第1课时 去括号解一元一次方程
解一元一次方程(二)——去括号与去分母 优秀教案设计

【第一课时】 【教学目标】
1.知识与技能: 进一步掌握列一元一次方程解应用题的方法步骤。 2.过程与方法: 通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件 配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。 3.情感与价值观: 培养学生自主探究和合作交流意识和能力,体会数学的应用价值。
课堂小结: 通过以上问题的讨论,我们进 一步体会到列方程解决实际问题的 关键是正确地建立方程中的等量关 系,另外在求出 X 值后,一定要检 验它是否合理,虽然不必写出检验 过程,但这一步绝不是可有可无 的。
4/4
教师分析:(1)顺流行驶的速 度、逆流行驶的速度、水流速度, 船 静水中的速度之间的关系如何?
生:顺流行驶速度=船在静水的速 度+水流速度。 逆流行驶速度=船在静水中的速度 -水流速度
教师引导:设船在静水中的平 均速度为 X 千米/小时。
教师提问:问题中的相等关系 是什么?
生:一般情况下,船返回是按原 路线行驶的,因此,可以认为这船的 往返路程相等。由此,列方程: 2(X+3)=2.5(X-3)
【教学设想】
本课时主要在前一课时的基础上进一步学掌握去括号,并通过分析行程问题,零件配套 问题的等量关系,运用方程解决实际问题。
【教材分析】
本课时主要复习去括号的法则,并在这基础上列方程解决实际问题。
【教学重点】
分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程, 并会解方程。
【教学难点】
找出能够表示问题会部含义的相等关系,列出方程。
【教学方法】
引导式。
【教学过程】
一元一次方程去括号 去分母 移项

一、概述在数学学习中,一元一次方程是基础而重要的内容。
解一元一次方程时,常常需要进行去括号、去分母和移项等操作。
这些操作对于我们解题有着重要的作用,我们有必要深入理解和掌握这些操作的方法和技巧。
本文将就一元一次方程去括号、去分母和移项进行详细讲解,以帮助读者更好地掌握解题技巧。
二、一元一次方程去括号1、定律当一元一次方程中有括号时,应根据分配律原则展开括号,并进行合并同类项的操作。
对于方程3(x+2)=5x-1,我们首先要将括号内的式子展开,得到3x+6=5x-1。
2、实例分析以方程3(x+2)=5x-1为例,展开括号后得到3x+6=5x-1。
我们可以将方程中的x移至一侧,将常数项移到另一侧,最终可得到x=7。
这就是利用去括号的方法解一元一次方程的过程。
三、一元一次方程去分母1、原理当一元一次方程中含有分数形式时,应首先进行去分母的操作。
去分母的方法是将方程两侧乘以分母的最小公倍数,使分母消失,从而化简方程。
对于方程2x-3/4=5,我们可以将两端同乘4,即得到8x-3=20。
2、举例说明以方程2x-3/4=5为例,我们可以通过将两端同乘4的方式,将方程化简为8x-3=20。
接下来,我们只需按照移项和合并同类项的原则,即可解得x=23/8。
四、一元一次方程移项1、步骤在解一元一次方程时,移项是一个基本的操作。
具体来说,就是将方程中的未知数移到一个侧,将常数项移到另一个侧。
对于方程2x+5=3x-7,我们可以将3x移到等号左侧,将5移到右侧,得到2x-3x=-7-5,即-x=-12。
2、案例演练以方程2x+5=3x-7为例,我们可以通过移项的方法得到-x=-12。
解得x=12。
五、总结在解一元一次方程时,去括号、去分母和移项是三个基本而重要的操作。
通过本文的讲解,我们可以发现,针对这些操作,我们需要掌握一些基本的数学技巧和规律,例如利用分配律等原则,以及合并同类项的方法。
通过不断练习和实践,我们可以更加熟练地运用这些技巧,解出更多更复杂的一元一次方程。
部审初中数学七年级上《——去括号解一元一次方程》庚晓丹PPT课件 一等奖新名师优质公开课获奖比赛新课

活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
路程、速度、时间. 路程=速度×时间.
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考:
2.问题中涉及到顺、逆流因素,这类问题中有哪 些基本相等关系?
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
活动2:巩固方法,解决问题
例2 一艘船从甲码头到乙码头顺流行驶,用了2 h; 从乙码头返回甲码头逆流行驶,用了2.5 h.已知水流 的速度是3 km/h,求船在静水中的速度.
(1)2x-( x+10)=5x+2( x-1)
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得
6x=8.
系数化为1,得 x=- 4 . 3
(三)熟悉解法,思考辨析
例题 解下列方程:
(2) 3x-7( x-1)=3-2( x+3)
解:去括号,得
义务教育教科书 数学 七年级 上册
3.3 解一元一次方程(二) ——去括号与去分母(第1课时)
(一)提出问题,建立模型
问题1:某工厂加强节能措施,去年下半年与上半年
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上半年每月平均
用电是多少?
公开课《解一元一次方程——去括号》说课稿[修改版]
![公开课《解一元一次方程——去括号》说课稿[修改版]](https://img.taocdn.com/s3/m/79f177de7375a417876f8fbe.png)
第一篇:公开课《解一元一次方程——去括号》说课稿解一元一次方程——去括号的说课稿我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。
本次讲课从四大方面讲解:一、教材分析地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。
前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。
通过这节我们对解一元一次方程有了更新的步骤。
它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。
所以说这节课内容非常重要。
二、教学目标根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:①知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。
②过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法③情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。
弄清题意,寻找等量关系是这节课的难点四、学情分析(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。
(2)学生学习本节课的知识障碍。
学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
6.解一元一次方程(第1课时去括号解一元一次方程)教学课件--华师大版初中数学七年级(下)

(7)
1
x6
;
知识讲授
2.去括号解一元一次方程
去括号法则:
去掉“+(
)”,括号内各项的符号不变.
去掉“–(
)”,括号内各项的符号改变.
用三个字母a、b、c表示去括号前后的变化规律:
a+(b+c) = a+b+c
a–(b+c) = a–b–c
知识讲授
例1 解方程:3(x-2)+1=x-(2x-1)
知识讲授
通过以上解方程的过程,你能总结出解含有括
号的一元一次方程的一般步骤吗?
去括号
移项
合并同类项
系数化为1
知识讲授
针对训练
解方程:(1)( − ) − ( + ) = ( − ) + .
解:去括号,得
− − − = - + .
移项,得
− − = - + + + .
-5+4-(-3+ ).
解: 原式= -;
原式= - + .
去括号法则
去掉“+ ( )”,括号
内各项的符号不变. a
+ (b + c) =a + b + c.
去掉“– (
)”,括
号内各项的符号改变.
a -(b + c) =a -b - c.
2.一元一次方程的解法我们学了哪几步?
移项
随堂训练
3.下列变形对吗?若不对,请说明理由,并改正.
解方程 − . + =
;
去括号,得 − . + = . ;
2022七年级数学上册 第三章 一元一次方程3.3 解一元一次方程(二)去括号与去分母第1课时 利用

乘车方式 价格/(元·次-1)
公共汽车 滴滴打车
2
10
小丽12月份早晨上学乘车共计22次,乘车费共计100元,求小丽12月份早
上上学乘坐公共汽车和滴滴打车的次数各是多少.
解:设乘坐公共汽车x次,那么滴滴打车(22-x)次. 由题意可列方程2x+10(22-x)=100, 解得x=15, 所以22-15=7(次). 答:乘坐公共汽车15次,滴滴打车7次.
9、 人的价值,在招收诱惑的一瞬间被决定 。22.2.2822.2.28Monday, February 28, 2022 10、低头要有勇气,抬头要有低气。09:11:5409:11:5409:112/28/2022 9:11:54 AM 11、人总是珍惜为得到。22.2.2809:11: 5409:1 1Feb-2 228-Fe b-22 12、人乱于心,不宽余请。09:11:5409:11:5409:11M onday, February 28, 2022 13、生气是拿别人做错的事来惩罚自 己。22.2.2822.2.2809:11:5409:11:54Februar y 28, 2022 14、抱最大的希望,作最大的努力。2022年2月28日 星期一 上午9时11分54秒09:11:5422.2.28 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年2月 上午9时11分22.2.2809:11Februar y 28, 2022 16、业余生活要有意义,不要越轨。2022年2月28日 星期一 9时11分54秒09:11:5428 February 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时11分54秒 上午9时11分09:11:5422.2.28
解:依题意,得2(4-3x)=20+3(5+4x),
七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案

3。
3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。
课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。
②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。
(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。
难点:确定实际问题中的相等关系,设未知数列出一元一次方程。
二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。
(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。
体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。
a.2x—(x+10)=5x+2(x—1)b。
3x-7(x-1)=3-2(x+3)解:a.x=—43b。
x=52.自学:学生可结合自学指导进行自学。
3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。
一元一次方程的解法(去括号)

ax = -b x = -b / a
如何检查答案
为了检查方程的解是否正确,将求得解代入原方程,并验证等式是否成立。 整数解与最简分数解的区别: 整数解是指方程的解为整数,而最简分数解是指方程的解为最简分数。
如何变形方程
为了解决特定问题,我们可能需要变形方程来使其更适合求解或者更易于理解。 如何同时去掉分母: 为了同时去掉方程中的分母,可以将方程两边乘以分母的最小公倍数。 如何解决含有绝对值符号的方程: 当方程含有绝对值符号时,需要考虑绝对值的取正负两种情况,分别列出两个方程并求解。
如何根据题目判断方程的变形 方式
在变形方程时,需要根据题目的具体要求和条件来确定选择的变形方式。 常用的变形方式包括去括号、消项、合并同类项等。
如应用方程组解决实际问题
当问题涉及多个未知数和多个方程时,我们可以使用方程组的方法来求解问题。 应用实例1:两个人赛跑问题 应用实例2:两条船追及问题 应用实例3:游泳池注水和排水问题 应用实例4:订货和运输问题
数字的代数意义
在代数中,数字可以表示一元一次方程中的系数、常数项以及解的值。 在线求解方程工具的使用 为了方便求解一元一次方程,我们可以使用在线求解方程工具。
用图像解释一元一次方程的含义
通过图像可以更直观地理解一元一次方程的含义。图像表示了方程的解的几何意义。 如何应用一元一次方程求解实际问题: 通过将实际问题转化为一元一次方程,我们可以使用数学方法求解并得到问题的答案。
如何将题目转换成一元一次方程的形式
为了将题目转换成一元一次方程的形式,我们需要先理解问题中的关键信息,并确定未知数。 根据问题的描述和条件,我们可以将其转换成一个等式,然后进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 解一元一次方程(二)
——去括号与去分母
第1课时去括号解一元一次方程
教学目标
知识与技能
掌握解含有括号的一元一次方程的方法,能用多种方法灵活地解一元一次方程.
过程与方法
经历对一元一次方程解法的探究过程,深入理解等式的性质在解方程中的作用.学会多角度寻求解题的方法.
情感与价值观
通过探索解含有括号的一元一次方程,体验整体探索思想的意义,培养学生善于观察总结的良好的思维习惯.
教学重难点
重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.
难点:分析数量关系、列方程.
教学过程:
(一)创设情景,复习提问
1 什么叫做移项?移项要注意什么?
2 去括号法则是什么?
3 计算
(1) 3(x+5)-4(1-2x)
(2) -(4x-3)+2(3x-2) (3) 6x-5(-x+3)
(4) -2(3-x)+3(1+3x)
(二)提出问题,建立模型
问题1:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15 万kW·h.这个工厂去年上半年每月平均用电是多少?
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量问题,建立模型
思考1.题目中涉及了哪些量?
2.题目中的相等关系是什么?
月平均用电量×n(月数)=n个月用电量
上半年的用电量+下半年的用电量=全年的用电量
分析:
设上半年每月平均用电量列出方程x kW·h,则下半年每月平均用电为(x -2000) kW·h.上半年共用电为:6x kW·h;下半年共用电为:6(x-2000) kW·h.根据题意列出方程
6x+6(x -2 000)=150 000
(三)探究解法,归纳总结
6x+6(x-2 000)=150 000
6x+6x-12 000=150 000
6x+6x=150 000+12 000
12x=162 000
x=13 500
(四)探究解法,归纳总结
问题1:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时)全年用电15 万kW·h.这个工厂去年上半年每月平均用电是多少?
思考:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?
(五)探究解法,归纳总结
问题2:通过以上解方程的过程,你能总结出含有括号的一元一次方程解法的一般步骤吗?
去括号移项合并同类项系数化为1
(六)熟悉解法,思考辨析
例题解下列例题方程:
期中数学考试后,小明、小方和小华三名同学对答案,其中有一道题三人答案各不相同,每个人都认为自己做得对,你能帮他们看看到底谁做得对吗?做错的同学又是错在哪儿呢?
题目:一个两位数,个位上的数是2,十位上的数是x,把2和x对调,新两位数的2倍还比原两位数小18,你能想出x是几吗?
小方:解:(10x+2)-2(x+20)=18
去括号,得10x+2-2x-20=18
移项,得 10x-2x=18+40+2
合并,得 8x=60
系数化为1,得 x=7.5
题目:一个两位数个位上的数是2,十位上的数是x,把2和x对调,新两位数的2倍还比原两位数小18,你能想出x是几吗?
小华:解 (10x+2)-2(x+20)=18
去括号,得 10x+2-2x-40=18
移项,得 10x-2x=18+40+2
合并,得 8x=60
系数化为1,得 x=7.5
题目:一个两位数个位上的数是2,十位上的数是x,把2和x对调,新
两位数的2倍还比原两位数小18,你能想出x是几吗?
小明:解 2(20+x)-(10x+2)=18
去括号,得 40+2x-10x-2=18
移项,得 2x-10x=18-40+2
合并,得 -8x=-20
系数化为1,得 x=2.5
(七)基础训练,巩固提高
解下列方程
(1)2(x+3)=5x
(2)4x+3(2x-3)=12-(x+4)
(3)6(1/2x-4)+2x=7-(1/3x-1)
(4)2-3(x+1)=1-2(1+0.5x)
(八)归纳小结
1.本节课你有哪些收获?
2.你觉得自己掌握这些知识困难吗?
3.在解决问题时应该注意些什么呢?
(九)课外作业:
教科书第99页习题3.3第1,2题.。