海淀区高三年级第一学期期末练习理科试题

合集下载

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则( )A .257 B .257-C .2524D .2524-2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=nym xA n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为0.6,要使两个元件中至少有一个的使用寿命超过1年的概率至少为0.9,则乙元件的使用寿命超过1年的概率至少为 ( )A .0.3B .0.6C .0.75D .0.96.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)s i n ()c o s (021s i n c o s 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by ax 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.已知双曲线1422=-xy,则其渐近线方程是 ,离心率e= .10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=. 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b c o s )2(c o s -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by ax 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x 轴于点A ,且.221AF AF =(Ⅰ)试求椭圆的方程; (Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)题号1 2 3 4 5 6 7 8答案B C A D C B C A二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-912.4π13.π48+,122- 14.92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==ac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆43323321=⨯⨯=∴∆ABC S …………………………………………………13分16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴kk ,43=k ,………………………………………………………4分故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,ON OM OQ +=2,)2,(),(0000y y x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y yx y x ……………………………………………11分∴Q 点的轨迹方程是)0(,116422≠=+y yx…………………………………………12分轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分注:多端点时,合计扣1分.17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB ,11A A C C BC 面⊥∴,……………………………………………………………2分 11A A C C AM 面⊆ AM BC ⊥∴B BA BC BA AM =⊥11 ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可 知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ²AA 1 ∴26=MC ……………………………………7分∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅21211=∴CO∴在Rt △BCO 中,1tan ==COBC BOC .︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分A B C M A B M C V V --= ………………………………………………………………11分 A B C A B MS MC hS∆∆⋅=∴313122232326=⨯=⋅=∴∆∆A B MA B CS S MC h∴点C 到平面ABM 的距离为22………………………………………………13分解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1) 1BA AM ⊥ .01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则 ⎪⎩⎪⎨⎧=⋅=⋅00AB m AM m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为m =)2,3,1(,……………………………………………………………………8分 显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m CB m CB m易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分 (Ⅲ)所求距离为:2263||==⋅m CB m即点C 到平面ABM 的距离为22………………………………………………13分18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f …………………………2分由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f 定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞) 1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分0202,20>->-∴<<aa a a 且由0)('>x g 得aa x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a上单调递增;由0)('<x g 得aa x -<<-21,即)(x g 在⎪⎭⎫⎝⎛--a a2,1上单调递减…………8分 ①时 )(,320x g a a<-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana aa g x g --=-=2221)2()(min ; (2)30<<a …10分②当)(,32,223x g aa a ≥-<≤时在(0,3)上单调递减,∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,ana aa g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF = 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+yx……………………………………………………5分(Ⅱ)当直线DE 与x 轴垂直时,342||2==abDE ,此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kkx x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-kkx x x x x x ,所以,2221232)1(34||1||kk x x kDE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kkkkMN ++=-++-=………………………………10分所以,四边形的面积222232)11(3432)1(34212||||kkkk MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=kkkk ,…………………………………12分 令uuu S kk u 61344613)2(24,122+-=++=+=得因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分 .3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤-- (1)当n =1时,331314)1()31(+=+===f f ,不等式成立;(2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-kkkkkkkkkk f f f f f f f得≤)31(3kf 9316)31(11+≤+--k k f331)31(+≤∴kkf即当n=k+1时,不等式成立. 由(1)(2)可知,不等式331)31(+≤∴kkf 对一切正整数都成立.于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n nn nf x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n nf f 所以33)31()31(1+<<∴-x f f n n……………………………………13分。

北京市海淀区高三第一学期期末考试数学(理科)共10页word资料

北京市海淀区高三第一学期期末考试数学(理科)共10页word资料

北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,A B ⊆,那么下列结论中可能不成立的是( )(A )AB A = (B )A B B =(C )()U A B ≠∅ð (D )()U B A =∅ð(2)抛物线22y x =的准线方程为( ) (A )18y =-(B )14y =- (C )12y =- (D )1y =- (3)将函数cos 2y x =的图象按向量(,1)4a π=平移后得到函数()f x 的图象,那么( )(A )()sin 21f x x =-+ (B )()sin 21f x x =+ (C )()sin 21f x x =-- (D )()sin 21f x x =- (4)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a c 3=,30B =?,那么角C 等于( )(A )120° (B )105° (C )90° (D )75° (5)位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为3R π(R 为地球半径),那么x 等于( )(A )30 (B ) 45 (C ) 60 (D )75 (6)已知定义域为R 的函数()f x ,对任意的R x Î都有1(1)()22f x f x +=-+恒成立,且1()12f =,则(62)f 等于 ( ) (A )1 (B ) 62 (C ) 64 (D )83(7)已知{},1,2,3,4,5αβÎ,那么使得sin cos 0αβ?的数对(),αβ共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个(8)如果对于空间任意()2n n ³条直线总存在一个平面α,使得这n 条直线与平面α所成的角均相等,那么这样的n ( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)22462limnnn ++++= .(10)如果()1,10,1x f x x ì£ïï=íï>ïî,, 那么()2f f 轾=臌 ;不等式()1212f x -?的解集是 .(11)已知点1F 、2F 分别是双曲线的两个焦点, P 为该双曲线上一点,若12PF F ∆为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .(13)已知直线0=++m y x 与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,||||OA OB AB +?,那么实数m 的取值范围是 .(14)已知:对于给定的*q N Î及映射*:,N f AB B.若集合C A Í,且C 中所有元素对应的象之和大于或等于q ,则称C 为集合A 的好子集. ① 对于2q =,{},,A a b c =,映射:1,f x x A ,那么集合A 的所有好子集的个数为 ;② 对于给定的q ,{}1,2,3,4,5,6,A π=,映射:f A B ®的对应关系如下表:x12 3 4 5 6π()f x1 1 1 1 1yz若当且仅当C 中含有π和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组(),,q y z : . 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知函数22()sin )cos()cos 44f x x x x x ππ=++---. (Ⅰ)求函数)(x f 的最小正周期和单调递减区间;(Ⅱ)求函数)(x f 在25,1236ππ轾犏-犏臌上的最大值和最小值并指出此时相应的x 的值. (16)(本小题共12分)已知函数)(x g 是2()(0)f x x x =>的反函数,点),(00y x M 、),(00x y N 分别是)(x f 、)(x g 图象上的点,1l 、2l 分别是函数)(x f 、)(x g 的图象在N M ,两点处的切线,且1l ∥2l . (Ⅰ)求M 、N 两点的坐标;(Ⅱ)求经过原点O 及M 、N 的圆的方程. (17)(本小题共14分)已知正三棱柱111C B A ABC -中,点D 是棱AB的中点,11,BC AA ==.(Ⅰ)求证://1BC 平面DC A 1; (Ⅱ)求1C 到平面1A DC 的距离; (Ⅲ)求二面角1D AC A --的大小.(18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关. 若1≤T ,则销售利润为0元;若31≤<T ,则销售利润为100元;若3>T ,则销售利润为200元. 设每台该种电器的无故障使用时间1≤T ,31≤<T 及3>T 这三种情况发生的概率分别为321,,p p p ,又知21,p p 是方程015252=+-a x x 的两个根,且32p p =.(Ⅰ)求321,,p p p 的值;(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (Ⅲ)求销售两台这种家用电器的销售利润总和的平均值. (19)(本小题共14分)已知点()0,1A 、()0,1B -,P 是一个动点,且直线PA 、PB 的斜率之积为12-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,QMN ∆的面积记为S ,若对满足条件的任意直线l ,不等式tan S MQN λ≤恒成立,求λ的最小值. (20)(本小题共14分)如果正数数列{}n a 满足:对任意的正数M ,都存在正整数0n ,使得0n a M >,则称数列{}n a 是一个无界正数列.(Ⅰ)若()32s i n ()1,2,3,n a n n =+=, 1, 1,3,5,,1, 2,4,6,,2n n nb n n ⎧=⎪⎪=⎨+⎪=⎪⎩分别判断数列{}n a 、{}n b 是D C 1B 1A 1CBA否为无界正数列,并说明理由;(Ⅱ)若2n a n =+,是否存在正整数k ,使得对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立; (Ⅲ)若数列{}n a 是单调递增的无界正数列,求证:存在正整数m ,使得122312009mm m a a a a a a +-+++<. 海淀区高三年级第一学期期末练习 数学(理科)参考答案及评分标准 2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分) (9)1 (10)1,[0,1] (111(12)94(13)(2,[2,2)- (14) 4,(5,1,3) 三、解答题(本大题共6小题,共80分) (15)(本小题共12分)解:(Ⅰ)22()sin )cos()cos 44f x x x x x ππ=++-- 2sin(2)6x π=- ………………………………………………4分所以22T ππ==. ………………………………………………5分 由()3222262Z k x k k πππππ+???得所以函数)(x f 的最小正周期为π,单调递减区间为5[,]36k k ππππ++()k ∈Z .………………………………………………7分 (Ⅱ)由(Ⅰ)有()2sin(2)6f x x π=-.因为25,1236x ππ轾犏?犏臌, 所以112,639x πππ轾犏-?犏臌. 因为411sin()sin sin 339πππ-=<,所以当12x π=-时,函数)(x f取得最小值-3x π=时,函数)(x f 取得最大值2.………………………………………………12分(16)(本小题共12分) 解:(Ⅰ)因为2()(0)f x x x =>,所以()0)g x x =>.从而,2)(x x f ='()g x ¢=. ………………………………………………3分所以切线21,l l 的斜率分别为,2)(001x x f k ='=00221)(y y g k ='=.又2000(0)y x x =>,所以2012k x =. ………………………………………………4分 因为两切线21,l l 平行,所以21k k =. ………………………………………………5分从而20(2)1x =.因为00x >, 所以012x =. 所以N M ,两点的坐标分别为)21,41(),41,21(. ………………………………………7分 (Ⅱ)设过O 、M 、N 三点的圆的方程为:220x y Dx Ey F ++++=.因为圆过原点,所以0F =.因为M 、N 关于直线y x =对称,所以圆心在直线y x =上. 所以D E =.又因为11(,)24M 在圆上, 所以512D E ==-. 所以过O 、M 、N 三点的圆的方程为:225501212x y x y +--=. ………………12分 (17)(本小题共14分)(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG .在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形, ∴DG ∥1BC . ………………………………………2分∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC .………………………………………4分解法一:(Ⅱ)连结1DC ,设1C 到平面1A DC 的距离为h .∵四边形11ACC A 是平行四边形,∴1118C A CD V -=. ………………………………………6分在等边三角形ABC 中,D 为AB 的中点, ∵AD 是1A D 在平面ABC 内的射影,∴1CD A D ^. ………………………………………8分∴111313C A DC A DCV h S -∆==. ………………………………………9分 (Ⅲ)过点D 作DE AC ⊥交AC 于E ,过点D 作1DF A C ⊥交1A C 于F ,连结EF .∵平面ABC ⊥平面11ACC A ,DE ⊂平面ABC ,平面ABC平面11ACC A AC =,∴DE ⊥平面11ACC A .∴EF 是DF 在平面11ACC A 内的射影.∴DFE Ð是二面角1D AC A --的平面角. ………………………………………12分 在直角三角形ADC中,AD DC DE AC ×==同理可求:118A D DC DF AC ×==.∴DFE ?………………………………………14分解法二:过点A 作AO BC ⊥交BC 于O ,过点O 作F ED C 1B 1A 1CBAOE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,BC AA ==,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,A ⎛ ⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,1(4D ,112C ⎛⎫- ⎪⎝⎭. ………………………………………6分 (Ⅱ)设平面1A DC 的法向量为(),,n x y z =,则取x =1A DC 的一个法向量为()3,1,3n =-. ………………………………………8分∴1C 到平面1A DC 的距离为:13913CC n n⋅=………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面1ACA 的一个法向量为()13,0,1n =-. …………………………12分设二面角1D AC A --的大小为θ,则1cos cos ,n n θ=<>=∴θ=. ………………………………………14分 (18)(本小题共14分)解:(Ⅰ)由已知得1321=++p p p .21,p p 是方程015252=+-a x x 的两个根, ∴511=p ,5232==p p . ………………………………………3分 (Ⅱ)ξ的可能取值为0,100,200,300,400. ………………………………………4分()400=ξP =2545252=⨯. ………………………………………9分随机变量ξ的分布列为:ξ 0 100 200 300 400P251 254 258 258 254………………………………………11分 (Ⅲ)销售利润总和的平均值为E ξ=2544002583002582002541002510⨯+⨯+⨯+⨯+⨯=240. ∴销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出E ξ,没有说明平均值为240元,扣1分. (19)(本小题共14分)解:(Ⅰ)设动点P 的坐标为(),x y ,则直线,PA PB 的斜率分别是11,y y x x-+. 由条件得1112y y x x-+?-. 即()22102x y x +=?. 所以动点P 的轨迹C 的方程为()22102x y x +=?. ………………………………………5分 注:无0x ¹扣1分. (Ⅱ)设点,M N 的坐标分别是()()1122,,,x y x y .当直线l 垂直于x 轴时,21212111,,2x x y y y ==-=-=. 所以()()()1122112,,2,2,QM x y QN x y x y =-=-=--. 所以()22111722QM QNx y ?--=. ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为()1y k x =+,由221,2(1)x y y k x ìïï+=ïíïï=+ïî得()2222124220k x k x k +++-=. 所以 2122, 21422212221k k x x k k x x +-=+-=+. ………………………………………9分 所以()()()12121212122224QM QNx x y y x x x x y y ?--+=-+++.因为()()11221,1y k x y k x =+=+, 所以()()()()2221212217131712422212QM QNk x x k x x k k ?++-+++=-<+.综上所述⋅的最大值是217. ………………………………………11分 因为tan S MQN λ≤恒成立,即1sin ||||sin 2cos MQN QM QN MQN MQNλ⋅≤恒成立. 由于()2171302212QM QNk ?->+. 所以cos 0MQN >.所以2QM QN λ⋅≤恒成立. ………………………………………13分 所以λ的最小值为174. ………………………………………14分 注:没有判断MQN Ð为锐角,扣1分. (20)(本小题共14分)解:(Ⅰ){}n a 不是无界正数列.理由如下:取M = 5,显然32sin()5n a n =+≤,不存在正整数0n 满足05n a >;{}n b 是无界正数列.理由如下:对任意的正数M ,取0n 为大于2M 的一个偶数,有0012122n n M b M ++=>>,所以{}n b 是无界正数列. ………………………………………4分(Ⅱ)存在满足题意的正整数k .理由如下: 当3n ³时, 因为12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即取3k =,对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立. ……………………9分 注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列{}n a 是单调递增的正数列,所以12231n n a a a n a a a +⎛⎫-+++ ⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即12123111n n n a a a a n a a a a +++++<-+. 因为{}n a 是无界正数列,取12M a =,由定义知存在正整数1n ,使1112n a a +>. 所以1112123112n n a a a n a a a ++++<-.由定义可知{}n a 是无穷数列,考察数列11n a +,12n a +,13n a +,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数2n ,使得()112112122123112n n n n n n a a a n n a a a ++++++++<--.重复上述操作,直到确定相应的正整数4018n .则401840181212140184017231111222n n a a a n n n n n a a a +⎛⎫⎛⎫⎛⎫+++<-+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即存在正整数4018m n =,使得122312009mm m a a a a a a +-+++<成立. ………………………………………14分。

北京市海淀区2023-2024学年高三上学期期末练习物理试卷含答案

北京市海淀区2023-2024学年高三上学期期末练习物理试卷含答案

海淀区2023-2024学年第一学期期末练习高三物理(答案在最后)本试卷共8页,100分。

考试时长90分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分本部分共10题,每题3分,共30分。

在每题给出的四个选项中,有的题只有一个选项是正确的,有的题有多个选项是正确的。

全部选对的得3分,选不全的得2分,有选错或不答的得0分。

把正确的答案填涂在答题纸上。

1.图中实线表示某静电场的电场线,虚线表示该电场的等势面。

A 、B 两点的电场强度大小分别为A E 、B E ,电势分别为A ϕ、B ϕ。

下列说法正确的是()A.A BE E < B.A B E E > C.A B ϕϕ< D.A Bϕϕ>【答案】BC【解析】【详解】AB .电场线的疏密程度反映场强的大小,A 处电场线比B 处密集,因此A B E E >,故A 错误,B 正确;CD .同一等势面上电势相等,且沿电场线方向电势逐渐降低,因此A B ϕϕ<,故D 错误,C 正确;故选BC 。

2.将一个不带电的空腔导体放入匀强电场中,达到静电平衡时,导体外部电场线分布如图所示。

W 为导体壳壁,A 、B 为空腔内两点。

下列说法正确的是()A.导体壳壁W 的外表面和内表面感应出等量的异种电荷B.空腔导体上的感应电荷在B点产生的场强为零C.空腔内的电场强度为零D.空腔内A点的电势高于B点的电势【答案】C【解析】【详解】ACD.导体壳壁W处于静电平衡状态,外表面感应出等量的异种电荷,导体壳壁和空腔内部为一个等势体,电场强度均为零,空腔内A点的电势等于B点的电势。

故AD错误;C正确。

B.空腔导体上的感应电荷在B点产生的场强与匀强电场的场强等大反向,不为零。

故B错误。

故选C。

3.如图所示,弹簧上端固定,下端悬挂一个磁铁,在磁铁正下方有一个固定在水平桌面上的闭合铜质线圈。

将磁铁竖直向下拉至某一位置后放开,磁铁开始上下振动。

北京市海淀区届高三上学期期末考试数学理试题

北京市海淀区届高三上学期期末考试数学理试题

31 海淀区高三年级第一学期期末练习数学(理科)2016.1本试卷共 4 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知 (1 + b i)i = -1 + i(b ∈ R) ,则 b 的值为A.1B. -1C. iD.-i2. 抛物线 x 2 = 4 y 的准线与 y 轴的交点的坐标为A. (0, - 1 )2B. (0, -1)C. (0, -2)D. (0, -4)ED C5. 已知数列 A : a 1, a 2 , a 3 , a 4 , a 5 ,其中 a i ∈{-1,0,1},i = 1, 2,3, 4,5 , 则满足 a 1 + a 2 + a 3 + a 4 + a 5 = 3 的不同数列 A 一共有A. 15 个B. 25 个C. 30 个D. 35 个6. 已知圆 C :( x - 2)2 + y 2 = 4 , 直线 l : y = x , l 2 : y = kx - 1若 l 1,l 2 被圆 C 所截得的弦的长度之比为1: 2 ,则 k 的值为A.B.1C.1 2D.3 33否是输出结束3. 如图,正方形ABCD 中, E 为 DC 的中点,若 AD = AC + AE , 则 - 的值为ABA. 3B. 2C. 1D. -3 4. 某程序框图如图所示,执行该程序,若输入的 a 值为 1,则输 出的 a 值为开始 输入A.1B. 2C. 3D. 5⎨ ⎩⎧ x - y +2 ≥ 0, 7. 若 x , y 满足 ⎪x + y - 4 ≤ 0, ⎪ y ≥ 0, 则z = y - 2 | x | 的最大值为A. -8B. -4C.1D. 28. 已知正方体 ABCD - A ' B 'C ' D ' ,记过点 A 与三条直线 AB , AD , AA ' 所成角都相等的直线条数为m , 过点 A 与三个平面 AB ', AC , AD ' 所成角都相等的直线的条数为 n ,则下面结论正确的是A. m = 1, n = 1B. m = 4, n = 1C. m = 3, n = 4D. m = 4, n = 4二、填空题共 6 小题,每小题 5 分,共 30 分。

海淀区高三年级第一学期期末练习数学(理科)

海淀区高三年级第一学期期末练习数学(理科)

当 4 4a 0 ,即 a 1时,不等式①在定义域内恒成立,所以此时函数
f ( x) 的
单调递增区间为 ( , 1) 和 ( 1, ) .
……………….8 分
当 4 4a 0 ,即 a 1时,不等式①的解为 x 1 1 a 或 x 1 1 a , ……………….10 分
又 因 为 x 1 , 所 以 此 时 函 数 f (x) 的 单 调 递 增 区 间 为 ( , 1 1 a ) 和
海淀区高三年级第一学期期末练习
数 学 (理科)
2010.1
一、 选择题:本大题共 8 小题 ,每小题 5 分,共 40 分.在每小题列出的四个选项中 , 选出符合题目要求的一项 .
1. 函数 y x 1 ( x 0) 的值域为 x
A. 2,
B. (2, )
C. (0, )
D. , 2 U 2,
2.如图, PAB 、 PC 分别是圆 O 的割线和切线( C 为切点),若 PA AB 3 ,则 PC 的长为
4
11. 24 12
12. 10100
3
13.
4
14 .②③ ;28
三、解答题 ( 本大题共 6 小题 , 共 80 分 )
15.(本小题满分 13 分)
解:(Ⅰ)由已知, C , b 5 , 3
因为
1 S ABC ab sin C ,
2

1 10 3 a 5sin

2
3
解得 a 8 .
由余弦定理可得 : c2 64 25 80cos 49 , 3
(Ⅱ)已知二面角
P-BF-C 的余弦值为
6 ,求四棱锥 P-ABCD 的体积 . 6
P
D F

北京市海淀区高三上学期期末数学理科试题

北京市海淀区高三上学期期末数学理科试题

数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.说明:第9,14题第一空3分,第二空2分 三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为π()sin()14f x x x =-+cos )]1x x x =-+ …………………………….1分2cos (sin cos )1x x x =-+22cos sin 2cos 1x x x =-+ …………………………….5分(两个倍角公式,每个各2分)sin2cos2x x =-π)4x =- …………………………….6分 所以函数()f x 的最小正周期2ππ||T ω==. …………………………….7分(Ⅱ)因为ππ[]126x ∈,,所以ππ2[]63x ∈,,所以πππ(2)[]41212x -∈-,. (8)分当ππ2412x -=-时,函数()f x 取得最小值π)12-; …………………………….10分 当ππ2412x -=时,函数()f x 取得最大值π12, …………………………….12分ππ)sin()01212-=, 所以函数()f x 在区间ππ[]126,上的最大值与最小值的和为0. (13)分16.解:(Ⅰ)设持续i 天为事件,1,2,3,4i A i =,用药持续最多一个周期为事件B , …………………………….1分所以2312341121212()()()()()()3333333P A P A P A P A ==⋅=⋅=⋅,,,, …………………………….5分 则123465()(()()()81P B P A P A P A P A =+++=). …………………………….6分法二:设用药持续最多一个周期为事件B ,则B 为用药超过一个周期, …………………………….1分 所以4216()()381P B ==, …………………………….3分 所以4265()1()381P B =-=. …………………………….6分(Ⅱ)随机变量η可以取1,2, …………………………….7分 所以33441211(1)()()3339P C η==+=,18(2)199P η==-=, …………………………….11分所以181712999E η=⋅+⋅=. …………………………….13分17.解:(Ⅰ)过点F 作FH AD ,交PA 于H ,连接BH ,因为13PF PD =,所以13HF AD BC ==. …………………………….1分又FH AD ,AD BC ,所以HF BC . …………………………….2分 所以BCFH为平行四边形, 所以CFBH . (3)分又BH ⊂平面PAB ,CF ⊄平面PAB , ………………….4分(一个都没写的,则这1分不给) 所以CF平面PAD . …………………………….5分(Ⅱ)因为梯形ABCD 中,AD BC ,AD AB ⊥, 所以BC AB ⊥.因为PB ⊥平面ABCD ,所以PB AB PB BC ⊥⊥,, 如图,以B 为原点,,,BC BA BP所在直线为,,x y z 轴建立空间直角坐标系, …………………………….6分HFADCBPPBCDAF yzx所以(1,0,0),(3,3,0),(0,3,0),(0,0,3)C D A P .设平面BPD 的一个法向量为(,,)n x y z =,平面APD 的一个法向量为(,,)m a b c =, 因为(3,3,3),(0,0,3),PD BP =-=所以00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩, …………………………….7分 取1x =得到(1,1,0)n =-, …………………………….8分 同理可得(0,1,1)m =, …………………………….9分 所以1cos ,2||||n m n m n m ⋅<>==-, …………………………….10分因为二面角B PD A --为锐角, 所以二面角B PD A--为π3. …………………………….11分(Ⅲ)假设存在点M ,设(3,3,3)PM PD λλλλ==-, 所以(13,3,33)CM CP PM λλλλ=+=-+-, …………………………….12分 所以93(33)0PA CM λλ⋅=-+-=,解得12λ=, …………………………….13分 所以存在点M,且12PM PD ==. …………………………….14分18.解:(Ⅰ)因为1()(1)ln f x kx k x x=-+-, 所以22211(1)1'()k kx k x f x k x x x +-++=-+=, …………………………….1分 当12k =时,21(2)(1)2'()x x f x x--=. …………………………….2分令21(2)(1)2'()0x x f x x --== , 得121,2x x ==, (3)分所以'(),()f x f x 随x 的变化情况如下表:…………………………….6分所以()f x 在1x =处取得极大值1(1)2f =-,在2x =处取得极小值13(2)ln 222f =-. …………………………….7分函数()f x 的单调递增区间为(0,1),(2,)+∞, ()f x 的单调递减区间为(1,2).…………………………….8分(Ⅱ)证明:不等式()1f x >在区间[1,e]上无解,等价于()1f x ≤在区间[1,e]上恒成立, 即函数()f x 在区间[1,e]上的最大值小于等于1.因为21()(1)'()k x x k f x x--=, 令'()0f x =,得121,1x x k==.…………………………….9分 因为01k <<时,所以11k>. 当1e k≥时,'()0f x ≤对[1,e]x ∈成立,函数()f x 在区间[1,e]上单调递减,……………………….10分所以函数()f x 在区间[1,e]上的最大值为(1)11f k =-<, 所以不等式()1f x >在区间[1,e]上无解; …………………………….11分 当1e k<时,'(),()f x f x 随x 的变化情况如下表:所以函数()f x 在区间[1,e]上的最大值为(1)f 或(e)f . ……………………………….12分此时(1)11f k =-<, 1(e)e (1)ef k k =-+-, 所以1(e)1e (1)1ef k k -=-+--111(e 1)2(e 1)2e 30e e ek =---<---=--< .综上,当01k <<时,关于x 的不等式()1f x >在区间[1,e]上无解. …………………………….13分19.解:(Ⅰ)因为椭圆W 的左顶点A 在圆22:16O x y +=上, 令0y =,得4x =±,所以4a =. …………………………….1分又离心率为,所以e c a ==,所以c =分所以2224b a c =-=, …………………………….3分所以W 的方程为221164x y +=.…………………………….4分 (Ⅱ)法一:设点1122(,),(,)P x y Q x y ,设直线AP的方程为(4)y k x =+, …………………………….5分与椭圆方程联立得22(4)1164y k x x y =+⎧⎪⎨+=⎪⎩,化简得到2222(14)3264160k x k x k +++-=,…………………………….6分因为4-为上面方程的一个根,所以21232(4)14k x k -+-=+,所以21241614k x k -=+. …………………………….7分所以||AP =.…………………………….8分 因为圆心到直线AP的距离为d =, (9)分 所以||AQ ===, …………………………….10分 因为||||||||1||||||PQ AQ AP AQ AP AP AP -==-, …………………………….11分 代入得到22222||1433113||111PQ k k AP k k k +==-==-+++. …………………………….13分 显然23331k-≠+,所以不存在直线AP,使得||3||PQ AP =. …………………………….14分法二: 设点1122(,),(,)P x y Q x y ,设直线AP的方程为4x my =-, …………………………….5分与椭圆方程联立得2241164x my x y =-⎧⎪⎨+=⎪⎩化简得到22(4)80m y my +-=, 由2640m ∆=>得0m ≠. (6)分显然0是上面方程的一个根,所以另一个根,即1284my m =+. …………………………….7分由1||0|AP y =-=, …………………………….8分 因为圆心到直线AP的距离为d =, …………………………….9分所以||AQ===……………….10分因为||||||||1||||||PQ AQ AP AQAP AP AP-==-,…………………………….11分代入得到222||4311||11PQ mAP m m+=-=-=++, …………………………….13分若2331m=+,则0m=,与0m≠矛盾,矛盾,所以不存在直线AP,使得||3||PQAP=. ……………………………. 14分法三:假设存在点P,使得||3||PQAP=,则||4||AQAP=,得||4||QPyy=. …………………………….5分显然直线AP的斜率不为零,设直线AP的方程为4x my =-, …………………………….6分由2241164x my x y =-⎧⎪⎨+=⎪⎩,得 22(4)80m y my +-=,由2640m ∆=>得0m ≠, …………………………….7分 所以284P m y m =+. …………………………….9分 同理可得281Q my m =+, …………………………….11分所以由||4||Q P y y =得22441m m +=+, …………………………….13分则0m =,与0m ≠矛盾, 所以不存在直线AP,使得||3||PQ AP =. (1)4分20.解:(Ⅰ)因为{}n a 是P 数列,且10a =,所以3202||||a a a a =-=, 所以43222a a a a a =-=-,所以221a a -=,解得212a =-, …………………………….1分所以354311,||22a a a a ==-=. …………………………….3分(Ⅱ) 假设P 数列{}n a 的项都是正数,即120,0,0n n n a a a ++>>>,所以21n n n a a a ++=-,3210n n n n a a a a +++=-=-<,与假设矛盾.故P 数列{}n a 的项不可能全是正数, …………………………….5分 假设P 数列{}n a 的项都是负数,则0,n a <而210n n n a a a ++=->,与假设矛盾, …………………………….7分故P 数列{}n a 的项不可能全是负数.(Ⅲ)由(Ⅱ)可知P 数列{}n a 中项既有负数也有正数, 且最多连续两项都是负数,最多连续三项都是正数. 因此存在最小的正整数k 满足10,0k k a a +<>(5k ≤). 设1,(,0)k k a a a b a b +=-=>,则2345,,,k k k k a b a a a a b a b a ++++=+==-=-.678910,,,,k k k k k a b a b a b a a a a b a a a b +++++=-+=-+=-=-=, 故有9k k a a +=, 即数列{}n a 是周期为9的数列 …………………………….9分由上可知18,,,k k k a a a ++⋅⋅⋅这9项中4,k k a a +为负数,5,8k k a a ++这两项中一个为正数,另一个为负数,其余项都是正数.因为20169224=⨯,所以当1k =时,2243672m =⨯=;当25k ≤≤时,121,,,k a a a -⋅⋅⋅这1k -项中至多有一项为负数,而且负数项只能是1k a -,记12016,,,k k a a a +⋅⋅⋅这2007k -项中负数项的个数为t ,当2,3,4k =时,若10,k a -< 则11k k k k b a a a a a +-==->=,故8k a +为负数, 此时671t =,671+1=672m =; 若10,k a ->则11k k k k b a a a a a +-==-<=,故5k a +为负数. 此时672t =,672m =,当5k =时,1k a -必须为负数,671t =,672m =, (12)分 综上可知m 的取值集合为{672}. …………………………….13分说明:1. 正确给出m 的值,给1分2. 证明中正确合理地求出数列{}n a 的周期给2分,但是通过特例说明的不给分3. 正确合理说明m 取值情况给2分。

海淀区高三年级第一学期期末练习物理(word版带答案)

海淀区高三年级第一学期期末练习物理(word版带答案)

海淀区高三年级第一学期期末练习物理 2018.1说明:本试卷共8页,共100分。

考试时长90分钟。

考生务必将答案写在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

一、本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。

全部选对的得3分,选不全的得2分,有选错或不答的得0分。

把你认为正确答案填涂在答题纸上。

1.放在绝缘支架上的两个相同金属球相距为d ,球的半径比d 小得多,分别带有q 和-3q 的电荷,相互作用力为F 。

现将这两个金属球接触,然后分开,仍放回原处,则它们的相互作用力将为A .引力且大小为3F B. 斥力且大小为F /3 C .斥力且大小为2F D. 斥力且大小为3F2. 如图1所示,用金属网把不带电的验电器罩起来,再使带电金属球靠近金属网,则下列说法正确的是A .箔片张开B .箔片不张开C .金属球带电电荷足够大时才会张开D .金属网罩内部电场强度为零3.如图2所示的交流电路中,灯L 1、L 2和L 3均发光,如果保持交变电源两端电压的有效值不变,但频率减小,各灯的亮、暗变化情况为A. 灯L 1、L 2均变亮,灯L 3变暗B. 灯L 1、L 2、L 3均变暗C. 灯L 1不变,灯L 2变暗,灯L 3变亮D. 灯L 1不变,灯L 2变亮,灯L 3变暗 图1图2L 3RL C ~L 1L 24.如图3所示的电路中,闭合开关S ,当滑动变阻器R 的滑片P 向上移动时,下列说法中正确的是A.电流表示数变大B.电压表示数变小C.电阻R 0的电功率变大D.电源的总功率变小5.如图4所示,理想变压器原线圈匝数n 1=1100匝,副线圈匝数n 2=220匝,交流电源的电压u =2202sin100πt (V),电阻R =44Ω,电表均为理想交流电表。

则下列说法中正确的是A.交流电的频率为50HzB.电流表A 1的示数为0.20AC.变压器的输入功率为88WD.电压表的示数为44V6. 图5甲是洛伦兹力演示仪。

北京市海淀区高三第一学期期末理科数学试题

北京市海淀区高三第一学期期末理科数学试题

海淀区高三年级第一学期期末练习数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12ii+= A. 2i - B. 2i + C. 2i -- D. 2i -+ (2)在极坐标系中Ox ,方程2sin ρθ=表示的圆为A. B. C. D.(3)执行如图所示的程序框图,输出的k 值为 A.4 B.5 C.6 D.7(4)设m 是不为零的实数,则“0m f ”是“方程221x y m m-=表示 的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5)已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且AOB ∆为正三角形,则实数m 的值为A. 3B. 6C. 3或3-D.6或6-(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为 A. 15 B. 25 C. 35 D. 45(7)某三棱锥的三视图如图所示,则下列说法中: ①三棱锥的体积为16②三棱锥的四个面全是直角三角形 ③三棱锥的四个面的面积最大的是3所有正确的说法是A. ①B. ①②C. ②③D. ①③(8)已知点F 为抛物线2:2(0)C y px p =f 的焦点,点K 为点F 关于原点的对称点,点M在抛物线C 上,则下列说法错误..的是 A.使得MFK ∆为等腰三角形的点M 有且仅有4个 B.使得MFK ∆为直角三角形的点M 有且仅有4个 C. 使得4MKF π∠=的点M 有且仅有4个 D. 使得6MKF π∠=的点M 有且仅有4个第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)点(2,0)到双曲线2214x y -=的渐近线的距离是 . (10)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项和为 .(11)设抛物线2:4C y x =的顶点为O ,经过抛物线C 的焦点且垂直于x 轴的直线和抛物线C 交于,A B 两点,则OA OB +=u u u r u u u r.(12)已知(51)nx -的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n = .(13)已知正方体1111ABCD A B C D -的棱长为M 是棱BC 的中点,点P 在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为 .(14)对任意实数k ,定义集合20(,)20,0k x y D x y x y x y R kx y ⎧⎫-+≥⎧⎪⎪⎪=+-≤∈⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭. ①若集合k D 表示的平面区域是一个三角形,则实数k 的取值范围是 ; ②当0k =时,若对任意的(,)k x y D ∈,有(3)1y a x ≥+-恒成立,且存在(,)k x y D ∈,使得x y a -≤成立,则实数a 的取值范围为 .三、解答题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习
数学(理科)2016.1
本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答
题卡上,在试卷上
作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个
选项中,选出符合题目要求的一项。

1.已知(1i)i 1i(b b +=-+∈R),则b 的值为 A.1 B.1- C. i D.i -
2. 抛物线24x y =的准线与y 轴的交点的坐标为 A. 1(0,)2
- B.(0,1)- C.(0,2)- D.(0,4)-
3.如图,正方形ABCD 中,E 为DC 的中点,若AD AC AE λμ=+

则λμ-的值为 A.3 B.2C. 1 D.3-
4.某程序框图如图所示,执行该程序,若输入的a 值为1,则输 出的a 值为 A.1B.2C.3D.5
5.已知数列12345:,,,,A a a a a a ,其中{1,0,1},1,2,3,4,5i a i ∈-=, 则
满足123453a a a a a ++++=的不同数列A 一共有
A.15个
B.25个
C.30个
D.35个
6. 已知圆,
直线1:l y ,2:1l y kx =- 若12,l l 被圆所截得的弦的长度之比为,则k 的值为
1
2
22(2)4C x y -+=:C 1:2E
A B
C
D
输出
输入
开始
结束
7. 若,x y 满足+20,40,0,x y x y y -≥⎧⎪
+-≤⎨⎪≥⎩
则2||z y x =-的最大值为
A.8-
B.4-
C.1
D.2
8. 已知正方体''''A B C D
A B C D -,记过点A 与三条直线,,'A B A D A A 所成角都相等的直线条数为m , 过点A 与三个平面..',,'AB AC AD 所成角都相等的直线的条数为n ,则下面结论正确
的是
A.1,1m n ==
B.4,1m n ==
C. 3,4m n ==
D.4,4m n ==
二、填空题共6小题,每小题5分,共30分。

9. 已知双曲线2
2
21(0)y x b b
-=>的一条渐近线过点(1,2),则___,
b =其离心率为__. 10. 在6
2
1()x x +
的展开式中,常数项为____.(用数字作答) 11. 已知等比数列{}n a 的公比为2,若234a a +=,则14___.a a += 12. 某四棱锥的三视图如图所示,则该四棱锥中最长棱的棱长为___.
13.已知函数22,
0,(),0.
x
a x f x x ax x ⎧+≥⎪=⎨-<⎪⎩若()f x 的最小值是a ,
则__.a =
14.已知ABC ∆,若存在111A B C ∆,满足111
cos cos cos 1sin sin sin A B C
A B C ===,则称111A B C ∆是ABC ∆的 一个“友好”三角形.
(i) 在满足下述条件的三角形中,存在“友好”三角形的是____:(请写出符合要求的条件的序号)
①90,60,30A B C === ;②75,60,45A B C === ; ③75,75,30A B C === .
(ii)若等腰ABC ∆存在“友好”三角形,且其顶角的度数为
___.
主视图
左视图
俯视图
三、解答题共6小题,共80分。

解答应写出文字说明、演算步骤或证明过程。

15. (本小题满分13分)
已知函数π
()sin()14
f x x x =-+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间ππ
[]126
,上的最大值与最小值的和.
16. (本小题满分13分)
已知某种动物服用某种药物一次后当天出现A 症状的概率为13
.为了研究连续服用该
药物后出现A 症状的情况,做药物试验.试验设计为每天用药一次,连续用药四天为一个用
药周期. 假设每次用药后当天是否出现A 症状的出现与上次用药无关.
(Ⅰ)如果出现A 症状即停止试验”,求试验至多持续一个用药周期的概率;
(Ⅱ)如果在一个用药周期内出现3次或4次A 症状,则这个用药周期结束后终止试验,试验至多持续两个周期. 设药物试验持续的用药周期数为η,求η的期望.
17. (本小题满分14分)
如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD
为梯形,AD BC ,AD AB ⊥,且3,
1P B A B A D B C ====. (Ⅰ)若点F 为PD 上一点且1
3
PF PD =,
证明:CF 平面PAB ; (Ⅱ)求二面角B PD A --的大小;
F
A
D
C
B
P
? (Ⅲ)在线段PD上是否存在一点M,使得CM PA 若存在,求出PM的长;若不存在,说明理由.
18. (本小题满分13分)
已知函数1()(1)ln f x kx k x x
=-+-. (Ⅰ)当1
2
k =
时,求函数()f x 的单调区间和极值; (Ⅱ)求证:当01k <<时,关于x 的不等式()1f x >在区间[1,e]上无解.
(其中e 2.71828= )
19. (本小题满分14分)
已知椭圆2222:1(0)x y W a b a b +=>>
A 在圆22
:16O x y +=上.
(Ⅰ)求椭圆W 的方程;
(Ⅱ)若点P 为椭圆W 上不同于点A 的点,直线AP 与圆O
的另一个交点为Q .是否存在点P ,使得
||
3||
PQ AP =? 若存在,求出点P 的坐标;若不存在,说明理由.
20. (本小题满分13分)
若实数数列{}n a 满足*21()n n n a a a n ++=-∈N ,则称数列{}n a 为“P 数列”.
(Ⅰ)若数列{}n a 是P 数列,且140,1a a ==,求3a ,5a 的值; (Ⅱ) 求证:若数列{}n a 是P 数列,则{}n a 的项不可能全是正数,也不可能全是负数;
(Ⅲ)若数列{}n a 为P 数列,且{}n a 中不含值为零的项,记{}n a 前
y
x
O B A
2016项中值为负数的项的个数为m,求m所有可能取值.。

相关文档
最新文档