最新人教版初中八年级上册数学《从分数到分式》精品教案
人教版八年级上册15.1.1 从分数到分式 教案

从分数到分式【教学目标】:1、了解分式的概念,理解并掌握分式的有意义、无意义、值为零的条件。
2、类比用数字表示实际问题的数量关系到用字母表示实际问题的数量关系,加强学生用类比转化的思想方法研究解决问题。
3、体会从特殊到一般的数学思想方法,培养学生的推理能力,构建代数模型。
【教学重难点】重点:了解分式的概念,理解分式有意义的条件及值为零的条件.难点:能熟练的求出分式有意义的条件及值为零的条件.【教学过程】一、导入新课、明确目标已知篮球场的面积为450 2m ;长为28m,则宽为____m ;若长方形的面积为S ,长为z,则宽为___ cm ;已知比赛三天共打16场比赛,因赛制不同每队打了m 场比赛,则共有____队;; 教练开车从家到三中,行驶路程为akm ,平均时间为b h ,则他的平均速度为___h km /;若遇大雾天气,在路程不变的情况下,行驶时间增加了m 小时,则他的平均速度为___h km /.二、自主学习、精讲点拨 思考:28450,z S ,m 16,b a ,mb a + 问题1:你能判断出哪些是分数哪些不是分数吗?问题2:这些式子与分数相比有什么相同点?问题3:这些式子与分数相比有什么不同点?分式定义:一般地,如果A,B 表示两个整式,并且B 中含有字母, 那么式子B A 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 练习:判断下列式子是否为分式?πa x n m n m x x x x ab x x 2,1,,1212,352,534,31223-++-++-+, 重点:1.判断分式时关键要看分母中是否含有字母.2.判断分式时是从形式上看,即不能约分.3.π表示的是一个具体的数,它不是字母.拼一拼:你能任选两个式子,分别拖到分子 、分母的位置,并使它是分式吗? x ,x -2,π,4,0,2+x ,42-x在分数中,0不能做除数,那在分式中呢?分式的分母能不能为0?请大家阅读书128页思考中的问题及第二自然段。
人教版数学八年级上册15.1.1《从分数到分式》教学设计2

人教版数学八年级上册15.1.1《从分数到分式》教学设计2一. 教材分析《从分数到分式》是人民教育出版社八年级上册数学教材第15章第1节的内容。
本节课主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。
通过本节课的学习,学生能够理解分数与分式的联系,掌握分式的概念和基本性质,为后续的分式运算打下基础。
二. 学情分析学生在七年级时已经学习了分数的概念和运算,对分数有一定的认识和理解。
但是,对于分数与分式的关系,以及分式的本质还需要进一步引导和启发。
此外,学生对于抽象的数学概念的理解能力还在发展中,需要通过具体实例和操作活动来帮助他们建立概念。
三. 教学目标1.知识与技能:学生能够理解分数与分式的关系,掌握分式的概念和基本性质。
2.过程与方法:学生通过观察、操作、思考等活动,培养逻辑思维能力和抽象思维能力。
3.情感态度与价值观:学生能够体验到数学与实际生活的联系,增强对数学的兴趣和自信心。
四. 教学重难点1.重点:分数与分式的关系,分式的概念和基本性质。
2.难点:分式的本质理解,分式与分数的转化。
五. 教学方法1.情境教学法:通过生活实例引入分数与分式的概念,让学生感受到数学与实际生活的联系。
2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索,培养学生的逻辑思维能力。
3.操作活动法:通过实际操作和实践活动,让学生感知和体验分式的概念和性质。
六. 教学准备1.教学PPT:制作教学PPT,包括分数与分式的图片、实例、问题等。
2.教学素材:准备一些分数和分式的实际例子,如物品分配、价格比较等。
3.练习题:准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际生活中的例子,如物品分配、价格比较等,引导学生思考和讨论这些例子与分数的关系。
通过讨论,引入分数与分式的概念。
2.呈现(15分钟)通过PPT呈现分数与分式的定义和性质,引导学生观察和思考分数与分式的联系。
八年级数学上册高效课堂(人教版)15.1.1从分数到分式优秀教学案例

在教学过程中,我将采用问题导向的教学方法,引导学生主动发现问题、提出问题、解决问题。针对分数与分式的知识点,设计一系列具有启发性和挑战性的问题,如分数与分式的区别与联系、分式的性质等。通过问题驱动,激发学生的求知欲,培养学生的批判性思维和创新能力。
(三)小组合作
小组合作是培养学生团队合作精神和沟通能力的重要途径。在本章节的教学中,我将组织学生进行小组合作学习,让学生在互动交流中共同探讨分数与分式的性质、运算规则等。小组合作任务包括但不限于:讨论问题、共同完成练习、互相讲解解题思路等。在此过程中,关注学生的个体差异,鼓励每个学生积极参与,提高小组的整体学习效果。
(三)情感态度与价值观
1.激发学生学习数学的兴趣,培养学生对数学的热爱和信心,形成积极的学习态度。
2.培养学生勇于探索、勤于思考的良好习惯,使学生具备克服困难的勇气和毅力。
3.通过数学学习,引导学生认识数学在科学技术、社会生活等方面的重要作用,培养学生的社会责任感和使命感。
4.培养学生尊重事实、严谨求实的科学态度,使学生具备诚实、公正、合作的人格品质。
3.分式的性质与运算:结合教材,讲解分式的性质和运算规则,如分式的乘、除、加、减等。通过具体例题,让学生掌握分式的运算方法。
4.分式方程的解法:介绍分式方程的解法,并通过典型例题,让学生学会如何解决实际问题。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对本节课学习的分式性质、运算规则等方面进行讨论,共同探讨解决实际问题的方法。
3.小组合作促进学生互动
小组合作是本案例的一大亮点。通过组织学生进行小组讨论、分享成果,激发了学生的团队协作精神,提高了学生的沟通能力。同时,小组合作有助于学生取长补短,共同进步,提高整体教学质量。
人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。
本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。
但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。
三. 教学目标1.了解分数与分式的关系,理解分式的概念。
2.掌握分式的基本性质,能够进行简单的分式运算。
3.培养学生的抽象思维能力,提高学生解决问题的能力。
四. 教学重难点1.分式概念的理解。
2.分式基本性质的掌握。
3.分式运算的熟练运用。
五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。
同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。
六. 教学准备1.准备相关的分数和分式的案例。
2.准备分式运算的练习题。
3.准备PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。
例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。
例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。
例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。
例如:“请同学们完成这个分式的运算,并解释你的思路。
”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。
例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。
八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计 (新版)新人教版

八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。
通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
本节内容是整个分式部分的基础,对于学生来说具有重要的意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。
但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。
因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。
三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。
四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。
2.难点:分式的运算规律,分式方程的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。
2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。
3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。
然后引导学生思考分数与分式的关系,引出分式的概念。
2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。
最新人教版初中八年级上册数学《从分数到分式》精品教案

(3)A称为分式的分子,B为分式的分母.
判一判:下面的式子哪些是分式?
2 bs
4 5b c
3000
2
300 a
7
5 5x 7
VS S 32
x2 xy y2 2x 1
2x2 1 5
3x2 1
分式:
二 分式有意义的条件
想一想:我们知道,要使分数有意义,分数中的分母不能为0. 要使分式有意义,分式 中的分母应满足什么条件?
当B=0时,分式 当B≠0时,分式
无意义. 有意义.
三 分式值为零的条件
想一想:分式 的值为零应满足什么条件? 当A=0而 B≠0时,分式 的值为零. 注意:分式值为零是分式有意义的一种特殊情况.
典例精析
Байду номын сангаас
例1 填空: (1)当x
(2)当x (3)当x
2
时,分式
有意义;
3x
x
时,分式 x 1 有意义;
如果设江水的流速为u千米/时. 最大航速顺流航行100千米所用时间=以最大航速逆流航行60 千米所用的时间
100
20 u
60 20 u
讲授新课
一 分式的定义
10 1.长方形的面积为10cm²,长为7cm.宽应为___7___cm;长方形的
S
面积为S,长为a,宽应为__a____;
S
S
?
V
a
2.把体积为200cm³的水倒入底面积为 33cm²的圆柱形容器
x2
(2)由(1)得 当x ≠-2时,分式有意义.
例2 已知分式 x2 4 , x2
(3) 当x为何值时,分式的值为零?
(4) 当x= - 3时,分式的值是多少?
人教版数学八年级上册15 1 1从分数到分式教学设计(表格式)

教学难点:
1.能熟练地求出分式有意义的条件,分式的值为零的条件。
教学过程
一、从数学现实出发引出课题:
1.对整数2与3分别进行加减乘除运算,并说出四个运算结果?
2.对整式a与a+1分别进行加减乘除运算,并写出四个运算结果?
(两个数相除可以把它们的商表示成分数的形式,类似的a除以a+1可以表示成什么形式呢?)
教学设计
课程基本信息
学科
数学
年级
八年级
学期
秋季
课题
15.1.1从分数到分式
教科书
书 名:八年级数学 教材
出版社:人民教育 出版社
教学目标
1.理解并掌握分式的概念,会求使分式有意义、无意义、值为零的条件。
2.通过分数类比,概括出分式的概念,培养学生观察、猜想、类比的能力。
教学内容
教学重点:
1.掌握分式的概念。
(2)当x时,分式 有意义.
(3)当b时,分式 无意义.
(4)当x,y 满足关系时,分式 无意义.
5.当时,分式 的值为零.
如果乐乐的速度是a米/秒,那么她所用的时间是秒;
经过刻苦训练她的速度每秒增加了1米,则她现在所用的时间是秒.
6.正n边形的每一个内角是度;
正n边形的每一个外角是度;
(通过对以上几个实际问题的研讨,学会用 的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)
、三、类比发现,形成概念
1.观察刚才你们所列的式子,它们有什么特点?这些式
相同点
不同点
分子
分母
2.抽象概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子
八年级上册数学教案《从分数到分式》

八年级上册数学教案《从分数到分式》学情分析本节课是《分式》整章的起始课,主要内容是分式的概念、有意义的条件和用分式表示实际问题中的数量关系。
本节课是在学生学习了分数和整式相关知识的基础上学习的,也为后面学习分式性质、运算、解分式方程以及后续学习反比例函数做好铺垫,在教材中起到了承上启下的作用。
七年级学生经历了从有理数到整式的思维提升:本节课学生的思维还要经历从分数到分式的提升,对“式”的认识由整式扩充到有理式,在认知上是一次大的飞跃。
教学目的1、理解分式的概念,能确定分式有意义的条件,能确定使分式值为0的条件。
2、通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一种代数式。
3、体会类比与抽象概括能力。
教学重难点理解分式的概念,能确定分式有意义的条件,能确定使分式值为0的条件。
教学方法讲授法、讨论法、练习法教学过程一、复习导入填空,找出其中的整式(1)长方形的面积为10cm2,长为7cm,则宽为(10/7)cm。
长方形的面积为Scm2,长为7cm,则宽为(S/7)cm。
长方形的面积为Scm2,长为acm,则宽为(S/a)cm。
(2)把体积为200cm2的水倒入底面积为33cm2 的园柱形容器中,则水面高度为200/33cm。
把体积为V的水倒入底面积为S的园柱形容器中,则水面高度为V/S。
整式有:10/7,S/7,200/33二、学习新知1、观察剩下的两个式子S/a,V/s与整式相比,有什么异同点?①都是A/B的形式②A与B都是整式③B中含有字母。
归纳:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
其中A叫做分子,B叫做分母。
2、练习:下列式子中,哪些是整式?哪些是分式?1/x,x/3,m-n / m+n,a-b/3(a-b),3/Π整式:x/3,3/Π分式:1/x,m-n / m+n,a-b/3(a-b)注意:Π不是字母,分母中含Π的不是分式。
3、复习除法的相关概念,类比研究分式a、0不能作除数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识要点
分式的定义
分式是不同于整式的另一类有理式, 且分母中含有字母是分式的一大特点.
一般地,如果A、B都表示整式,且B中含有字母,那么称
为分式.其中A叫做分式的分子,B为分式的分母. 理解要点:
(1)分式也是代数式;
(2)分式是两个整式的商,它的形式是 (其中A,B都是
整式并且还要求B是含有字母/小时;一列火车行驶a千米比这辆汽车少用1小时,它的平均车
a
速为
b 1
千米/小时.
2.当x为任意实数时,下列分式一定有意义的是( B )
A. 2 x2
1 B. x2 2
1 C. x 2
1 D. 1 x
3.在分式 x 3 中,当x为何值时,分式有意义?分式的 x3
值为零?
答:当x ≠ 3时,该分式有意义;当x=-3时,该分式的值为零。
200
中,水面高度为___33__cm;把体积为V的水倒入底面积为S
V
的圆柱形容器中,水面高度为__S____;
议一议:请大家观察式子 S 和 V ,有什么特点?
a
S
请大家观察式子 100 和 60 ,有什么特点? 20 u 20 u
他们与分数有什么相同点和不同点?
相同点 都具有分数的形式
不同点(观察分母) 分母中有字母
(3)A称为分式的分子,B为分式的分母.
判一判:下面的式子哪些是分式?
2 bs
4 5b c
3000
2
300 a
7
5 5x 7
VS S 32
x2 xy y2 2x 1
2x2 1 5
3x2 1
分式:
二 分式有意义的条件
想一想:我们知道,要使分数有意义,分数中的分母不能为0. 要使分式有意义,分式 中的分母应满足什么条件?
时,分式 1 有意义; 5 3x
(4)当x 取全体实数时,分式
有意义;
(5)当x
时,分式
有意义.
例2 已知分式 x2 4 , x2
(1) 当x为何值时,分式无意义?
(2) 当x为何值时,分式有意义?
解:(1)当分母等于零时,分式无意义.
即 x+2=0,
∴ x = -2.
∴当x = -2时分式
x2 4 无意义.
常言道:人生就是一场修行,生活只是一个状态,学习也只是一个习惯,只 要你我保持积极向上、乐观好学、求实奋进的状态,相信不久的将来我们一定会 取得更大的进步。
最后祝:您生活愉快,事业节节高。
x2
(2)由(1)得 当x ≠-2时,分式有意义.
例2 已知分式 x2 4 , x2
(3) 当x为何值时,分式的值为零?
(4) 当x= - 3时,分式的值是多少?
解:(3)当分子等于零而分母不等 于零时,分式的值为零.
则 x2 - 4=0, ∴x = ±2, 而 x+2≠0, ∴ x ≠ -2.
如果设江水的流速为u千米/时. 最大航速顺流航行100千米所用时间=以最大航速逆流航行60 千米所用的时间
100
20 u
60 20 u
讲授新课
一 分式的定义
10 1.长方形的面积为10cm²,长为7cm.宽应为___7___cm;长方形的
S
面积为S,长为a,宽应为__a____;
S
S
?
V
a
2.把体积为200cm³的水倒入底面积为 33cm²的圆柱形容器
∴当x = 2时分式 x2 4 的值为零.
x2
(4)当x = -3时,
x2 4 x2
(3)2 4
3 2
5.
当堂练习
1.列式表示下列各量:
40
(1)某村有n个人,耕地40公顷,人均耕地面积为 n
公顷;
2S
(2)△ABC的面积为S,BC边长为a,高AD为 a (3)一辆汽车行驶a千米用b小时,它的平均车速为
当B=0时,分式 当B≠0时,分式
无意义. 有意义.
三 分式值为零的条件
想一想:分式 的值为零应满足什么条件? 当A=0而 B≠0时,分式 的值为零. 注意:分式值为零是分式有意义的一种特殊情况.
典例精析
例1 填空: (1)当x
(2)当x (3)当x
2
时,分式
有意义;
3x
x
时,分式 x 1 有意义;
第十五章 分 式
15.1.1 从分数到分式
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解分式有意义的条件及分式值为零的条件.(重点) 2.能熟练地求出分式有意义的条件及分式的值为零的条件.(难点)
导入新课
情境引入
问题 一艘轮船在静水中的最大航速是20千米/时,它沿江以 最大航速顺流航行100千米所用时间,与以最大航速逆流航行 60千米所用的时间相等.江水的流速是多少?
课堂小结
定义
分式
有意义 的条件
一般地,如果A,B表示整式,且B中含有
字母,式子
A B
叫做分式 ,其中,A叫
做分式的分子,B叫做分式的分母.
A
分式 B 有意义的条件是B ≠0.
值为零 的条件
分式
A B
值为零的条件是A=0且B ≠0.
课后小知识
学习方法指导
同学们,天道酬勤,一个人学习成绩的优劣取决于他的学习 能力,学习能力包括三个要素:
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。希望我的文档能够 帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能 提出你的宝贵意见,促进我们共同成长,共同进步。每一个文档都花费了我大量 心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最 大的欣慰。如果您觉得有改进之处,请您留言,后期一定会优化。
规范的学习行为; 良好的学习习惯; 有效的学习方法。 只要做好以上三点,相信你一定会成为学习的强者。 加油!加油!加油!
课后反思
1、今天的学习结束,你收获了什么?
2、引导学生归纳本课知识重点。
3、
同桌之间交流一下学习心得与学习方法。
课后作业
1.完成教科书课后练习中的1、2题。 2.完成练习册本课时的习题作业。