目标规划单纯形法

合集下载

目标规划

目标规划

5、满意解(具有层次意义的解)
对于这种解来说,前面的目标可以保证实现或部分 实现,而后面的目标就不一定能保证实现或部分实现, 有些可能就不能实现。
例题4—2: 解:确定优先因子后得数学模型: min Z =P1 d1+ +P2 (d2- +d2+ )+P3 d32x1 +x2 ≤11 (在绝对约束基础上进行目标规划) x1 - x2 + d1- - d1+ = 0
(要求: d1+ 尽可能小,最好是0才能满足 ≤ )
x1 +2x2 + d2- - d2+ =10
(要求:d2- 和 d2+ 都尽可能小,最好等于0)
8x1 +10x2 + d3- - d3+ =56
(要求:d3- 尽可能小,最好是0才能满足≥)
x1 , x2 , di- ,di+ ≥0
规划模型:
目 标 规 划
(Goal programming)
目标规划概述
目标规划的数学模型 目标规划的图解法
目标规划的单纯形法
一、目标规划概述
目标规划是在线性规划的基础上,为适应经济管理 中多目标决策的需要而逐步发展起来的一个分支。
(一)、目标规划与线性规划的比较
1、线性规划只讨论一个线性目标函数在一组线性约 束条件下的极值问题;而目标规划是多个目标决策,可 求得更切合实际的解。 2、线性规划求最优解;目标规划是找到一个满意解。
目标函数
变量 约束条件

目标规划GP min , 偏差变量 系数≥0 xi xs xa d 目标约束 系统约束 最满意
三、目标规划的图解法
图解法同样适用两个变量的目标规划问题,但其操 作简单,原理一目了然。同时,也有助于理解一般目 标规划的求解原理和过程。 图解法解题步骤如下: 1、确定各约束条件的可行域,即将所有约束条件 (包括目标约束和绝对约束,暂不考虑正负偏差变量) 在坐标平面上表示出来; 2、在目标约束所代表的边界线上,用箭头标出正、 负偏差变量值增大的方向;

用单纯形法求解目标规划

用单纯形法求解目标规划
P1 0 0 0 0 1 0 0 0 0 0 σkj P2 -10 -1 -2 0 0 0 2 0 0 0
P3 -56 -8 -10 0 0 0 0 0 1 0
Cj
0
0
0 P1 P2 P2 P3 0 0
CB XB b x1
x2
d
1
d
1
d
2
d
2
d
3
d
3
x3
0
d
1
5 3/2 0
1 -1 1/2 -1/2 0
0 0 0 -2/5 2/5 1
0 1 0 -3/10 3/10 0
00 01 0 0
00 00 0 0
00 00 0 0
P2 P3 0
d
2
d
3
d
3
000
000
-1 0 0
0 1 -1
0 0 0单
1 0 0纯 0 0 1形 0 -1 1 表 0 1/10 -1/101
-1 -3/5 3/5
0 1/20 -1/20
cj
CB XB b
0 x3 60
0 x1 0
0
d
2
36
P3
d
3
48
P1 j c j z j P2
P3
0 x3 12
0 x1 24/5
0
d
2
36/5
0 x2
j cj zj
12/5
P1 P2 P
单纯形表1
00 x1 x2
0 P1 x3 d1
00
d1
d
2Байду номын сангаас
0 20 1 -5 5 0
1 -2 0 1 -1 0

目标规划的单纯形法

目标规划的单纯形法

Ch4 Goal Programming
2020年5月14日星期四 Page 2 of 6
【解】用单纯形法求解目标规划问题的具体步骤如下:
第1步:列出初始单纯形表。由于目标规划中的目标函数一定是求极小, 为方便起见不转换成求极大。又由于各目标约束中的负偏差变量其系数均为 单位向量,全部负偏差变量的系数列向量构成一个基。因此本例中以d1-、d2 -、d3-作为基变量,列出初始单纯形表见表4-1。
1
§4.3 单纯形法 Simplex Method
Ch4 Goal Programming
2020年5月14日星期四 Page 5 of 6
这里需要说明两点: 1.对目标函数的优化是先按优先顺序逐步进行的。当P1行的
所有检验数均为非负时,说明第一级已得到优化,可转入下一 级,再考察P2行的检验数是否存在负值,依此类推。
因为目标函数中各偏差变量分别乘以不同的优先因子,因此表中检验
数(cj-zj)按优先因子P1、P2分成两行,分别计算。
第2步:确定换入变量。在表4-1中按优先级顺序依次检查P1,P2,P 3,…,Pk行的(cj-zj)值是否有负的。因表中P1行存在负检验数,说明目 标函数中第一优先级可进一步优化,选取P 行中最小检验数,其对应变量
第五章 整数规划 Exit
b
0
x1 1 ½
1/2 -1/2
20
0
d1+
[1/2] -1 1 1/2 -1/2
10
P2
d3-
1/2
-3/2 3/2 1 -1 40
Cj-Zj
P1
1
1
P2
-½
-3/2
1
0
x1 1
1 -1

解目标规划的单纯形法

解目标规划的单纯形法
⑤(在4表)4-1按上计算单最小纯比值形法进行基变换运算,建立新的计算表,返 回(2).
(5) 当k=K时,计算结束. 表中的解即为满意解.否则置 k=k+1,返回到(2).
【例4--4】 用单纯形法求解目标规划问题
min
z
P1
d
1
P2
(
d
_ 2
d
2
)
P3
d
3
2 x1 x2 xs 11
cj-zj
P2
P3
3/2 3/2 1/2 1
3
-3
1 1
-1/2 1/2 -1 1/2 -1/2
1/2 -1/2 -5 5 1 1 11 5 -5
4 10/3 10 -1 6/3
1
依此类推,直至得到最终表为止。见表4-3.
表4-3
cj CB XB b
P1 P2 P3 P4 x1 x2 xs d1- d1+ d2- d2+ d3- d3+ θ
P2 d2-1 6 1/3 1/3
1
P3 d2+ 1 -6 -1/3 -1/3
1
表4-4
P4 d3- d3+ -1 1
1
θ
表4-3所示的解x1*=2,x2*=4为例1的满意解. 此解相当于图4-1的G点。由表4-4得到解x1*=10/3, x2*=10/3,此解相当于图4-1的D点,G、D两点的凸线 性组合都是例1的满意解.
解目标规划问题的单纯形法的计算步骤:
(1) 建立初始单纯形表,在表中将检验数行按优先因子 个数分别列成K行,置k=1.
此表(解中2相 的当解) 于即检图为满4-查1意的解G.点该。 行中是否存在负数,且对应的前k-1行的系 数是零。若有负数取其中最小者对应的变量为换入 ③ 因k(=1)<K(=3),置k=k+1=2,返回到(2)。

单纯形法

单纯形法

四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200

“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则

目标规划模型的求解(NO17)

目标规划模型的求解(NO17)

工序
产品 A 工时定额
B
生产能力
加工
10
9
210
装配
5
6
120
毛利(元/件)
400
500
23
工厂领导提出下列目标:
(1)每个作业班的毛利不少于9800元;
(2)充分利用两个工序的工时,且已知加工工时费是装配 工时费的二倍;
(3) 尽量减少加班。
问:该工厂应如何生产,才能使这些目标依序实现?试建
立其数学模型。
8
初始单纯形表
min
Z
P1d1
P2
d
2
P3
(d
3
d
3
)
s.t.
3x1 x2
d1 d1 60
x1
x2
2x3
d
2
d
2
10
x1
x2
x3
d
3
d
3
20
xi
0;
d
i
0;
d
i
0(i
1,2,3)
min z1 d1 60 3x1 x2 d1 min z2 d2 min z3 d3 d3 20 x1 x2 x3 2d3
建立模型的电 子表格模型
4x1+3x2+ d3--d3+ =30
20
优化 目标1
P1: minZ1=d1-
优化 目标2
minZ2= d2++d2-
21
优化 目标3
P3: minZ3=d3-
此表也即为最优表,最优解为 x1 4.8, x2 4.8, d2 2, d3 3.6 :
目标的达到情况:
Z

第4章 单纯形法

第4章 单纯形法
为0,求出了一组基本可行解。试想如果x1或者x2
不为0,是否会带来目标函数值变大? 需要最优性
检验,即如果x1或x2不论取其他任何非负值都不会
带来目标函数值增大,那该基本可行解就是最优解。
管理运筹学
18
§1 单纯形法的基本思路和原理
所谓最优性检验就是判断已求得的基本可行解是否是最优解。 (1) 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求 只用非基变量来表示目标函数,或者说目标函数中基变量的系数都为零了。 此时目标函数中所有变量的系数即为各变量的检验数,把变量xi的检验数 记为σ i。显然所有基变量的检验数必为零。在本例题中目标 函数为3x1+5x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知 σ 1=3,σ 2=5,σ 3=0,σ 4=0,σ 5=0。 检验数:用非基变量来代换基变量,使得目标函数只用非基变量来表示。
• Z=3x1+5x2 • 非基变量的检验数都大于0,说明增加x1或x2都可以使目标
函数值变大。故非最优解。 • 3、基变换。 通过检验,我们知道这个初始基本可行解不是最优解。下面
介绍如何进行基变换找到一个新的可行基,具体的做法是从
可行基中换一个列向量,得到一个新的可行基,使得求解得
到的新的基本可行解,其目标函数值更优。为了换基就要确
§1 单纯形法的基本思路和原理
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个
基,令这个基的非基变量(n-m个)为零,再求解这个m元线性方程组就可得 到唯一的解了,这个解我们称之为线性规划的基本解(基解)。
在此例中我们不妨找到了

线性规划-单纯形法

线性规划-单纯形法
函数值增大,故要选检验数大于0的非基变量换到基变量中(称 之为入基变量)。若有两个以上的 σj>0,一般选其中的 σj最大 者 本例中σ2=100
选x2为入基变量。
2. 出基变量的确定
要在原来的3个基变量s1,s2,s3中确定一个出基变量 如果把s3作为出基变量,则新的基变量为x2,s1,s2,
x2 +s1=300,
bj 350 125 350 125
s3
zj
0
2
-2M
1
-M
0
M
0
M
1
0
0
600
300
0 -M -M
σj=cj-zj
-2+2M -3+M -3+M -M 0
0
0
-475M
cB a1 1 x1 -M -2
x1
x2
s1
s2
s3
a1
a2
-2
0 1
-3
1 0
0
-1 0
0
1 -1
0
0 0
-M -M
1 0 -1 1
x1 10
3 5 5 10
x2 9
2 5 6 9
x3 4
4 1 3 4
x4 6
2 3 1 6
x5 0
1 0 0 0
x6 0
0 1 0 0
x7 0
0 0 1 0
bj
bj/aj1
70 70/3 60 60/5 25 25/5
0
σj=cj-zj
cB x5 x6 x1 0 0 10
x1 10
0 0 1 0
z1 z0 j x j
jJ
x j≥ 0 j ≤0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
2.2.5 目标规划的单纯形法
• 3、确定进基变量 • 在Pk行,从那些上面没有正检验数的负检
验数中,选绝对值最大者,对应的变量xs就 是进基变量。若Pk行中有几个相同的绝对 值最大者,则依次比较它们各列下部的检 验数,取其绝对值最大的负检验数的所在 列的xs为进基变量。假如仍无法确定,则选 最左边的变量(变量下标小者)为进基变 量,转第4步。否则,转第6步。
• 例,某电视机厂装配黑白和彩色电视,每装配一 台占用装配线1小时,装配线每周计划开动40小时。 预计市场每周彩色电视机的销售量为24台,每台 获利80元,黑白电视机销售量30台,每台可获利 40元,该厂目标为:
• 第一级:充分利用装配线每周开动40小时 • 第二级:允许装配加班,但每周尽量不超过10小
时 • 第三级:允许装配电视机的数量尽量满足市需要,
因彩色利润高,故其权系数为2
.
2.2.4 目标规划的基本概念
① 线性规划目标 ② 可行解 ③ 可接受解与不可接受解 ④ 达成函数 ⑤ 最优解 ⑥ 多重最优解 ⑦ 无界解
.
2.2.5 目标规划的单纯形法
一般形式:
cj
c1
c2
CB
XB
b
x1
x2
cj1
5
P2
d
3
P2
d
4
P3
d
2
3
0
x1
2 x1
12
x2 x2
d
1
பைடு நூலகம்
d
2
d
1
d
2
2500 140
s .t .
x1
d
3
d
3
60
x2
d
4
d
4
100
x1 2
0
,
d
l
,
d
l
0
(l 1.2.3.4)
.
2.2.5 目标规划的单纯形法
cj
0 0 P1 0 0 P3
x x CB XB b
表,获得一组新解,返回到第2步。 • 6、对求得的解进行分析 • 当k=K时,计算结束,停止运算;表中的解
即为最终解。若不满意,需修改模型,即 调整目标优先等级和权系数,或者改变目 标值,重新进行第1步。否则置k=k+1,返 回第2步。
.
例 用单纯形法求解下列目标规划问题
m in Z
P1
d
1
2
.
0 1 00 1
1 0 00 0
0 1 00 0
P3
0 2.5P2 0
P2
d
2
d
3
d
3
0 -30 30
d
4
d
4
00
-1 -2 2 0 0
0 1 -1 0 0
0
0
0
1 -1
P1
0 -12 0 1 0
0 30 -30 0
0
σj
P2
0
0
00 0
0
0 2.5 0
1
P3
0
0 00 0
1
0
0
0
0
θ= min{700/30,20/2,-, -}=10 ,故 d为2 换出变量。
2.2.3 目标规划的图解法
• 例某企业生产两种产品,在单件利润等有关数据 已知条件下,要求制定一个获利最大的生产计划:
• 目标,第一级:允许加班,加班时间每周不超过 10小时;第二级:产品产量满足市场需求
产品
销量(kg/ 件)
时间(h/ 件)
利润(元/ 件)


24
30
1
1
8
10
.
限量 40
2.2.3 目标规划的图解法
P3
0 1/5 -1/15 1/15 1 0
xj1
bo1
e11
e12
cj2
xj2
bo2
e21
e22
cn+2m xn+2m e1n+2m e2n+2m
cjm
xjm
bom
em1
em2
P1
σ11
σ12
σj
P2
σ21
σ22
emn+2m σ1n+2m σ2n+2m
PK
σ.m1
σm2
σmn+2m
2.2.5 目标规划的单纯形法
• 单纯形法的计算步骤 • 1、建立初始单纯形表 • 一般假定初始解在原点,即以约束条件中
0
0
d
4
100
0
1
0
0
0
0
0
0
00 00 00 1 -1
P1
0
3
0
1 15 -15 0
0
0
0
σj
P2
0 -5/4 0
0 -5/4 5/4 5/2 0
0
1
P3 0
0
0
0
0
1
00
0
0
θ= min{400/15,-,-, -}=10 ,故 d为1换出变量。
.
2.2.5 目标规划的单纯形法
cj
0
CB XB
.
2.2.5 目标规划的单纯形法
cj
0
0 P1 0
0
P3
0 2.5P2 0 P2
CB XB
b
x1
x2
d
1
d
1
d
2
d
2
d
3
d
3
d
4
d
4
P1
d
1
400
0
-3
1
-1 -15 15
0
0
2.5P2
d
3
10
0 1/2 0
0 1/2 -1/2 -1
1
0 x1 70
1 1/2 0
0 1/2 -1/2 0
P3
d
2
2.5P2
d
3
b x1
80/3 0
70/3 0
0
x1 250/3
1
0
d
4
100
0
0
P1
0
0 P3
x2
d
1
d
1
d
2
d
2
-1/5 1/15 -1/15 -1 1
2/5 1/30 -1/30 0 0
2/5 1/30 -1/30 0 0
1
0
000
P1
0
0
1
000
σj
P2
0
-1 -1/12 1/12 0 0
d
3
d
3
d
4
d
4
0
0
00
0
0
00
1 -1 0 0
0
0
1 -1
0 0 00
0 2.5 0 1
0 0 00
为d 3换出变量。
2.2.5 目标规划的单纯形法
cj
CB XB b
P1
d
1
700
0
d
2
20
0 x1 60
0
d
4
100
0 0 P1 0 0
x x 1
2
d
1
d
1
d
2
0 12 1 -1 0
的所有负偏差变量或松弛变量为初始基变 量,按目标优先等级从左至右分别计算出 各列的检验数,填入表下半部的K行中,置 k=1 。
.
2.2.5 目标规划的单纯形法
• 2、检验是否为满意解 • 若Pk这一行某些负检验数的同列上面(较
高优先等级)没有正检验数,说明未得到 满意解,应继续改进,转到第3步;若Pk这 一行全部负检验数的同列上面(较高优先 等级)都有正检验数,说明目标虽没达到, 但已不能改进,故得满意解,转到第6步。
1
2
d
1
d
1
d
2
d
2
P1
d
1
2500
30
12
1 -1 0
0
0
d
2
140
2
1
0 0 1 -1
0
d
3
60
1
0
00 0
0
0
d
4
100
0
1
00 0
0
P1 -30 -12 0 1 0
0
σj
P2
0
0
00 0
0
P3
0
0
00 0
1
θ= min{2500/30,140/2,60/1. }=60 ,故
0 2.5P2 0 P2
.
2.2.5 目标规划的单纯形法
• 4、确定出基变量 • 其方法同线性规划,即依据最小比值法则
minbeissi/eis 0beorsr
• 故确定xr为出基变量,ers为主元素。若有几个 相同的行可供选择时,选最上面那一行所对应 得变量为xr 。
.
2.2.5 目标规划的单纯形法
• 5、旋转变换(变量迭代) • 以ers为主元素进行变换,得到新的单纯形
相关文档
最新文档