题的真假判断和逆否命题等难点内容时,我发现部分学生显得有些吃力。他们对于一些复杂的命题逻辑关系理解不够透彻,需要我通过更多的例题和直观的图示来解释。在今后的教学中,我需要更加注意这一点,对于难点知识要采用更加多样化的教学方法,帮助学生更好地理解和吸收。
-逆命题、反命题和逆否命题的关系:重点阐述这四种命题之间的转换和关系,通过实例进行解释。
2.教学难点
-命题概念是一大难点。教师需要通过具体例子,让学生体会命题的抽象性,如从具体图形到一般性命题的过渡。
-命题真假判断的方法:难点在于让学生掌握不同命题真假判断的方法,如直接验证、反例法、逻辑推理等。例如,命题“所有的矩形都是正方形”的真假判断。
3.重点难点解析:在讲授过程中,我会特别强调命题的构成和真假判断这两个重点。对于难点部分,如逆命题和逆否命题的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过几何图形来验证某一命题的正确性。
北师大版八年级上册《7.2定义与命题》说课稿

北师大版八年级上册《7.2 定义与命题》说课稿一. 教材分析《7.2 定义与命题》这一节的内容是八年级上册数学课程的一部分,主要介绍定义和命题的概念,以及它们在数学中的重要性。
通过这一节的学习,学生可以理解定义和命题的含义,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。
教材中包含了丰富的例子和练习题,帮助学生通过实际操作来理解和巩固所学知识。
此外,教材还注重培养学生的逻辑思维能力和数学语言表达能力,为今后的数学学习打下坚实的基础。
二. 学情分析学生在进入八年级之前,已经学习了一定的数学知识,对一些基本概念和运算规则有一定的了解。
但在定义和命题方面,学生可能还存在一些困惑和误解。
因此,在教学过程中,需要关注学生的认知水平,采取适当的教学方法,帮助学生理解和掌握定义和命题的概念。
同时,学生可能对数学语言的表达方式还不够熟悉,因此在教学过程中,需要注重培养学生的数学语言表达能力,使其能够准确、清晰地表达自己的思想和观点。
三. 说教学目标1.知识与技能目标:学生能够理解定义和命题的概念,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。
2.过程与方法目标:通过观察、分析和归纳,学生能够掌握定义和命题的给出方法,培养逻辑思维能力和数学语言表达能力。
3.情感态度与价值观目标:学生能够体验到数学的严谨性和逻辑性,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:定义和命题的概念及其在数学中的应用。
2.教学难点:如何准确地给出定义和写出命题,以及如何分辨不同类型的命题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、合作交流,培养学生的逻辑思维能力和数学语言表达能力。
2.教学手段:利用多媒体课件、实物模型和练习题,辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个具体的数学问题,引发学生对定义和命题的思考,激发学生的学习兴趣。
2017秋八年级数学上册 7.2 定义与命题 第2课时 定理与证明教案1 (新版)北师大版

第2课时 定理与证明1.了解公理、定理与证明的概念并了解本套教材所采用的公理;(重点) 2.体会命题证明的必要性,体验数学思维的严谨性. 一、情境导入体验证明的步骤:对于命题“如果一条直线与两条平行线中的一条垂直,那么这条直线也和另一条垂直”是否正确?转化为如图所示的图形,已知条件为AB∥CD,AB ⊥EF ,请问CD 与EF 垂直吗?为什么?二、合作探究探究点一:公理与定理下列平行线的判定方法中是公理的是( )A .平行于同一条直线的两条直线平行B .同位角相等,两直线平行C .内错角相等,两直线平行D .在同一平面内,不相交的两条直线叫做平行线解析:A 是由公理推出的定理;C 是由B 推出的平行线的判定定理;D 是平行线的定义,只有B 是由画图实践得来的,符合公理的定义,故选B.方法总结:公理是不需要推理判断的公认的真命题;定理是需要用推理的方法来判断其正确的命题.探究点二:证明【类型一】直接证明非文字题如图所示,在直线AC 上取一点O ,作射线OB ,OE 和OF分别平分∠AOB 和∠BOC.求证:OE⊥OF.解析:要证明某个结论,可从条件入手分析,也可以从结论逆推进行分析.要证OE⊥OF,只需证∠EOF=90°,而∠EOF=∠EOB+∠BOF,因此只需证∠EOB+∠BOF=90°.由OE 、OF 平分∠AOB 和∠BOC 可得∠EOB+∠BOF=12(∠AOB+∠BOC)=90°,所以得证OE⊥OF.证明:∵OE 和OF 分别平分∠AOB 和∠BOC,∴∠EOB =12∠AOB ,∠BOF =12∠BOC.又∵∠AOB +∠BOC =180°,∴∠EOB +∠B OF =12(∠AOB +∠BOC)=12×180°=90°,即∠EOF=90°,∴OE ⊥OF. 方法总结:从结论逆推进行分析得出条件,反过来的过程就是证明结论的过程.【类型二】直接证明文字题求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC 中,∠C =90°.求证:∠A 与∠B 互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A +∠B=180°-∠C=90°.∴∠A 与∠B 互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.2三、板书设计命题⎩⎪⎨⎪⎧分类⎩⎪⎨⎪⎧公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:定义与命题
教学目标:
知识与技能目标:
1.让学生了解定义的含义并了解给一些名称下定义的常用方法;
2.让学生了解命题的含义.
过程与方法目标:
1.让学生经历术语定义产生的过程,在通过类比、完成填空的过程中培养自学的能力;
2.让学生经历“命题”这个名词的定义产生过程,进一步了解命题的含义.
情感态度与价值观目标:
1.通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.
重点:
1.了解命题的含义,能够区分“命题”与“正确的命题(真命题)”;
2.理解命题的结构,把命题改写成“如果„„,那么„„”的形式.
难点:
命题的概念的理解.
教学流程:
一、 情境引入
创设“一对父子的谈话”场景让学生发现有关的数学问题.
在老师的描述中抢答出这是什么数学名词。
师总结:可见,在交流时对名称和术语要有共同的认识才行.
设计说明:用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个
贯穿的背景。更重要的是,希望学生初步明白下定义的重要性.
二、 自主探究
探究1:
证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名
称和术语的含义加以描述,作出明确的规定,也就是给出他们的定义.
解:设赤道的周长为xm,则铁丝与赤道的间隙为:
如:1、“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共
和国公民”的定义.
大家还能举出一些例子吗?
2、“两点之间线段的长度,叫做这两点之间的距离” 是“ ”的定义;
解:两点之间的距离
3、“无限不循环小数称为无理数” 是 “ ”的定义;
解:无理数
4、“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形” 是
“ ”的定义;
解:多边形
5、“有两条边相等的三角形叫做等腰三角形” 是“ ”的定义;
解:等腰三角形
目的:
鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案进行肯定,激发他
们学习数学的兴趣.为了真正做到有效的合作学习,让学生在进行讨论之前先进行独立思考,
有了自己的想法,然后再与别人交换意见,产生思维的碰撞,以真正达到讨论的目的.
考考你
请说出下列名词的定义:
(1)有理数(2)直角三角形(3)一次函数(4)一元二次方程(5)压强
探究2:
你认为线段a与线段b哪个比较长?
线段a比线段b长.
线段b比线段a长.
线段a与线段b一样长.
判断一件事情的句子,叫做命题.
下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.
(1)任何一个三角形一定有一个角是直角;
(2)对顶角相等;
(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;
(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;
(5)你喜欢数学吗?
(6)作线段AB=CD.
解:(1)(2)(3)(4)对事情进行了判断,都是命题.
(5)(6)没有对事情做出判断,不是命题.
观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴进行交流.
(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;
(2)如果a=b,那么a²=b²;
(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.
一般地,每个命题都由条件和结论两部分组成.
条件是已知的事项,结论是由已知事项推断出的事项.
命题通常可以写成“如果‥‥‥那么‥‥‥ ”的形式,
其中“如果”引出的部分是条件,“那么”引出的部分是结论.
做一做:
下列句子中哪些是命题?
(1)动物都需要水; (2)猴子是动物的一种;
(3)玫瑰花是动物; (4)美丽的天空;
(5)相等的角是对顶角;(6)负数都小于零;
(7)你的作业做完了吗?(8)所有的质数都是奇数;
(9)过直线 l 外一点作 l 的平行线;
(10)如果a=b,a=c,那么b=c.
解:(1)(2)(3)(4)(5)(6)(8)(10)是命题.
三、合作探究
探究3:
指出下列各命题的条件和结论,其中哪些命题是错误的?你是任何判断的?与同伴进行
交流.
(1)如果两个角相等,那么它们是对顶角;
(2)如果a≠b, b≠c,那么a≠c ;
(3)全等三角形的面积相等;
(4)如果室外气温低于0℃,那么地面上的水一定会结冰.
解:(1)条件:两个角相等,结论:它们是对顶角.
(2)条件: a≠b, b≠c ,结论: a≠c.
(3)条件: 两个三角形全等,结论: 它们的面积相等.
(4)条件:室外气温低于0℃ ,结论:地面上的水一定会结冰.
正确的命题称为真命题,不正确的命题称为假命题.
说明假命题的方法:举反例
使之具有命题的条件,而不具有命题的结论.
做一做:
四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一
边的对角分别相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);
④对角线互相垂直的四边形是菱形,其中正确的是( )
解①三角形的一条中线能将三角形分成面积相等的两部分,正确;
②有两边和其中一边的对角对应相等的两个三角形全等,错误;
③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2),正确;
④对角线互相垂直的平行四边形才是菱形,故错误.
综上所述,正确的是①③.
四、合作探究
探究4:
公理:公认的真命题称为公理.
证明:除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证
明.
定理:经过证明的真命题称为定理.
本套教科书选用九条基本事实中已认识的其中八条是:
1.两点确定一条直线。
2.两点之间线段最短。
3.同一平面内,过一点有且只有一条直线与已知直线垂直。
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
5.过直线外一点有且只有一条直线与这条直线平行.
6.两边及其夹角对应相等的两个三角形全等.
7.两角及其夹边对应相等的两个三角形全等.
8.三边对应相等的两个三角形全等.
例 已知:如图7-5,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.
求证:∠AOC=∠BOD
解:∵直线AB与直线CD相交于点O,
∴∠AOB和∠COD都是平角(平角的定义)
∴∠AOC和∠BOD都是∠AOD补角(补角的定义)
∴∠AOC=∠BOD(同角的补角相等)
做一做:
写出命题“有两角互余的三角形是直角三角形”的逆命题并证明.
解:命题“有两角互余的三角形是直角三角形”的逆命题为直角三角形的两锐角互余.
已知:△ABC中,∠C=90°.
求证:∠A+∠B=90°.
证明:∵∠A+∠B+∠C=180°,而∠C=90°,
∴∠A+∠B=90°即∠A与∠B互余.
五、小结
通过本节课的内容,你有哪些收获?
1、命题都是由条件和结论两部分组成, “如果„„那么„„”
2、说明一个命题是假命题的方法:举反例
3、说明一个命题是真命题的方法:证明
证明的依据:公理(等式的性质) 定义、已证明的定理
六、达标测评
1、“两点之间,线段最短”这个语句是( )
A、定理 B、公理 C、定义 D、只是命题
解:B
2、下列命题中,属于定义的是( )
A、两点确定一条直线
B、同角的余角相等
C、两直线平行,内错角相等
D、点到直线的距离是该点到这条直线的垂线段的长
解:D
3、x=3是方程2103xx的解,这个命题是真命题还是假命题?请说明理由.
解:真命题.理由如下:将x=3代入方程,方程的左右两边相等.
4、若x是实数,则x 2>0.这个命题是真命题还是假命题?请说明理由.
解:假命题.因为若x=0,则 x 2>0.
七、拓展延伸
1.说出定理“线段垂直平分线上的点到线段两端的距离相等”的逆命题并证明这个逆
命题是真命题.
解:“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端的距离
相等的点在线段垂直平分线上”.此逆命题为真命题.
已知:如图,CA=CB,
求证:点C在线段AB的垂直平分线上.
证明:作CD⊥AB,如图1,
∵CD⊥AB,∴∠ADC=∠BDC=90°,
∴Rt△ADC≌△Rt△BDC,∴AD=BD,∴CD垂直平分AB,
即点C在线段AB的垂直平分线上.
八、布置作业
教材171页习题第1、2题.