目标规划图解法标规划单纯形法
第四章目标规划

确定获利最大的生产方案。
这是一个单目标规划问题,用线性规划表 示如下
max Z 8 x1 10 x2 2 x1 x2 11 s.t. x1 2 x2 10 x , x 0 1 2
最优方案为
x1 4, x2 3
*
*
实际上工厂在作决策时要考虑到市场等一系列其 他条件。 (1)根据市场信息产品 A销量有下降的趋势,故 考虑产品 A的产量应尽量不大于 B。 (2)超过计划供应的原材料时,需要高价采购, 这就使成本增加,所以原材料有严格限制。 (3)应该尽可能的充分利用设备台时,但尽量 不加班。 (4)应尽可能达到并超过计划利润指标 56元。
优先因子: 目标的重要程度 首先达到的目标赋予优先因子 P1,次位的目 标赋于优先因子 P2,…,并规定 Pk>>Pk+1 k=1,…,K ,的重要程度 j
决策者在原材料供应受严格限制的基础上考虑: P1:产品 B的产量应尽量不低于产品 A的产量; l P2:尽量充分利用设备有效台时,不宜加班; l P3:利润额应尽量不小于 56元。
决策者在原材料供应受严格限制
录音机 资源1:加工 (第一工厂) 2小时 资源2 :装配试验 (第二工厂) 2.5小时 20元/台 利润 1,500 台 预计销量 8元 月储存成本 第一工厂 2400 18元
收音机 4小时 1.5小时 23元/台 1,000 台 15元
该公司依下列次序为目标的优先 次序,以实现次月的生产与销售目标。 P1 厂内的储存成本不宜超过 23,000 元; P2 录音机销售量应完成 1,500 台; P3 第一,二两工厂的设备应全力运转, 避免有空闲时间,两厂的单位运转成本当作 它们间的权系数。
这个问题的目标规划模型为: min Ζ=P1d3++P2d4 ¯ +P3(6d1 ¯ +5d2 ¯) +P 4d11++P5d5 s.t 2x 1+4x2+d1 ¯ -d1+=2400 2.5x 1+1.5x 2+d2 ¯ -d2+=2800 8x 1+15x 2+d3 ¯ -d3+=23000 x 1 +d 4 ¯ -d4+=1500 x 2 +d5 ¯ -d5+=1000 P3 第一,二两工厂的设备应全力运转 d 1++d11 ¯ -d11+=30 避免有空闲时间,两厂的单位运转成本当 , P4录音机销售量应完成 第一个工厂的超时作业时间全月份不宜 x 1,x2≥0,d i ¯,di+≥0 (i=1,2,3,4,5,11) P1 23,000 P2 厂内的储存成本不宜超过 1,500 台;元; P5 30 收音机销售量应完成 1,000 台; 作它们间的权系数。 超出 小时;
第一章线性规划-模型和图解法

a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
第二章 图解法与单纯形法

表1-4 XB
基变量 x1 x2
进基列 x3
bi /ai2,ai2>0 x4 b
将3化为1
(1)
θi 40 10
出 基 行
x3
x4
2
1 3
1
3 4
1
0 0
0
1 0
40
30
σj
x3
乘 以 1/3 后 得 到
5/3
0 1 0 0 1
1 0 0 3/5 -1/5
-1/3 1/3 -4/3 -1/5 2/5
x2
40
例题
2 x1 x2 40 x1 1.5x2 30
(15,10)
max Z 3x1 4x2 2 x1 x2 40
30
x1 1.5 x2 30 x1 0, x2 0
20
最优解X=(15,10) 最优值Z=85
10
O
10
20
30
40
x1
2.1 线性规划问题的图解法
θ M 20
0 λj
0 2 λj 1 2 λj
x5
x4 x2 x1 x2
1/3 1
3 1/3 1/3 1 0 0
1 2
0 1 0 0
5 1
17 5 -9 17/3
0 0
1 0 0 1/3
1 0
3 1 -2 1
20
75 20 25
25 60
1 0
28/9 -1/9 2/3 -98/9 -1/9 -7/3
1.通过图解法了解线性规划有几种解的形式 2.作图的关键有三点 (1)可行解区域要画正确 (2)目标函数增加的方向不能画错 (3)目标函数的直线怎样平行移动
用单纯形法求解目标规划

P3 -56 -8 -10 0 0 0 0 0 1 0
Cj
0
0
0 P1 P2 P2 P3 0 0
CB XB b x1
x2
d
1
d
1
d
2
d
2
d
3
d
3
x3
0
d
1
5 3/2 0
1 -1 1/2 -1/2 0
0 0 0 -2/5 2/5 1
0 1 0 -3/10 3/10 0
00 01 0 0
00 00 0 0
00 00 0 0
P2 P3 0
d
2
d
3
d
3
000
000
-1 0 0
0 1 -1
0 0 0单
1 0 0纯 0 0 1形 0 -1 1 表 0 1/10 -1/101
-1 -3/5 3/5
0 1/20 -1/20
cj
CB XB b
0 x3 60
0 x1 0
0
d
2
36
P3
d
3
48
P1 j c j z j P2
P3
0 x3 12
0 x1 24/5
0
d
2
36/5
0 x2
j cj zj
12/5
P1 P2 P
单纯形表1
00 x1 x2
0 P1 x3 d1
00
d1
d
2Байду номын сангаас
0 20 1 -5 5 0
1 -2 0 1 -1 0
第四章 目标规划1-2

例4.1 某工厂生产两种产品,受到原材料供应和设备工时的限 制.在单件利润等有关数据已知的条件下,要求制订一个获利最 大的生产计划,具体数据见表4-1.
设产品Ⅰ、Ⅱ的产量分别为 x1, x2
,建立线性规划模型
m z = 6x1 +8x2 ax
5x1 +10x2 ≤ 60
4x1 + 4x2 ≤ 40
x1, x2 ≥ 0
解之得最优生产计划为
x1 = 8
x 件, 2 = 2 件,
利润为 zmax = 64 元. 工厂作决策时可能还需根据市场和工厂实际情况, 考虑其它问题,如: (1)由于产品Ⅱ销售疲软,故希望产品Ⅱ的产量不 1 超过产品Ⅰ的一半; (2)原材料严重短缺,原料数量只有60; (3)最好能节约4小时设备工时; (4)计划利润不少于48元.
解:设A、B、C三种产品的产量分别为 , 单位工时的利润分别为1000/5=200、1440/8=180、 2520/12=210,故单位工时的利润比例为20:18:21, 于是得目标规划模型为:
综上分析,可得目标规划的一般模型 (4.2 ) s.t. (4.3) (4.4) (4.5) (4.6) 其中,式(4.2)是目标函数有L个目标,根据L个目标的优先程度,把它们分成K个 优先等级,即 , 是权系数, 是正负偏差变量;式 (4.3)是目标约束, 是L个目标的期望值,一般都应同时引入下、 负偏差变量 ,但有时也可根据已知条件只引入单个 或 ;式(4.4) 是目标规划的绝对约束,通常是人力、物力、财力等资源的约束;式(4.5)、 (4.6)是目标规划的非负约束.
二、目标规划的基本概念
1、目标值和偏差变量 目标值:决策者对每一个目标都有一个期望值----或称为理想值. 正偏差变量:表示决策值(实现值)超过目标值 的数量,记为 d + ; 负偏差变量:表示决策值(实现值)未达到目标 值的数量,记为 d − .
目标规划的单纯形法

Ch4 Goal Programming
2020年5月14日星期四 Page 2 of 6
【解】用单纯形法求解目标规划问题的具体步骤如下:
第1步:列出初始单纯形表。由于目标规划中的目标函数一定是求极小, 为方便起见不转换成求极大。又由于各目标约束中的负偏差变量其系数均为 单位向量,全部负偏差变量的系数列向量构成一个基。因此本例中以d1-、d2 -、d3-作为基变量,列出初始单纯形表见表4-1。
1
§4.3 单纯形法 Simplex Method
Ch4 Goal Programming
2020年5月14日星期四 Page 5 of 6
这里需要说明两点: 1.对目标函数的优化是先按优先顺序逐步进行的。当P1行的
所有检验数均为非负时,说明第一级已得到优化,可转入下一 级,再考察P2行的检验数是否存在负值,依此类推。
因为目标函数中各偏差变量分别乘以不同的优先因子,因此表中检验
数(cj-zj)按优先因子P1、P2分成两行,分别计算。
第2步:确定换入变量。在表4-1中按优先级顺序依次检查P1,P2,P 3,…,Pk行的(cj-zj)值是否有负的。因表中P1行存在负检验数,说明目 标函数中第一优先级可进一步优化,选取P 行中最小检验数,其对应变量
第五章 整数规划 Exit
b
0
x1 1 ½
1/2 -1/2
20
0
d1+
[1/2] -1 1 1/2 -1/2
10
P2
d3-
1/2
-3/2 3/2 1 -1 40
Cj-Zj
P1
1
1
P2
-½
-3/2
1
0
x1 1
1 -1
目标规划的图解法共33页

σmn+2m
(二)、单纯形法的计算步骤
1、建立初始单纯形表。
一般假定初始解在原点,即以约束条件中的所有负偏 差变量或松弛变量为初始基变量,按目标优先等级从 左至右分别计算出各列的检验数,填入表的下半部 。
2、检验是否为满意解。判别准则如下: ⑴.首先检查αk (k=1.2…K)是否全部为零?如果全部为 零,则表示目标均已全部达到,获得满意解,停止计 算转到第6步;否则转入⑵。
1×60=60
1×58.3=58.3 < 100 由上可知:若A、B的计划产量为60件和58.3件时,
所需甲资源数量将超过现有库存。在现有条件下,此
解为非可行解。为此,企业必须采取措施降低A、B产
品对甲资源的消耗量,由原来的100%降至78.5%
(140÷178.3=0.785),才能使生产方案(60,
2、考虑产品受市场影响,为避免积压,A、B的生产
量不超过 60 件和 100 件;
3、由于甲资源供应比较紧张,不要超过现有量140。
试建立目标规划模型,并用图解法求解。
解:以产品 A、B 的单件利润比 2.5 :1 为权系数,
模型如下:
min
Z
P1
d
1
P2
(
2
.5
d
3
d
4
)
P3
d
2
30 2
d
2
d
2
)
P3
d
3
d
1
⑴
x1 x1
x2
d
1
d
1
0
2 x2
d
2
d
2
10
d
1
8
x
运筹学第五章 目标规划

第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) Zmin =0
4
例2 minZ=P1d1++P2(d2-+d2+)+P3(d3-)
2X1+X2 11
X1 -X2+d1- -d1+=0 X1 +2X2 +d2- -d2+=10 8X1 +10X2 +d3- -d3+=56
X1 , X2 , di- , di+ 0
B
O
50
100
X1
2
X2 125 C 100
4X1+2X2 = 400
E
d+
2X1+4X2 = 500
50
目标约束满意 域BEC
B
O
50
100
X1
100X1+80X2 = 10000
3
(1) 绝对约束可行域OBEC (2) 目标约束满意域BEC (3) 多个可行满意解:
(60,50),10000; (70,50),11000;
d4+
E
F
B 30 A d1+
d2- X1+X2 =50 X1+X2 =40
X2 =30
X1
11
(1)、满足目标①、②的满意域为ABCD
(2)、先考虑③的满意域为ABEF 再考虑④,无公共满意域。
(3)、E G
X1+X2=50 X1=24 X1+X2=50 X2=30
E(24,26) G(20,30)
(1) 因为目标规划问题的目标函数都是求最小化, 所以检验数的最优准则与线性规划是相反的;
14
(2) 因为非基变量的检验数中含有不同等级
的优先因子, Pi >> Pi+1,i = 1,2,,L-1. 于是从 每个检验数的整体来看: Pi+1(i = 1,2,,L-1)
优先级第k个检验数的正、负首先决定于 P1 ,
12
(4)、d4- =30 - X2 + d4+=30-26=4>0
因为 X2+d4- - d4+=30 所以 d4- =30 – X2 + d4+ ZE= P3d4- =P3 (30-x2+d4+)=P3( 30-26)=4P3 而因为 x1+d3- - d3+ =24 ZG= P3*2d3- =P3*2(24-20)=8P3 所以,取E点
P2 ,… ,Pi 优先级第k个检验数的正、负。若P1
级第k个检验数为0,则此检验数的正、负取决于 P2级第k个检验数;若P2 级第k个检验数仍为0, 则此检验数的正、负取决于P3级第k个检验数, 依次类推。换一句话说,当某Pi 级第k个检验数
为负数时,计算中不必再考察Pj( j > i )级第k
个检验数的正、负情况;
X2
4
10/3
④ Zmin =0
9
例3
minZ=P1d1-+P2d2++P3(2d3-+d4-)
X1+X2 +d1- -d1+=40
①
X1 +X2+d2- -d2+=50
②
X1 +d3- -d3+=24
③
X2+d4- -d4+=30
④
10
解: X2
50 C 40 D 30
O
X1 =24 d3+
G
5
X2 11 B 10
可行域⊿OAB
5A 7 O
2X1+X2 =11
X1
6
X2 11 B 10
F
5
DC
EG
5A 7 O
2X1+X2 =11
d1-
X1 -X2=0
可行域⊿OAB
目标1: ⊿OBC
目标2:ED线段
目标3:GD线段
d2+
10 d3+
X1 X1+2X2 = 10
8X1+10X2=56 7
第二节 目标规划问题的图解法
例1 minZ= d-
100X1+80X2 -d++d- =10000
4X1+2X2 400 2X1+4X2 500 X1 , X2 , d- , d+ 0
d+.d- =0
1
X2 125 C 100
50
4X1+2X2 = 400
E 2X1+4X2 = 500
绝对约束可 行域OBEC
解:
① 可行域⊿OAB ② 目标1: ⊿OBC
目标2:ED线段 目标3:GD线段 ③ 用 8X1+10X2=56
X1+ 2X2=10
求G=(2,4)利润=56
8
X1 -X2=0 X1+2X2=10
D=(10/3,10/3)利润=60
解为X= X1 =
2 α+
10/3
(1-α) (0 α 1)
13
§6.3 目标规划问题的单纯形法
一、目标规划问题单纯形法的特点
目标规划的数学模型,特别是约束的结构与线性 规划模型没有本质的区别,只是它的目标不止是一 个,虽然其利用优先因子和权系数把目标写成一个 函数的形式,但在计算中无法按单目标处理,所以 可用单纯形法进行适当改进后求解。在组织、构造 算法时,我们要考虑目标规划的数学模型一些特点, 作以下规定:
20
例
Min { P1d1-, P2d2+, P3d3-} 5x1+10x2 ≤+6x03=60
x1- 2x2 +d1- -d1+=0 4x1+4x2 +d2- -d2+ =36 6x1+8x2 +d3- -d3+=48 x1 , x2 , di- ,di+ ≥0
21
0
CB XB b x1
0 x3 60 5
如果各优先级的检验数均为非负; 某一优先级有负检验数,但是该负检验数对应的
上一级优先级的检验数为正检验数。
19
三、应用实例 Min { P1(d1-+d2+), P2d3-}
x1 +d1- -d1+=10 2x1+ x2 +d2- -d2+ =40 3x1+2x2 +d3- -d3+=100 x1 , x2 , di- ,di+ ≥0
p1 d1- 0 1
0 d2- 36 4
p3 d3- 48 6
σ
p1 -1
p2 0
p3 -6
00 x2 x3 10 1 -2 0 40 80 20 00 -8 0
17
(2)确定换入变量:按优先级顺序,检查检验 数是否存在负值,选取优先级最高的最小负值 对应的变量入基;
(3)按单纯形法中的最小比值规则确定换出ቤተ መጻሕፍቲ ባይዱ 量,当存在两个和两个以上相同的最小比值时, 选取具有较高优先级别的变量为换出变量;
18
(4)按单纯形法进行基变换运算,建立新的 单纯形表;
(5)迭代计算停止判别准则:
15
(3)根据(LGP)模型特征,当不含绝对约束
时,di- (i=1,2,… ,K)构成了一组基本可行解。
在寻找单纯形法初始可行点时,这个特点是很 有用。
16
二、目标规划问题单纯形法的计算步骤 (1)建立初始单纯形表.在表中将检验数行
按优先因子个数分别列成K行。初始的检验数 需根据初始可行解计算出来,方法同基本单纯 形法。当不含绝对约束时,di- (i=1,2,… ,K) 构成了一组基本可行解,即可得到初始单纯形 表。