单纯形算法与目标规划的应用研究
单纯形法求目标函数最大值转换为最小值的结果

单纯形法求目标函数最大值转换为最小值的结果单纯形法是一种常用的线性规划算法,用于求解线性规划问题的最优解。
线性规划问题通常包括最大化或最小化一个线性的目标函数,同时需要满足一系列线性的约束条件。
在单纯形法中,首先需要将目标函数最大化的问题转化为最小化的问题。
这是因为单纯形法是通过不断迭代寻找可行解的顶点来求解最优解的,而最小化问题常常更容易进行迭代。
一般来说,将目标函数最大化的问题转换为最小化的问题,可以通过两种方法实现:转化为负的目标函数或转化为对偶问题。
首先,我们可以通过将目标函数中的变量取反来将目标函数最大化的问题转化为最小化的问题。
假设原始的目标函数为:max z =c1x1 + c2x2 + ... + cnxn那么将其转化为最小化的问题,可以表示为:min -z = -c1x1 -c2x2 - ... - cnxn通过上述转化,我们可以将目标函数最大化的问题转化为最小化的问题,从而可以应用单纯形法进行求解。
其次,我们可以通过将原始问题转化为对偶问题,然后再求解对偶问题的最小化值。
对于一个线性规划问题,其对偶问题可以由以下步骤转化而来:1.将目标函数最大化的问题转化为最小化的问题2.将约束条件中的不等式转化为等式3.引入拉格朗日乘子,将原问题转化为拉格朗日函数4.求解拉格朗日函数的最小值,并得到对偶问题的最小化值通过上述方法,我们可以将目标函数最大化的问题转化为最小化的问题,并利用单纯形法求解最优解。
这样做的好处是,在单纯形法的迭代过程中,我们只需要寻找目标函数最小化的方向而不是最大化的方向,这样可以大大简化算法的实现过程。
在实际运用中,将目标函数最大化的问题转化为最小化的问题可以简化计算过程,提高计算效率。
同时,由于单纯形法是一种迭代算法,转化为最小化的问题更容易定义目标函数的初始解,从而更容易求解最优解。
总之,单纯形法是一种常用的线性规划算法,通过将目标函数最大化的问题转化为最小化的问题,可以简化计算过程并提高效率。
单纯形法、线性规划实践报告

exitflag =
1
output =
iterations: 3
funcCount: 16
stepsize: 1
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: []
cgiterations: []
一、线性规划——单纯形法程序设计
1.实验目的:
(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解.
2.问题陈述
本实验主要编写一般线性规划问题的计算程序:
Min
s.t.
x
引入松弛变量将其化为一般标准型线性规划问题:
函数f(x)= 在区间[-1,3]上的最小值,程序运算如下:
在matlab命令窗口输入如下:
fun='x^2-x+2';
[x,fval]=fminbnd(fun,-1,3)
运算结果如下:
x=0.5000
fval = 1.7500
两者运行结果完全一致,说明程序正确。
三、运用非线性规划建模的实例
1.问题描述:
10000
-0.1300
说明通过三次迭代找到最优解为-0.13.
用Matlab求解线性规划的命令linprog的计算结果:
f = [-0.15;-0.1;-0.08;-0.12];
A = [1-1-1-1
0-1-1 1];
b = [0;0];
Aeq=[1 1 1 1];
beq=[1];
探讨单纯形法的改进

探讨单纯形法的改进单纯形法是一种常见的线性规划求解算法,其基本思路是通过构建初始可行解和不断进行单纯形变换来逐步优化目标函数值。
尽管单纯形法具有一定的优越性和适用性,但在实际问题中,其存在一些问题,如对初始可行解的依赖性、极端点模糊等。
因此,对单纯形法进行改进是非常必要的。
一、基于初始点优化的单纯形法改进传统的单纯形法在构建初始可行解时通常采用随机选取变量赋初值,但这种方法存在依赖性和不确定性,容易导致求解结果出现错误。
因此,提出了一种基于初始点优化的改进方法,即将常用的预处理算法与单纯形法相结合,利用已知的问题结构和性质,从而能够更准确地构建初始可行解,并快速找到最优解。
二、非正则化单纯形法改进传统的单纯形法在处理极端点问题时存在一定的缺陷,其主要原因除了初始可行解的问题之外,还与算法本身的局限性有关。
为了克服这些问题,可以通过非正则化单纯形法来进行改进。
这种方法不仅可以克服传统单纯形法无法处理的极端点问题,还可以有效减少目标函数下降的步骤,从而提高算法的效率和可靠性。
三、随机游走单纯形法改进在应用单纯形法解决实际问题时,如果问题本身具有复杂性和难以预测性,传统的单纯形法可能会出现效率低下和求解结果不稳定等问题。
针对这些问题,可以采用随机游走单纯形法进行改进。
该方法通过随机游走和概率转移等操作,将求解过程从搜索解空间的确定性过程转变为概率性的过程,从而能够更有效地避免局部最优解,并提高算法的稳定性和可靠性。
双端单纯形法是一种新颖的基于单纯形法的优化算法,其基本思路是同时从两个端点开始进行求解,分别向另一个端点移动,直到找到最优解为止。
相较于传统的单端单纯形法,双端单纯形法具有更强的适应性和搜索能力,能够更好地应对复杂性和非线性性问题,从而提高算法的求解效率和质量。
综上所述,单纯形法的改进是一个不断完善和发展的过程,不同的改进方法可以针对不同的问题和应用场景,有效提高算法的效率和可靠性,并在实际问题中得到广泛应用。
单纯形法求解线性规划问题例题

单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。
在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。
单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。
下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。
单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。
我们将建立单纯形表,以便求出最优解。
首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。
单纯形法的综述及其应用-文献综述

毕业论文文献综述数学与应用数学单纯形法的综述及其应用一、 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关主题争论焦点)1.写作目的本文主要在于介绍单纯形法的历史背景,基本计算方法,改进的计算方法,以及单纯形法的应用.目的在于对单纯形法的历史背景,计算方法等进行综述,并总结单纯形法在生活各个领域的应用,单纯形法是求解线性规划问题很有效的方法,通过对单纯形法的进一步了解,最后提出一实际问题利用单纯法进行分析求解.2.有关概念LP 问题的一般形式[1]()1122. Max min n n ob Z c x c x c x =+++L()()()1111221121122222112212..: ,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b s t a x a x a x b x x x +++≤≥⎧⎪+++≤≥⎪⎪⎨⎪+++≤≥⎪⎪≥⎩L L LL L 线性规划问题的标准型为[2]()()()11221111221121122222m112212min a a s.t.a 01,2,,,,,n n n n n n m mn n m j n S c x c x c x S x a x a x b x a x a x b x a x a x b x j n x x x =+++⎧+++=⎪+++=⎪⎪⎨⎪+++=⎪⎪≥=⎩L L L L L L 为目标函数(1)为决策变量 其矩阵形式为min s.t.0S CXAX b X ==⎧⎨≥⎩(2)其中,()12,,,n C c c c =L ,决策向量()()1212,,,,,,,T T n m X x x x b b b b ==L L .A 为约束条件中的系数矩阵, 即111212122212n n m m mm a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M M L 本文除了介绍线性规划问题的一般形式、标准形式和矩阵形式以外还列举了一些定义. 定义1[3]:设矩阵A 的秩为m ,矩阵B 是A 中的一个m 阶满秩子方阵,则B 为一个基矩阵.矩阵A 中剩余元素组成的子阵为N ,即[]A BN =.把x 的分量相应地分成两部分,记成B x 和N x ,B x 的分量与B 的列对应,称为基变量;N x 的分量与N 中的列对应,称为非基变量.在约束Ax b =中令所有的非基变量取值为零时,得到解10B N x B b x x -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,称为相应于B 的基本解.定义2[3]:基本解得基变量都取非负值时,即满足10B x B b -=≥的基本解为基本可行解.定义3[4]:满足式(1)各约束条件的解()12,,,T n X x x x =L 称为可行解.全部可行解的集合称为可行域.目标函数1min n j j j Z c x ==∑达到最大值的可行解称为最优解.定义4[4]:设A 为约束方程组1(1,...,)n ij j i j a x b i m ===∑的m n ⨯阶系数矩阵,设(n m >),其秩为m ,B 为矩阵A 中的一个m m ⨯阶的满秩子矩阵,称B 为线性规划问题的一个基.不失一般性,设11111...(,...,)...m m m mm a a B a a αα⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦M M B 中每一个向量(1,..,)j j m α=称为基向量;与基向量j α对应的变量j x 称为基变量.基变量以外的的变量称为非基变量.定义5[4]:在约束方程组1(1,...,)n ijj i j a x b i m ===∑中,令所有非基变量12...0m m n x x x ++====.此时约束方程组有唯一解()12,,,TB m X x x x =L .将此解加上非基变量取0的值,有()12,,,,0, 0m X x x x =L ,称X 为线性规划问题的基本解.基本解总数不超过m n C 个.3.综述范围通常,求解LP 模型时,常用基本单纯形方法、大M 法、两阶段法等,所以在文献[5-8]具体介绍了求解线性规划的单纯形法的一些计算方法.根据对模型中是否存在单位基矩阵、存在怎么样的基矩阵等特征的判断来选择方法或判断解的存在与否等情况.这就是说,在求解线性规划的单纯形法中,初始基(矩阵)的确定是一个基本问题.通常使用大M 法和两阶段法,通过人工构造,人为地在系数矩阵中形成一个单位矩阵作为初始基,再进行单纯形法的迭代[9].由于越来越多的领域借助于线性规划来做出最优决策,完善线性规划理论及其有效解法已成为重要研究课题.单纯形法作为求解线性规划问题较实用而有效的算法已在实际中得到广泛应用.本文在文献[10-11]简述关于单纯形算法的讨论、优化设计与实现,分析了单纯形算法的主要特点.最后本文例举一些单纯形法在实际问题应用例子来说明单纯形法是处理运筹学模型的一种重要方法.4.主题的争论各种资源的最优配置已成为当今节约型社会的研究热点.它广泛应用于国防、科技、工业、农业、交通运输、环境工程、教育、经济及社会科学等领域,是指在一定的人力、物力、财力等资源条件下,如何合理利用这些资源完成最多任务或得到最大效益的方法.线性规划的资源最优配置是研究在一组线性约束之下,目标线性函数的最小值或最大值问题[3].Dantzig 在1947年提出了求解线性规划问题的单纯形算法.单纯形算法是寻找最优基本可行解的一种行之有效的算法[12].二、主体部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述)(一)历史背景单纯形法是求解线性规划问题的通用方法.它是是美国数学家G.B.丹齐克于1947年首先提出来的.它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到.顶点所对应的可行解称为基本可行解.单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行.因基本可行解的个数有限,故经有限次转换必能得出问题的最优解.如果问题无最优解也可用此法判别.(二)现状1.基本定理下面主要介绍一下在单纯形法的综述及其应用中所涉及的一些基本定理.定理1[3]:若式(1)存在有界最优解,则必从基本可行解中得到.定理2[9]:若矩阵A经过有限次初等行(列)变换变换成矩阵B则,A的行(列)向量组与B的行(列)向量组等价,而A的任意k个列(行)向量与B中对应的k个列(行)向量有相同的线性相关性.定理3[4]:若线性规划问题存在可行解,则问题的可行域为凸集.定理4[4]:线性规划问题的基本可行解X对应线性规划问题可行域的顶点.定理5[4]:若线性规划问题有最优解,一定存在一个基本可行解是最有解.2.单纯形法的计算(1)计算步骤单纯形表X列依次标明各方程的基变量;BB C 是基变量相应的价值系数,它们是与基变量相对应的;b 列是约束方程组右端的常数;j c 行是基变量的价值系数;i θ列的数字是在确定换入变量后,按θ规则计算后填入;最后一行称为检验数行,对应各非基变量i x 的检验数是,1,1,2,...,m j i i j i c c a j n =-=∑.现在把单纯性法的的计算步骤归纳如下: 第一步 对于一个已知的可行基12B ,,...,)j j jn p p p =(,写出B 对应的典式以及B 对应的基可行解(0)x ,(0)110200(,,...,)T B m x B b b b b -==第二步 检查检验数,如果所有检验数 0j λ≤ (j=1,2,…,n )则(0)x 便是最优解,计算结束,否则转下一步.第三步 如果有检验数0r λ>,而112(,,...,)0T r r r mr B p b b b -=≤,则问题无最优解,计算结束,否则转下一步.第四步 如果有检验数0r λ>,且12(,,...,)T r r mr b b b 中有正数,则取r x 为进基变量(若有多个正检验数,可任选一个,一般来说选取最大的检验数有利于提高迭代效率),并求最小比值00min i s ir srb b b b ⎧⎫=⎨⎬⎩⎭ 由此来确定js x 为离基变量(若上述最小比值同时在几个比值上达到,则选取其中下标最小的变量为离基变量),然后用r P 代换js p 得新基B ,再接下一步.第五步 求出新基B 的典式(计算或直接通过初等行变换来实现)以及B 对应的基可行解,1(1B 10200B (,,...,)Tm x b b b b -==) 然后,以B 取代B ,(1)x 取代(0)x ,返回第二步[13].(2)单纯形法的进一步讨论人工变量:大M 法和两阶段法为了解线性规划问题 min .0CX s t AX b X ⎧⎨=≥⎩ 需要一个初始基可行解,为此常常借助于大M 法或两阶段法. 大M 法:在一个线性规划问题的约束条件中加入人工变量后,要求人工变量对目标函数取值不受影响,为此假定人工变量在目标函数中的系数为(-M )(M 为任意大的正数),这样目标函数要实现最大化时,必须把人工变量从基变量换出.否则目标函数不可能实现最大化.在许多线性规划问题中,引进松弛变量化成标准形式后,约束条件方程组的系数矩阵并不含m 阶单位矩阵,这样就给单纯形解法的换基迭代带来了困难,为了很快找到第一个可行基,在利用单纯形法求解时,首先要在线性规划问题中引入人工变量,把问题变为约束方程组的系数矩阵中含有单位阵,用以作为人造基,然后再按照单纯形法进行换基迭代,求得最优解或判定无最优解.这种方法就称为两阶段法.第一阶段:不考虑原问题是否存在基可行解;给原线性规划问题加入人工变量,并构造仅含人工变量的目标函数和要求实现最小化.如11111122111211222222m112212min 0...0a a s.t.a ,,...,0n n m nn n n n n n m mn n n m m n m x x x x x a x a x x b x a x a x x b x a x a x x b x x x ω++++++=+++++++++=⎧⎪++++=⎪⎪⎨⎪++++=⎪≥⎪⎩L L L LL 然后用单纯形法求解上述模型,若得到0ω=,这说明原问题存在基可行解,可以进行第二段计算.否则原问题无可行解,应停止计算.第二阶段:将第一阶段计算得到的最终表,除去人工变量.将目标函数行的系数,换原问题的目标函数系数,作为第二阶段计算的初始表.大M 法与两阶段法都是从寻求线性规划问题的一个初始可行基引入的.从形式上看,它们是两种不同的方法,但在本质上是一致.3.单纯形法的算法(1)改进单纯形算法通常使用大M 法和两阶段法,通过人工构造,人为地在系数矩阵中形成一个单位矩阵作为初始基,再进行单纯形法的迭代.这样,往往无意中扰乱了思想主线,增加了计算量.特别对于人工计算显得运算操作繁杂而偏离了主体,在理解和教学中常常带来不便.通过对单纯形法求解法的实质的分析和认识,提出了基于矩阵初等变换初始可行基的获得方法,进而得到基于单纯形法的求解线性规划模型的直接方法使单纯法的运用简单明白.利用这种确定初始可行基的方法求解线性规划问题时,首先,对线性规划模型()2的系数增广矩阵进行上述的初等行变换而得到r r ⨯阶的初始可行基()r m ≤,接着,将所得初始可行基安排入单纯形表,然后,进行单纯形表的表上作业程序.这样做的优点不仅在于可以给出初始可行基()r m =,而且可以方便地发现不独立的约束()r m <,并将其提前剔除,以减少单纯形法的计算量.具体步骤为:步骤 1 对增广矩阵B 施行一系列的初等行变换,并始终保持可行性(即:b 列非负),直到B 中含有单位矩阵;这里需要注意的是当变换到可以使某一行元素全部为0时,说明约束方程组不独立,B 可以降维为()()11m n -⨯+,那么,所得到的单位矩阵也就是()()11m n -⨯+阶的,并非一定要得到B 的m m ⨯阶的单位矩阵作为基.步骤 2 将步骤1的结果安排到一个单纯形表中,并以B 中的单位矩阵的列所相应的变量为基变量而得到初始单纯形表;步骤 3 在步骤2的所得的单纯形表上按照通常的单纯形表上作用法进行求解.需要说明的是,在步骤1中完全可以不用第一类初等行变换(交换任两行的位置),而只用第二、三类初等行变换就可以实现.该方法的优势在于思想清晰,方法简明,计算量减小.有了初始可行基,就可从这个可行基相应的基本可行解出发进行换基迭代,从而,求得目标函数的最优解或判断其无最优解[9].(2)计算机算法利用数学计算工具来解决单纯形法中计算的难题,其应用价值和推广价值是可观的,不仅可以提高计算速度,而且可以大大提高计算的准确性.求解思路:首先把它变为如下(左式) 标准形式:11221111221121122222m112212max a a s.t.a ,,...,2n n n n n n m mn n m n Z c x c x c x x a x a x b x a x a x b x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪≥⎪⎩L L L L L 1231112131121222322123...0.........n n n m m m mn m c c c c a a a a b p a a a a b a a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M M 然后对p 进行标准化, 记[]123...T i i i i mi a a a a a =,如果i a 是只有一个分量为1 的单位向量,那么把p 第一行中的i c 通过矩阵变换, 变成0, 标准化完成..标准化的目的是将第一行中的系数12,,...,n c c c 变为检验数, 其中非基变量系数均为0,基变量的系数则未必为0.接着对p 进行变换, 首先在p 矩阵的第一行第1到第n 个分量中找出一个最大数,如果这个最大数不大于0 ,则不用进行再次迭代,直接得到最终变换矩阵g .反之,用k 记下最大数所对应的列..然后进行判断: 如果p 的第k 列的第2 至第m 个数全都小于或等于0 ,那么此线性规划问题无界,迭代结束.反之, 用p 的最后一列的第2 至第m 个分量分别除以第k 列对应的数,如果碰到除数小于或等于0 则跳过. 在所得结果中找出最小的那个数,用j 记下该数所对应的行.于是得到主元素(,)p j k 接下来是对第j 行进行行变换,将P( j , k) 变为1.然后对其他行进行行变换,使p 矩阵的第k 列的其他分量都变为0 , 于是第一轮变换结束.接下来回到变换过程的开始,重复迭代过程至到跳出迭代过程为止,最后对结果矩阵进行智能分析. 其中需要人工进行的步聚是构造计算矩阵p 和分析迭代结果两步, 以使求解过程比较简便且可靠性高[14].4.单纯形法的应用一个经济、管理问题凡满足一下条件时,才能建立线性规划的模型.(1)要求解问题的目标函数能用数值指标来反映,且为线性函数:(2)存在多种方案及有关数据:(3)要求达到的目的是在一定约束条件下实现的,这些约束条件可用线性等式或不等式来描述.一般满同时足上面几个条件的实际生活中的难解问题都可以用线性规划问题来解决.所以越来越多的领域借助于线性规划来做出最优的决策.单纯形法在实际中的应用最常使用于资源的配置.人力、时间和物质资源的优化配置问题是制定企业生产计划时考虑的重要问题,线性规划模型可以考虑各类资源的变动对其造成的影响并寻求最佳方案.在企业生产和经济管理等领域中,人们常会遇到这样的问题,如何从一切可能的方案中选择最好、最优的方案,在数学上把这类问题称为最优化问题.如何解决这类问题,在当今商品经济的环境下,是一个关系到国计民生的重要问题.线性规划是理论和方法都比较成熟,并具有广泛应用价值的一个运筹学分支.如果一个问题的限制条件可以写成某些决策变量的线性方程组或线性不等式组,目标可以写成决策变量的线性函数,那么这个问题的数学模型就是线性规划问题.线性规划法是研究如何将有限的人力、物力、设备、资金等资源进行最优计划和分配的理论方法.线性规划是企业生产过程中决策制定的理论依据,决策的合理与否直接影响到企业的经济效益,文献[15]介绍了线性规划理论,阐述了线性规划函数中各要素以及各变量的变化对分析造成的影响,通过单纯形法案例进行了计算,针对大型、复杂的模型,需要选择更为有效的手段来进行计算.能源紧缺是人类社会面临的重要问题.现代城市轨道交通系统通过轨道上方的直流接触网供电,因电动车组往往牵引功率巨大,需消耗大量电能,因此,有效利用牵引能源至关重要.单列车牵引策略优化对于节约牵引能耗具有极其重要意义.在文献[16-17]讨论了单纯形优化算法在城市轨道交通列车惰行点搜索方面的应用,列车运行因受多重因素影响,确定必要的惰行起点在实际情况的约束下并不容易.通过分析列车站内运行惰行点搜索特点、约束条件及寻解空间等.详细介绍了二维空间中单纯形法寻找合适列车惰行点的实现过程.借助于单列车仿真系统的帮助,通过问题的寻优结果分析,研究了这种启发式搜索方法在确定惰行点方面的可行性和性能表现.借助于单纯形法在城市勒道交通列车站问运行惰行点搜索方面的应用,在综合考虑运行时间和能量消耗不同要求的情况下,应用该搜索方法得到的惰行点可以为优化列车运行提供满意解.启发式的搜索方法,通过较低的迭代次数,为列车运行的惰行点搜索提供了解决方案.然而,在站间运行时,首先要关注两站之间的距离有没有足够的空间容纳多个惰行点,从而合理选择惰行点数量.从应用角度看,根据整条线路的总运行时间搜索多个站点间的惰行点,会使搜索更复杂.这将在今后进一步研究[16].三、总结部分(将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测)线性规划是运筹学的一个重要分支,早在20世纪30年代末,前苏联著名的数学家康托洛维奇就提出了线性规划的数学模型,越来越来受到人们的重视.而后于1947 年由美国数学家G. B. Duntzg提出一般线性规划问题的求解方法——单纯形法,它是线性规划问题的通用解法.从而使得线性规划的应用领域更加的广泛.线性规划这一学科也因此开始形成并迅速地发展起来.单纯形方法与经典分析的方法很不相同,它利用了矩阵的初等变换,通过部分枚举的方法来寻求线性规划问题的最优基可行解,从而求得值.由于这种方法运算简单又有规则,且适用性广泛.所以它的应用迅速得到发展,根据它而编制的程序已在一些计算机上开发实现.值得指出的是,尽管单纯形法避开了经典极值问题常用的微分法,但是单纯形法的最优性条件仍可用微分法导出[18].四、参考文献(根据文中参阅和引用的先后次序按序编排)[1]田学民.利用单纯形法解线性规划问题的机理[J].中国科技论文在线,2010.[2]贺学海.单纯形法解决LP问题的研究[J].沈阳师范大学报(自然科学版).2010,28(1):14-16.[3]王东雷.基于单纯算法的优化设计与实现[J].安徽农业科学.2007,35(36):11727-11728.[4]蔡海涛等.运筹学[M].湖南长沙.国防科技大学出版社.2003.[5]张毅.谈两阶段法与大M法的统一处理方法[J].陕西理工学院学报(自然科学版).2009,25(2):85-86.[6]白岩.线性规划中两阶段法德简便计算法[J].长春师范学院学报自然科学版).2005,24(5):1-3.[7]Hamdy A.Taha.运筹学(英文版) [M].北京:人民邮电出版社.2007.[8]拉塞尔C.沃克.数学规划导论(英文版)[M].北京.机械工业出版社.2005.[9]申卯兴,许进.求解线性规划的单纯形法的直接方法[J].华东科技大学.2007,43(30):94-96.[10]高引民,杜晓马.关于单纯形算法的讨论[J].太原机械学院学报.1994,15(1):70-75.[11]陈英霞,朱维钧.关于单纯形算法的两点思考[J].怀化学院学报.2008,11(11):26-27.[12]王东雷,张耀中.一种改进的单纯算法实现及其应用[J].安徽农业科学.2007,35(35):11601-11602.[13]张干宗.线性规划[M].武汉.武汉大学出版社.2004.[14]毕春丽,曾强,王荣文.线性规划问题中单纯形法的计算机求解[J].焦作工学院学报(自然科学版).2002,21(6):472-474.[15]王树祥,武新霞,卜少利.线性规划在企业生产计划中的应用及模型的建立和求解[J].中国电力教育.2007,21:195-197.[16]赵亚辉,朱琴跃.基于单纯形法的城轨列车惰行点搜索[J].同济大学(自然科学版).2010,38(1):81-85.[17]赵亚辉,谢维达.单纯形法在城轨列车惰行点搜索中的应用[J].同济大学(自然科学版).2009,45(14):217-220.[18]毛东明,许风.单纯形法最优性条件的经典证明[J].辽东学刊(自然科学版).1994, 3:12-14.。
线性规划中的单纯形法分析

线性规划中的单纯形法分析在数学和运筹学领域中,线性规划是一种优化问题的数学建模方法,通过最小化或最大化线性目标函数,同时满足一系列线性等式和不等式约束条件。
而单纯形法则是一种广泛应用于线性规划问题求解的算法,它通过迭代计算来找到最优解。
本文将对线性规划中的单纯形法进行详细分析。
一、线性规划基本概念在介绍单纯形法之前,我们需要先了解线性规划的基本概念。
线性规划包括目标函数、决策变量和约束条件三个主要部分。
目标函数是线性规划问题中待优化的目标,可以是最大化或最小化某个线性表达式。
决策变量是这个问题中需要确定的变量,它们的取值将影响到目标函数的结果。
约束条件则是对决策变量的限制条件,可以是等式或不等式。
二、单纯形法的基本原理单纯形法是由美国数学家Dantzig于1947年提出的一种求解线性规划问题的有效算法。
该算法基于以下基本原理:在每一次迭代中,通过选择合适的决策变量进行优化,使目标函数的值不断逼近最优解。
具体而言,单纯形法通过构造一个初始可行解,然后通过迭代计算找到一个更优的解。
三、单纯形法的步骤1. 构造初始可行解:根据约束条件,求解一组可行解,并将其用于下一步的迭代计算。
2. 检验最优性:计算当前解的目标函数值,判断是否满足最优性要求。
3. 选择进入变量:根据规则选择一个进入变量,即使得目标函数值增加最大的变量。
4. 选择离开变量:根据规则选择一个离开变量,即使目标函数值达到最大的变量离开。
5. 更新解的值:根据进入变量和离开变量,更新当前解的值。
6. 返回步骤2,直至达到最优解或无界。
四、单纯形法的优缺点1. 优点:a) 单纯形法适用于大多数线性规划问题,并且可以找到全局最优解。
b) 算法相对简单直观,易于理解和实现。
c) 在实践中,单纯形法已被证明是一种高效的求解方法。
2. 缺点:a) 即使是对于中等规模的问题,单纯形法的计算复杂度也很高,需要大量的迭代计算。
b) 在某些特殊情况下,单纯形法可能会陷入循环,并无法找到最优解。
管理运筹学,用单纯形法求解以下线性规划问题

管理运筹学,用单纯形法求解以下线性规划问题管理运筹学是处理决策问题的重要科学,不仅根据不同目标和条件制定策略,而且可以更有效地识别和解决问题。
有些决策问题往往是非线性复杂性,涉及多个因素和变量之间的复杂关系,因此,以线性规划模型的形式来处理这些问题被认为是最有效的方法之一。
但是,线性规划模型的求解可能会非常困难,尤其是规模较大的问题。
而单纯形法作为其中一种有效的求解方法,其有效性和灵活性,使其在管理运筹学的研究中具有重要的意义。
单纯形法是指将原始线性规划问题转换为单纯形问题,然后利用相应的单纯形算法求解该问题,以求解线性规划问题。
单纯形法最早由威廉伯恩斯特(William B.Von Neumann)提出,它是利用单纯形理论把原始线性规划问题转化为单纯形问题,然后求解单纯形问题,得到原始线性规划问题的最优解。
单纯形算法的基本步骤包括:首先,根据原始线性规划问题的约束条件,构造单纯形方程组;其次,可以以此单纯形方程组为基础,进行单纯形法的迭代;最后,根据迭代的结果来求解原始的线性规划问题。
单纯形法在管理运筹学中的应用非常广泛,它不仅可以用来求解比较复杂的线性规划问题,而且可以用来解决某些约束条件下的非线性规划问题,从而解决管理运筹学中的相关问题。
另外,单纯形法还可以在企业资源规划(ERP)等管理运筹学领域的应用中发挥重要作用。
在实际应用中,单纯形法有其优缺点。
优点主要有以下几点:首先,它是一种有效的求解线性规划问题的方法,可以用来解决比较复杂的问题;其次,求解步骤简单,可以在较短的时间里求得最优解;最后,它适用性强,也可以用来解决某些约束条件下的非线性规划问题。
然而,单纯形法也有一些缺点,比如具有结构性特征,可能不能求解一些复杂的问题;另外,在求解比较大的问题时,运算负荷较大,效率较低。
总之,单纯形法是一种求解线性规划问题的有效方法,在管理运筹学中,它具有重要的意义和应用价值,它可以有效地解决复杂的线性规划问题,也能够解决某些特定条件下的非线性规划问题。
线性规划中的单纯形法求解问题

线性规划中的单纯形法求解问题线性规划是运筹学中的一个重要分支,它的应用范围非常广泛,包括经济、工程、网络、交通等领域。
在实际问题中,我们通常会需要求解一个线性规划问题,而单纯形法是解决线性规划问题的一种常用方法。
1. 线性规划线性规划是一类优化问题,通常在最小化或最大化某个线性函数的同时,满足一组线性约束条件。
一个线性规划问题可以表示为:$$\begin{array}{lll}\textrm{min/max} & c^Tx & \\ \textrm{s.t.} & Ax &\leq b \\ & x &\geq 0\end{array}$$其中,$c$ 是一个 $n$ 维列向量,$A$ 是一个 $m\times n$ 的矩阵,$b$ 是一个 $m$ 维列向量,$x$ 是一个 $n$ 维列向量,代表问题的决策变量。
我们称 $Ax\leq b$ 是问题的约束条件,称 $x\geq0$ 是问题的非负性条件。
线性规划问题的求解可以分为两种基本方法,分别为单纯形法和内点法。
其中,单纯形法是一种经典的方法,应用广泛,是大多数线性规划软件的基础算法之一。
2. 单纯形法基本思想单纯形法的基本思想是通过对问题中的决策变量进行调整,使得目标函数值不断减小(最小化问题)或增大(最大化问题),并且在满足约束条件的前提下,最终找到最优解。
单纯形法的具体步骤如下:步骤1:初始化。
我们从一组基本解开始,即 $m$ 个基本变量和 $n-m$ 个非基本变量构成的向量 $x$。
在最初的阶段,我们需要选择一组基变量,并计算出它们的取值。
这个基变量集合构成了问题的起始基。
步骤2:检查最优性。
首先,我们需要对当前解进行检验,判断它是否为最优解。
如果是最优解,则停止算法;否则,进行下一步。
步骤3:选择进入变量。
我们需要选择一个非基变量,使得将它加入到基变量集合后,目标函数值有最大的增长量。
如果这个增长量为负数,则问题无界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯型算法与目标规划的应用研究大连海事大学数学系刘莹指导教师杨晓光线性规划是运筹学的最重要的分支之一。
1939年,苏联数学家康托洛维奇出版了“生产组织与计划中的线性规划模型”[1]一书,对列宁格勒胶合板厂的计划任务建立了一个线性规划的数学模型,为用数学方法解决管理并使两者结合进行了开创性的工作。
自1947年由美国的丹兹格提出单纯形法求解一般线性规划问题的方法——单纯形法[2]之后,线性规划在理论上日益成熟,在实际中应用日益广泛与深入,特别是能用计算机来处理成千上万个约束条件和变量的大规模线性规划问题之后,它的适用领域更为广泛。
本文第一章引言部分,简要介绍了线性规划的发展历史,模型建立及求解方法,重点阐述了单纯形算法的原理,步骤,实现等,摘述了近年来单纯形算法的一些新发展;第二章主要阐述的是有关目标规划的一些概念,模型,解法等;第三章通过对具体例题的分析,使用了LINGO,LINDO,MATLAB,EXCEL SOLVER,WinQSB与“运筹学软件2.0”等6种不同的数学软件用于求解线性规划特别是目标规划,并对算法进行了比较。
第四章案例分析,通过对一个实际案例的分析,建模,求解,总结,更加直观的反应了本文前三章所要表述的思想。
第五章为结束语。
关键词:线性规划;单纯形法;目标规划;线性规划计算机求解Linear programming is one of the most important branches of Operation Research. In 1937, a mathematician called L.V.Kantorovich in Russia published a book named Mathematical metods of organizing and planning production, in which he proposed a linear programming model for a factory in Lenningrad state. What ‘s more, he created the method of using mathematical ideas to solve problems in the filed of Management and combined them with each other.Since G..B.Dantzig proposed the Simplex Method for solving general linear programming problems in 1947, the theory of linear programming turns to be perfect and the applications are taken spreadly. Expercially , the opportunitiy of solving problems with thousands of constraints and veriables by computer makes the applications of LP more and more speardly.In the first chapter of this article, I will show you some introdutions about the history of linear programming and simplex method, the way to build a LP as well as how to solve the problems. In this chapter, I put forcus on the new developments in recent years. In the second chapter, I will give some concepts ,modles and solutions of Goal Programming. In third chapter, through the analysis to a specific example, I use 6 different mathematical software such LINGO, LINDO, MATLAB, EXCEL SOLVER and WinQSB to solve the problem in computer, and compare the adventages and disadventages of each algorithm. In the forth chapter, I show a case analysis to repeat my idea of this article. And the fifth part is a conclusion.Key words:Linear programming; Simplex method; Goal programming ; Solving LP by computer software目录第一章引言 (5)1.1 线性规划 (5)1.1.1线性规划与单纯形法的发展简史 (5)1.1.2线性规划的数学模型 (5)1.2单纯形算法 (8)1.2.1 单纯型算法的步骤 (8)1.2.2单纯形法的进一步讨论 (8)1.2.3单纯形算法的两个小结 (9)1.2.4 单纯形算法的近年来的新成果 (11)第二章不存在不确定性时的多属性决策:目标规划 (22)2.1目标规划中的一些概念 (22)2.2一般目标规划的模型 (23)2.3目标规划的解法 (24)2.4目标规划的单纯形法 (26)第三章线性规划问题的计算机软件求解 (29)3.1几种求解软件的介绍。
(29)3.2 各种软件的具体求解过程 (29)第四章案例分析 (44)第五章结束语 (47)参考文献 (48)第一章引言1.1 线性规划1.1.1线性规划与单纯形法的发展简史一、两个重要人物[3]康托洛维奇(L.V.Kantorovich,1912-1986)康托洛维奇对经济学的主要贡献在于,他建立和发展了线性规划方法,并运用与经济分析对现代经济应用数学的重要分支——线性规划方法的建立和发展做出了开创性贡献。
他把资源最优利用这一传统经济范围内怎样最优地利用资源等问题做出了独创性的研究。
丹兹格(G..B.Dantzig,1914-2005)丹兹格,美国数学家,因创造了单纯形法,被称为“线性规划之父”。
1946年,丹兹格到美国空军管理部工作,他的上司伍德(M.Wood)和希区柯克(D.Hitchock)要他解决如何使计划过程机械化的问题,具体任务是:寻找一个方法能更快地计算处分时间段的调度、训练和后勤供给的方案。
丹兹格深入研究了这个问题后,提出了目标函数的概念,并提出了单纯形求解方法(1947年)。
二、线性规划发展过程中的几个重大历史事件1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》[1]一书。
1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法[2]。
1951年,美国经济学家库普曼斯(T.C.Koopmans,1910-1985)出版《生产与配置的活动分析》一书[4]。
1950—1956年,线性规划的对偶理论出现1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法。
1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法)[5]。
1984年,美国印度裔数学家卡玛卡(N.Kmarmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Kmarmarkar 算法[5][6]。
线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优。
现在线性规划已不仅仅是一种数学理论和方法,二期成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术。
1.1.2线性规划的数学模型规划问题的数学模型包含三个组成要素[7]:①决策变量,指问题中要确定的未知量。
②目标函数,指问题所要达到的目标要求,表示为决策变量的函数。
③约束条件,指决策变量取值时满足的一些限制条件,表示为含决策变量的等式或不等式。
这类问题所构成的数学模型,称为线性规划模型(MLP)。
有时也直接将线性规划模型称为线性规划问题(LP)。
一、线性规划模型的一般表达式1.一般形式max或(min)1122...n nz c x c x c x =+++s.t. ()()1111221121122222112212...(,)...,...................,,, 0n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x bx x x +++≤=≥⎧⎪+++≤=≥⎪⎪⎨⎪+++≤=≥⎪⎪≥⎩此模型的简写形式为max 或(min )1nj j j z c x ==∑s.t. ()1,(1,...,)0(1,...)nij j i j ja xb i m x j n =⎧≤=≥=⎪⎨⎪≥=⎩∑2. 向量形式max 或(min )z CX =s.t. ()1,0(1,...,)nj j j jP x b x j n =⎧≤=≥⎪⎨⎪≥=⎩∑式中: 12(,,...,);n C c c c =111222;,(1,2,...,);.........j j j n m mj a x b a x b X P j n b x b a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.矩阵形式max 或(min )z CX = s.t. (),0AX bX ≤=≥⎧⎪⎨≥⎪⎩其中, A =111212122212n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L M M M M L 式中:A 为约束方程组(约束条件)的系数矩阵。
二、 线性规划模型的标准形式规定线性规划问题的标准形式为1max nj j j z c x ==∑s.t. 101,...,;1,,nij j i j j a x b x i m j n =⎧=⎪⎪⎪≥⎨⎪==⎪⎪⎩∑K (1)称1122...n n z c x c x c x =+++为目标函数,()1,2,...,j x j n =为决策变量,()1,2,...,i b i m =为约束常数,s.t.(1)式为约束条件。