功、功率与动能定理含解析2018年高考物理易错点
高一物理必修二-功、功率-学生笔记

功和功率一.功1.功的定义:物体受力的作用,并沿力的方向发生一段位移,就说力对物体做了功.力对物体做功是和某个运动过程有关的.功是一个过程量,功所描述的是力对空间的积累效应.2.功的两个要素:力F 和沿力的方向发生位移l .两个要素对于功而言缺一不可,因为有力不一定有位移;有位移也不一定有力.特别说明:力是在位移方向上的力;位移是在力的方向上的位移.如物体在光滑水平面上匀速运动,重力和弹力的方向与位移的方向垂直,这两个力并不做功.3.功的计算式:cos W Fl α=.在计算功时应该注意以下问题:(1)上式只适用于恒力做功.若是变力,中学阶段一般不用上式求功.(2)式中的l 是力的作用点的位移,也是物体对地的位移.α是F 方向与位移l 方向的夹角.(3)力对物体做的功只与F 、l 、α三者有关,与物体的运动状态等因素无关.(4)功的单位是焦耳,符号是J .4.功是标量,只有大小没有方向,因此合外力的功等于各分力做功的代数和(也就是带上正负号相加).5.物理学中的“做功”与日常生活中的“工作”含义不同.例如:一搬运工在搬运货物时,若扛着货物站着不动不算做功;扛着货物水平前进不算做功;而在他拿起货物向高处走时就做功了.所以力对物体做功必须具备两个要素:力和在力的方向上有位移.6.功的正负(1)正负功:力对物体做正功还是负功,由F 和l 方向间的夹角大小来决定.根据cos W Fl α=知:当0°≤α<90°时,cosα>0,则W >0,此时力F 对物体做正功当α=90°时,cosα=0,则W =0,即力对物体不做功当90°<α≤180°时,cosα<0,则W <0,此时力F 对物体做负功,也叫物体克服这个力做功(2)功的正负的物理意义:因为功是能量转化的量度,是描述力在空间位移上累积作用的物理量。
而能量是标量,故相应地,功也是标量.功的正负有如下含义:意义动力学角度能量角度正功力对物体做正功,这个力对物体来说是动力力对物体做功,向物体提供能量,即受力物体获得了能量负功力对物体做负功,这个力是阻力,对物体的运动起阻碍作用物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量说明不能把负功的负号理解为力与位移方向相反,更不能错误地认为功是矢量,负功的方向与位移方向相反.一个力对物体做了负功,往往说成物体克服这个力做了功(取绝对值),即力F 做负功-Fs 等效于物体克服力F 做功Fs7.功的计算方法:(1)一个恒力F 对物体做功W =F·lcos α有两种思考角度:一种是W 等于力F 乘以物体在力F 方向上的分位移lcosα,即将物体的位移分解为沿F 方向上和垂直于F 方向上的两个分位移l ∥和l ⊥,则F 做的功cos W F l Fl α=⨯=∥;一种是W 等于力F 在位移l 方向上的分力Fcosα乘以物体的位移l ,即将力F 分解为沿l 方向上和垂直于l 方向上的两个分力∥F 和⊥F ,则F 做的功cos W F l F l α=⨯=⨯∥.功的正、负可直接由力F 与位移l 的夹角α的大小或力F 与物体速度v 方向的夹角α的大小判断.(2)总功的计算虽然力、位移都是矢量,但功是标量,物体受到多个外力作用时,计算合外力的功,要考虑各个外力共同做功产生的效果,一般有如下两种方法:①先由力的合成与分解法或根据牛顿第二定律求出合力F 合,然后由cos W F l α=合计算.②由cos W Fl α=计算各个力对物体做的功W 1、W 2、…、n W ,然后将各个外力所做的功求代数和,即12n W W W W =+++合……(带正负号进去).8.相互作用力所做的功:(1)作用力与反作用力特点:大小相等、方向相反,但作用在不同物体上.(2)作用力、反作用力作用下物体的运动特点:可能向相反方向运动,也可能向同一方向运动,也可能一个运动,而另一个静止,还可能两物体都静止.(3)由cos W Fl α=不难判断,作用力做的功与反作用力做的功没有必然的关系.一对作用力和反作用力可以均不做功;可以一个力做功,另一个力不做功;也可以一个力做正功,另一个力做负功;也可以两个力均做正功或均做负功.9.变力做功的计算:恒力做的功可直接用功的公式cos W Fl α=求出,变力做功一般不能直接套用该公式,但对于一些特殊情形应掌握下列方法:(1)将变力做功转化为恒力做功.①分段计算功,然后用求和的方法求变力所做的功.②用转换研究对象的方法.利用cos W Fl α=进行计算,如图所示,人站在地上以恒力F 拉绳,使小车向左运动,求拉力对小车所做的功.拉力对小车来说是个变力(大小不变,方向改变),但细细研究,发现人拉绳的力却是恒力,于是转换研究对象,用人对绳子所做的功来求绳子对小车做的功.(2)方向不变,大小随位移线性变化的力,可用平均力求所做的功.(3)用图像法求解变力做功问题.我们可以用图像来描述力对物体做功的大小.以Fcosα为纵轴,以l 为横轴.当恒力F 对物体做功时,由Fcosα和l 为邻边构成的矩形面积即表示功的大小,如图(a)所示.如果外力不是恒力,外力做功就不能用矩形表示.不过可以将位移划分为等距的小段,当每一小段足够小时,力的变化很小,就可以认为是恒定的,该段内所做功的大小即为此小段对应的小矩形的面积,整个过程外力做功的大小就等于全体小矩形面积之和,如图(b)所示.二.功率1.物理意义:功率是表示做功快慢的物理量.所谓做功快慢的实质是物体(或系统)能量转化的快慢.2.功率的大小:力做的功和做这些功所用时间的比值叫功率,即P=t W .(1)W P t=是求一个力在t 时间内做功的平均功率.想想你们期末考前的复习效率.(2)由W P t=得αcos Fv P =,它有两种用法:①求某一时刻的瞬时功率.这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②求某一段时间内的平均功率.当v 为某段时间(位移)内的平均速度时,要求在这段时间(位移)内F 为恒力,对应的P 为F 在该段时间内的平均功率.3.说明(1)功率和功一样,它也是属于力的.说到“功率”必须说是哪个力的功率.如:重力的功率、拉力的功率、阻力的功率、弹力的功率等.(2)平均功率描述的是做功的平均快慢程度,因此说平均功率必须说明是哪段时间(或哪段位移上)的平均功率.而瞬时功率描述的是做功瞬间的快慢程度,因此说瞬时功率必须说明是哪个时刻(或哪个位置)的瞬时功率.(3)在国际制单位中功率的单位是W (瓦).31W=1J/s 1kW=10W,(4)功率是标量.功率的正负(仅由α角决定)表示是力对物体做功的功率还是物体克服外力做功的功率.(5)重力的功率可表示为P G =mgv y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积.4.额定功率与实际功率发动机铭牌上的功率即为额定功率,它是指动力机械正常工作时的最大输出功率;实际功率是机械实际工作时的功率.正常工作时,机器的实际功率不应超过它的额定功率值.5.关于汽车的运动分析(机车启动问题,学完动能定理再说)(1)对机车等交通工具类问题,应明确P =F·v 中,P 为发动机的实际功率,机车正常行驶中实际功率小于或等于其额定功率;F 为发动机(机车)的牵引力;v 为机车的瞬时速度.(2)机车以恒定功率启动的运动过程中:故机车达到最大速度时a =0,f F F =,m f m P Fv F v ==,这一启动过程的v t -关系图像如图所示:(3)机车以恒定加速度启动的运动过程中:设机车保持以加速度a 做匀加速直线运动的时间为t :()f F v P F ma at P =⇒+=.则/()f t P a F ma =+,此时速度/()f v at P F ma ==+.这一启动过程的v t -关系图像如右上图所示.(4)说明:①当发动机的功率P 恒定时,牵引力与速度v 成反比,即1F v∝,但不能理解为v 趋于零时牵引力F 可趋近于无穷大;也不能理解为当F 趋于零时v 可趋于无穷大,要受到机器构造上的限制.②用P=Fv (此时cosα=1)分析汽车的运动时,要注意条件.如果汽车启动时可以看作匀加速直线运动,阻力可看作大小不变的力,则汽车的牵引力F 的大小不变,由P=Fυ可知发动机的功率是逐渐增大的.但是当功率达到额定功率时不再增大,由P=Fυ可知牵引力F 将逐渐减小,即汽车启动时做匀加速运动的时间是有限度的.在发动机功率不变的条件下,汽车加速运动的加速度将不断减小.动能、重力势能、弹性势能一.动能是什么1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度.单位:焦(J).(3)动能概念的理解.①动能是标量,且只有正值②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量,12k k k E E E -=∆.k E ∆为正值,表示物体的动能增加了,对应于合力对物体做正功;k E ∆为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.二.重力势能1.重力做功的特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关.物体沿闭合的路径运动一周,重力做功为零.如物体由A 位置运动到B 位置,如图所示,A 、B 两位置的高度分别为h 1、h 2,物体的质量为m ,无论从A 到B 路径如何,重力做的功均为:cos G W mgl α==mgh =mg(h 1-h 2)=mgh 1-mgh 2.2.重力势能(1)定义:物体由于被举高高而具有的能量(例如举到8844上面).(2)公式:物体的重力势能等于它所受重力与所处高度的乘积,P E mgh =,h 是物体重心到参考平面的高度.单位:焦(J).1J =21kg m s 1N m m -∙∙∙=∙.(3)因为高度本身就是一个相对的量,故而重力势能具有相对性,它的数值与参考平面的选择有关.参考平面的选择不同,重力势能的值也就不同,一般取地面为参考平面.在参考平面内的物体,E P =0;在参考平面上方的物体,E P >0;在参考平面下方的物体,E P <0.(4)重力势能是标量,它的正、负值表示大小.(功的正负又有什么意义?)(5)重力势能是地球和物体(系统)共有的.3.重力势能的变化却是绝对的(1)尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量与参考平面的选择无关,这体现了它的绝对性.(2)重力势能的计算公式mgh E p =,只适用于地球表面及其附近g 值不变时的范围,若g 值变化时,不能用其计算.4.重力做功和重力势能改变的关系:假设有两个高度1h 和2h (21h h >),则2211p p E mgh mgh E ==>物体从1h 运动到2h ,即从高往低处走,则重力做了正功,系统的重力势能减小;写成表达式:0)(21>h h mg h mg W G -=∆=,也就是21p p G E E W -=(初位置势能-末位置势能)物体从2h 运动到1h ,即从低往高处走,则重力做了负功,系统的重力势能增加.写成表达式:0)(12<h h mg h mg W G -=∆=,也就是12p p G E E W -=(初位置势能-末位置势能)换句话说,重力做功与重力势能的该变量之间的关系为:pp p G E E E W ∆-=-=末初三.弹性势能1.弹性势能:发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫做弹性势能.2.弹性势能的大小跟①形变的大小有关,形变量越大,弹性势能越大;②与劲度系数有关,当形变量一定时,劲度系数越大的弹簧弹性势能也越大.3.弹性势能的表达式:212P E k l =∆4.弹力做功跟弹性势能变化的关系:当弹簧的弹力做正功时,弹簧的弹性势能减小,弹性势能转化为其他形式的能;当弹簧的弹力做负功时,弹簧的弹性势能增加,其他形式的能转化为弹性势能.这一点与重力做功跟重力势能变化的关系p p p G E E E W ∆-=-=末初一样:p p p E E E W ∆-=-=末初弹.动能定理及其应用一.动能定理1.内容表述:一个过程中,合外力对物体所做的总功等于这个过程物体功能的变化.2.表达式:21k k W E E =-,W 是合外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =.3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.4.动能定理的理解及应用要点:①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程.⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.二.应用动能定理解题的基本思路和应用技巧1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解.2.动能定理的应用技巧(1)由于动能定理反映的是物体在两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而往往用动能定理求解简捷;可是有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.。
功、功率与动能定理(解析版)

构建知识网络:考情分析:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考查常与生产生活实际联系紧密,题目的综合性较强。
复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用重点知识梳理: 一、功1.做功的两个要素(1)作用在物体上的力. (2)物体在力的方向上发生的位移. 2.功的物理意义 功是能量转化的量度. 3.公式 W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 4.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.通晓两类力做功特点(1)重力、弹簧弹力和电场力都属于“保守力”,做功均与路径无关,仅由作用对象的初、末位置(即位移)决定。
(2)摩擦力属于“耗散力”,做功与路径有关。
二、功率1.物理意义:描述力对物体做功的快慢.2.公式:(1)P =Wt ,P 为时间t 内的物体做功的快慢.(2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. 3.对公式P =Fv 的几点认识:(1)公式P =Fv 适用于力F 的方向与速度v 的方向在一条直线上的情况. (2)功率是标量,只有大小,没有方向;只有正值,没有负值.(3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 4.额定功率:机械正常工作时的最大功率.5.实际功率:机械实际工作时的功率,要求不能大于额定功率. 三、动能1.定义:物体由于运动而具有的能.2.公式:E k =12mv 2.3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关.4.单位:焦耳,1J =1N·m =1kg·m 2/s 2.5.动能的相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 12.四、动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:(1)W =ΔE k . (2)W =E k2-E k1. (3)W =12mv 22-12mv 12.3.物理意义:合外力做的功是物体动能变化的量度.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【名师提醒】一对平衡力做功绝对值肯定相等;一对相互作用力做功的绝对值不一定相等,可以同为正或同为负,也可以一个做功一个不做功,可以一正一负绝对值不一定相等---因为相互作用力作用在不同的物体上,不同的物体位移不一定相等。
高中物理查补易混易错点09动能定理(解析版)

查补易混易错点09动能定理1.巧记知识一、易错易混知识大全【知识点一】功的分析与计算1.计算功的方法(1)对于恒力做功利用W=Fl cosα;(2)对于变力做功可利用动能定理(W=ΔEk);(3)对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.合力功计算方法(1)先求合外力F合,再用W合=F合l cosα求功.(2)先求各个力做的功W1、W2、W3、⋯,再应用W合=W1+W2+W3+⋯求合外力做的功.3.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=Ffx相对.【知识点二】功率的分析与计算1.平均功率的计算方法(1)利用P=W t.(2)利用P=Fv cosα,其中v为物体运动的平均速度.2.瞬时功率的计算方法(1)P=Fv cosα,其中v为t时刻的瞬时速度.(2)P=FvF,其中vF为物体的速度v在力F方向上的分速度.(3)P =Fvv ,其中Fv 为物体受到的外力F 在速度v 方向上的分力.【知识点三】动能定理的理解1.动能定理表明了“三个关系”(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。
(2)因果关系:合力做功是引起物体动能变化的原因。
(3)量纲关系:单位相同,国际单位都是焦耳。
2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。
当然动能定理也就不存在分量的表达式。
【知识点四】动能定理的应用1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.2.应用动能定理解题的基本思路二、真题演练1(2022·福建·高考真题)(多选)一物块以初速度v 0自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。
专题06 功和功率 动能定理(解析版)

专题06 功和功率 动能定理目录题型一 功和功率的理解和计算 ..................................................................................................... 1 题型二 机车启动问题 ..................................................................................................................... 4 题型三 动能定理及其应用 ........................................................................................................... 12 题型四 功能中的图像问题 .. (22)题型一 功和功率的理解和计算【题型解码】1.要注意区分是恒力做功,还是变力做功,求恒力的功常用定义式.2.变力的功根据特点可将变力的功转化为恒力的功(如大小不变、方向变化的阻力),或用图象法、平均值法(如弹簧弹力的功),或用W =Pt 求解(如功率恒定的力),或用动能定理等求解.【典例分析1】(2023上·福建三明·高三校联考期中)如图所示,同一高度处有4个质量相同且可视为质点的小球,现使小球A 做自由落体运动,小球B 做平抛运动,小球C 做竖直上抛运动,小球D 做竖直下抛运动,且小球B 、C 、D 抛出时的初速度大小相同,不计空气阻力。
小球从释放或抛出到落地的过程中( )A .重力对4个小球做的功相同B .重力对4个小球做功的平均功率相等C .落地前瞬间,重力对4个小球的瞬时功率大小关系为A B CD P P P P =<= D .重力对4个小球做功的平均功率大小关系为A B C D P P P P =>= 【答案】AC【详解】A .4个质量相同的小球从同一高度抛出到落地的过程中,重力做功为G W mgh =故重力对4个小球做的功相同,故A 正确;BD .小球A 做自由落体运动,小球B 做平抛运动,小球C 做竖直上抛运动,小球D 做竖直下抛运动,小球从同一高度抛出到落地,运动时间关系为D A B C t t t t <=<重力对4个小球做功的平均功率为GW P t=可得重力对4个小球做功的平均功率大小关系为D A B C P P P P >=>故BD 错误;C .落地前瞬间,4个小球竖直方向有2A 2v gh =,2B 2v gh = 22C 02v v gh -=,22D 02v v gh -=4个小球竖直方向的速度关系为A B C D v v v v =<=落地前瞬间,重力对4个小球的瞬时功率y P mgv =落地前瞬间,重力对4个小球的瞬时功率大小关系为A B C D P P P P =<=故C 正确。
高考物理_专题总结与归类解析:“功和功率”典例解析

功和功率专题探究一、功的判断与计算1、判断恒力做功情况例1、用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[]A.加速过程中拉力的功一定比匀速过程中拉力的功大B.匀速过程中拉力的功比加速过程中拉力的功大C.两过程中拉力的功一样大D.上述三种情况都有可能解析:因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma,所以有F1=m(g+a).则拉力F1所做的功W1=F1S1=122a t·m(g+a)匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2.比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系.若a>g时,12(g+a)>g,则W1>W2;若a=g时,12(g+a)=g,则W1=W2;若a<g时,12(g+a)<g,则W1<W2;选项A、B、C的结论均可能出现.故答案应选D.小结:由恒力功的定义式W=F Scosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功.拓展变式1、(2005年江苏物理,10)如图16所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点由静止开始上升.若从A点上升至B点上升至C点的过程中拉力F做的功分别为W1、W2,滑块经B、C两点时的动能分别为E kB、E kC,图中AB=BC,则一定有()A.W1>W2B.W1<W 2C.E kB>E kCD.E kB<E kC解析:因为拉力对滑块做功的过程F大小不变而方向变化,即由N=FScosα.当S AB=S BC 时,α不断增大,W不断减少.故W1>W2,A正确,B错.在运动过程中拉力F的竖直分力Fy为变力,且不能明确与G在整个过程中的关系,所以不能明确G CB和Gc的大小关系,故CD错.答案:A小结:利用功的计算式W=F·Scosα可以定性比较变力做功的大小,C、D项的设计考查学生利用动能定理灵活解决问题的能力.2、计算恒力做功的多少例题2、质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m的小物块,如图17所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.解析:此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功.由F=ma得m与M的各自对地的加速度分别为: a m=μg,a M=(F-μmg)/M设抽出木板所用的时间为t,则m与M在时间t内的位移分别为: S m=12a m t2,S M=12a M t2并有S M=S m+L,即L=12(a M-a m)t2(对此式可从相对运动的角度加以理解)所以把长木板从小物块底下抽出来所做的功为:图17小结:解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图18).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移S m 与木板长度L 之和,而它们各自的匀加速运动均在相同时间t 内完成,再根据恒力功的定义式求出最后结果.拓展变式 2、如图19所示,质量为m 的物块静止在倾角为θ的斜面体上,当斜面体沿水平面向左匀速运动位移X 时,求物块所受重力、支持力、摩擦力做的功和合力做的功.解析:物块受重力mg ,支持力N 和静摩擦力f ,如图19所示,物块随斜面体匀速运动合力为零,所以,N mg f mg ==cos sin θθ,.W G =0.支持力N 与s 的夹角为2πθ-(),支持力做功θθθπcos sin 2cos s mg Ns W N ·=⎪⎭⎫ ⎝⎛-=静摩擦力f 与s 的夹角为()πθ-,f 做的功=-=)cos(θπs f W f ·θθcos sin mgs -.合力F 做的功W F 是各个力做功的代数和0=++=f N G F W W W W 说明:(1)根据功的定义计算功时一定要明确力、位移和力与位移间的夹角.本题重力与位移夹角2π ,不做功,支持力与位移夹角为2ππθ-〈()做正功,摩擦力与位移夹角为2ππθ-〉()做负功.一个力是否做功,做正功还是做负功要具体分析,不能笼统地说,如本题支持力做正功.(2)合力的功一般用各个力做功的代数和来求,因为功是标量,求代数和较简单.如果先求合力再求功,本题合力为零,合力功也为零.二、功率的计算与判断1、判断功率变化情况例3、.如图20所示,轻绳一端固定在O 点,另一端拴一小球,拉起小球使绳水平伸直,然后无初速度释放,小球从开始运动到绳为竖直的过程中小球重力的瞬时功率的变化情况是图18图19( )A.一直增大B.一直减小C.先增大,后减小D.先减小,后增大解析:如图21所示,在水平位置A 处,由于小球的速度v a =0,因此此时小球重力的功率P a =mgv a =0.在绳竖直时的B 处,小球的速度v b 与重力方向垂直,此时小球重力的功率P b =mgv b cos90°=0.当小球在A 、B 之间任何位置C 时,小球的速度不为零,而且速度方向与重力方向的夹角为锐角,所以小球重力的功率P c =mgcos (90°-α)v c >0.根据以上分析可知,小球从A 处开始下落的过程中,重力的功率先由零开始增大,然后再逐渐减小到零.答案:C变式拓展3、一个物体从光滑斜面上滑下,关于物体所受的重力做功的功率的说法中,正确的是( )A.重力不变,重力做功的功率也不变B.重力做功的功率在下滑过程中不断增大C.重力做功的功率等于重力和下滑速度的乘积D.重力做功的功率小于重力和下滑速度的乘积解析:本题考查对功率的概念的理解,功率是表示物体做功快慢的物理量.当物体沿着光滑的斜面滑下时,物体所受的重力是不变的,物体的速度不断增大,则物体的重力的功率也就不断地变大,A 错误,B 正确.又根据功率的公式P=Fvcosα,物体在沿斜面下滑的过程中,重力的瞬时功率的表达式为:P=Fvcosα=mg·v·cosα,其中,α为重力与速度v 的方向的图20图21 图21夹角,很明显,重力做功的功率小于重力和下滑速度的乘积,C 错误,D 正确. 答案:BD2、图像问题分析例4.(2006山东滨州模拟,7)以恒定功率P 、初速度v 0冲上倾角一定的斜坡时,汽车受到的阻力恒定不变,则汽车上坡过程中的vt 图象不可能是图22中的( )图22解析:本题考查汽车以恒定功率行驶时的运动分析,汽车的功率是不变的,汽车的牵引力也是不变的.当汽车冲上斜坡时,根据公式P=Fv ,如果汽车受到的沿斜面方向的合外力等于零,则汽车将继续做匀速直线运动,速度—时间图象有可能是 B.如果汽车受到的合外力方向向上,则随着速度的不断增加,汽车所受的牵引力逐渐减小,合外力也将逐渐减小,则汽车将做加速度逐渐减小的加速运动,直到合外力等于零时,则再做匀速直线运动,C 是有可能的.如果汽车的初速度比较大,刚冲上斜坡时,汽车所受的合外力斜向下,则汽车将做减速运动,速度越来越小,最后再做匀速运动,D 是有可能的.根据P=Fv ,只要汽车的速度大小发生变化,汽车的牵引力就发生变化,汽车的加速度就发生变化,汽车不可能做匀加速直线运动,A 是不可能的,本题的答案为A.答案:A3、功率的计算例5、如图23所示,质量为2kg 的木块在倾角θ=370的斜面上由静止开始下滑,木块与斜面间的动摩擦因数为0.5,(sin 370=0.6,cos 370=0.8,g =10m/s 2).求:(1) 前2秒内重力做的功;(2) 前2秒内重力的平均功率;(3) 2秒末重力的瞬时功率.解析:计算平均功率,应先计算该段时间内重力所做的功,然后根据平均功率的公式W P t=求解;计算瞬时功率要用公式P =FVcosθ求解,为此要先计算2秒末的瞬时速度以及速度和该力方向间的夹角. (1)木块沿斜面下滑的加速度为:sin cos 42F mg mg a m m θμθ-===合m/s 2 370 图23前2秒内木块的位移:12s at=2=4m,所以,重力在前2秒内做的功为:W=mgsinθ·s=48J;(2)重力在前2秒内的平均功率为:WPt==482W=24W;(3) 木块2秒末速度:v=at=4m/s,重力在前2秒末的瞬时功率为:P=mgsingθ·v=2×10×0.6×4W=48W.点评:计算功率时要分清要求的是瞬时功率还是平均功率,若是瞬时功率,一定要注意速度和力的方向之间的夹角.举一反三4、质量2kg的物体,受到24N竖直向上的拉力,由静止开始运动,求5秒内拉力对物体所做的功;5秒内拉力的平均功率和5秒末拉力的瞬时功率.( g=10 m/s2)答案:600J;120W;240W5、设汽车行驶时所受阻力与其速度的平方成正比,如汽车以速度v匀速行驶时,其发动机功率为P,则汽车以速度2v匀速行驶时, 其发动机功率为( )A.2PB.4PC.8PD.无法确定答案:C4、实际应用例6、健身用的“跑步机”如图24所示,质量为m的运动员踩在与水平面成α角的静止皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为f.使皮带以速度v匀速向后运动,则在此运动过程中,下列说法正确的是()图24A.人脚对皮带的摩擦力是皮带运动的动力B.人对皮带不做功C.人对皮带做功的功率为mgvD.人对皮带做功的功率为fv解析:运动员踩在与水平方向成α角的静止皮带上用力向后蹬皮带时,运动员的鞋与皮带间有静摩擦力的作用,人受的静摩擦力沿皮带斜向上,而皮带受到的摩擦力的方向沿着皮带斜向下,对皮带的运动起推动作用,对皮带做功的功率为:P=Fv=fv,所以A、D正确,B 、C 错误.5、某同学进行体能训练,用100秒跑上20米高的高楼,试估算他登楼的平均功率最接近下列哪个数值?( )A .10W B.100W C.1000W D.10000W50kg.则有:P =501020100mgh t ⨯⨯=W=100W只要对质量大小有比较符合实际的估计,计算出100秒内所做的功,然后代入平均功率公式即可解决此题.例7、 正常人心脏在一次搏动中泵出血液70 mL ,推动血液流动的平均压强为1.6×104 Pa ,设心脏主动脉的内径约为2.5 cm ,每分钟搏动75次,求:(1)心脏推动血液流动的平均功率是多大?(2)血液从心脏流出的平均速度是多大?1)设心脏每次推动血液前进的位移为l ,血液受到心脏的压力为F ,由压强公式F=p 0S 可知:心脏起搏一次对血液做功为W 0=Fl=p 0Sl=p 0V 0,V 0是心脏跳动一次输送血液的体积. W=np 0V 0=75×1.6×104×70×10-6 J=84 J ,P=6084=t W W=1.4 W. (2)每分钟心脏输出血量为:V=nV 0=75×70×10-6 m 3=5.25×10-3 m 3心脏主动脉横截面积S 为: S=πr 2=3.14×(1.25×10-2)2 m 2=4.9×10-4 m 2 所以v=60109.41025.543⨯⨯⨯=•=--t S V t l m/s=0.18 m/s.1)1.4 W (2)0.18 m/s物理原理,并且能够从生活实例中抽象出我们需要的、简化了的物理模型,再来求解题目.有利于提高对知识的迁移、运用,以及培养我们分析、综合的能力.分析解决本题的关键是要把这个联系实际的、研究对象不明确的实例,抽象为我们熟悉的、简单的物理模型.变式训练6、人的心脏每跳一次大约输送8×10-5 m 3的血液,正常人血压(可看作心脏压送血液的压强)的平均值约为1.5×104 Pa ,心跳约每分钟70次.请据此估测心脏工作的平均功率为多少. 解析:人的心脏每次跳动时,对外输送血液,压力对外做功,心跳一次做功的多少等于压力和压力作用位移的乘积.依据心跳约每分钟70次这个条件,可以求出每心跳一次所用的时间,这样就可以依据功率的计算公式估测心脏工作的平均功率为多少.答案:人的心脏每跳一次输送的血液看作长为L 、截面积为S 的液柱,则心脏每跳动一次,需做功W=FL=pSL=pΔV ,心跳每分钟70次,则心脏做功的平均功率为P=t nW =1.4 W. 三、易错点解析1、 不注意区分平均功率和瞬时功率例8. 一架起重机,要求它在内将质量为的货物由静止竖直向上加速提升,则起重机的额定输出功率至少应多大?解析:货物的加速度设起重机对货物的拉力为F ,由牛顿第二定律得:起重机的额定输出功率不能小于它在提起货物时所需的最大输出功率。
2018年高考物理一轮复习专题18功和功率(讲)(含解析)

专题18 功和功率1.掌握做功正负的判断和计算功的方法.2.理解tWP =和P =Fv 的关系,并会运用. 3.会分析机车的两种启动方式.一、功1.做功的两个要素 (1)作用在物体上的力.(2)物体在力的方向上发生的位移. 2.公式:W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. (3)功是标(标或矢)量. 3.功的正负(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或者说物体克服这个力做了功. (3)α=90°,力对物体不做功. 二、功率1.定义:功与完成这些功所用时间的比值. 物理意义:描述力对物体做功的快慢. 2.公式 (1) tWP =,P 为时间t 内的平均功率. (2)P =Fv cos α(α为F 与v 的夹角) ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.考点一 正、负功的判断及计算 1.判断力是否做功及做功正负的方法(1)看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形.(2)看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.(3)根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W 合=E k 末-E k 初,当动能增加时合外力做正功;当动能减少时,合外力做负功. 2.计算功的方法 (1)恒力做的功直接用W =Fl cos α计算. (2)合外力做的功方法一:先求合外力F 合,再用W 合=F 合l cos α求功.方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合外力做的功. (3)变力做的功 ①应用动能定理求解.②用W =Pt 求解,其中变力的功率P 不变.③常用方法还有转换法、微元法、图象法、平均力法等,求解时根据条件灵活选择. ★重点归纳★ 1.计算做功的一般思路2.变力做功的计算方法 (1) 平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即221F F F +=再利用功的定义式W =F l cos α来求功. (2) 用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.(3) 用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.(4) 利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的这一条件.(5) 利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.★典型案例★如图是质量为1kg的质点在水平面上运动的v-t图像,以水平向右的方向为正方向。
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
功,功率,动能定理知识点总结

功,功率,动能定理知识点总结一、功。
1. 定义。
- 一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
- 公式:W = Fxcosθ,其中W表示功,F是力的大小,x是位移的大小,θ是力与位移方向的夹角。
2. 功的正负。
- 当0≤slantθ <(π)/(2)时,cosθ> 0,力对物体做正功,力是动力,物体的能量增加。
- 当θ=(π)/(2)时,cosθ = 0,力对物体不做功,例如物体做圆周运动时向心力不做功。
- 当(π)/(2)<θ≤slantπ时,cosθ<0,力对物体做负功,力是阻力,物体的能量减少。
3. 合力的功。
- 方法一:先求出物体所受的合力F_合,再根据W = F_合xcosθ计算合力的功,这里的θ是合力与位移方向的夹角。
- 方法二:分别求出各个力做的功W_1,W_2,W_3,·s,然后根据W_合=W_1 + W_2+W_3+·s计算合力的功。
二、功率。
1. 定义。
- 功率是描述力对物体做功快慢的物理量。
- 公式:P=(W)/(t),其中P表示功率,W是功,t是完成这些功所用的时间。
2. 平均功率和瞬时功率。
- 平均功率:P=(W)/(t),也可以根据P = F¯vcosθ计算,其中¯v是平均速度。
- 瞬时功率:P = Fvcosθ,其中v是瞬时速度。
当F与v同向时,P = Fv。
3. 额定功率和实际功率。
- 额定功率:是发动机正常工作时的最大功率,通常在发动机铭牌上标明。
- 实际功率:是发动机实际工作时的功率,实际功率可以小于或等于额定功率,不能长时间大于额定功率。
三、动能定理。
1. 动能。
- 定义:物体由于运动而具有的能量叫动能,表达式为E_k=(1)/(2)mv^2,其中m是物体的质量,v是物体的速度。
- 动能是标量,且恒为正。
2. 动能定理。
- 内容:合外力对物体做的功等于物体动能的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功、功率与动能定理(含解析2018年高考物理易错点)1.(2017全国卷Ⅲ,16)如图1,一质量为m、长度为l的均匀柔软细绳PQ竖直悬挂。
用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距13l。
重力加速度大小为g。
在此过程中,外力做的功为()图1A.19m12mgl答案A2.(多选)将一质量为m的木箱放在水平桌面上,现对木箱施加一斜向右下方的恒力,使木箱由静止开始以恒定的加速度a沿水平桌面向右做匀加速直线运动.已知恒力与水平方向的夹角为θ,木箱与桌面间的动摩擦因数为μ,重力加速度为g.则木箱向右运动位移x的过程中,下列说法正确的是()A.恒力所做的功为ma-μgx1+μtanθB.恒力所做的功为ma+μgx1-μtanθC.木箱克服摩擦力做的功为μmgxxk%wD.木箱克服摩擦力做的功为μma+gcotθxcotθ-μ解析:选BD.以木箱为研究对象,竖直方向有Fsinθ+mg=FN,水平方向有Fcosθ-μFN=ma,联立解得恒力F=ma+μgcosθ-μsinθ,摩擦力f=μFN=μma+gcotθcotθ-μ,则在此过程中恒力做的功为W=Fxcosθ=ma+μgx1-μtanθ,木箱克服摩擦力做的功为Wf=fx=μma+gcotθxcotθ-μ. 3.光滑水平面上质量为m=1kg的物体在水平拉力F的作用下从静止开始运动,如图甲所示,若力F随时间的变化情况如图乙所示,则下列说法正确的是()A.拉力在前2s内和后4s内做的功之比为1∶1B.拉力在前2s内和后4s内做的功之比为1∶3C.拉力在4s末和6s末做功的功率之比为2∶3D.拉力在前2s内和后4s内做功的功率之比为1∶1 4.(多选)位于水平面上的物体在水平恒力F1作用下,做速度为v1的匀速运动;若作用力变为斜向上的恒力F2,物体做速度为v2的匀速运动,且F1与F2功率相同.则可能有()A.F2=F1,v1>v2B.F2=F1,v1<v2C.F2>F1,v1>v2D.F2<F1,v1<v2解析:选BD.水平恒力F1作用下的功率P1=F1v1,F2作用下的功率P2=F2v2cosθ,现P1=P2,若F2=F1,一定有v1<v2,因此B正确,A错误;由于两次都做匀速直线运动,因此第一次的摩擦力Ff1=μmg=F1,而第二次的摩擦力Ff2=μ(mg-F2sinθ)=F2cosθ,显然Ff2<Ff1,即:F2cosθ<F1,因此无论F2>F1还是F2<F1都会有v1<v2,因此D正确、C错误.5.某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k1和k2倍,最大速率分别为v1和v2,则()A.v2=k1v1B.v2=k1k2v1C.v2=k2k1v1D.v2=k2v1 解析:选B.车达到最大速度时,牵引力大小等于阻力大小,此时车的功率等于克服阻力做功的功率.故P=k1mgv1=k2mgv2,解得v2=k1k2v1,选项B正确.6.晓宇在研究一辆额定功率为P=20kW的轿车的性能,他驾驶该轿车在如图甲所示的平直路面上运动,其中轿车与ON段路面间的动摩擦因数比轿车与MO段路面间的动摩擦因数大.晓宇驾驶轿车保持额定功率以10m/s的速度由M向右运动,该轿车从M向右运动到N的过程中,通过速度传感器测量出轿车的速度随时间的变化规律图象如图乙所示,在t=15s时图线的切线与横轴平行.已知轿车的质量为m=2t,轿车在MO段、ON段运动时与路面之间的阻力大小分别保持不变.求:(1)该轿车在MO段行驶时的阻力大小;(2)该轿车在运动过程中刚好通过O点时加速度的大小;(3)该轿车由O运动到N的过程中位移的大小.解析:(1)轿车在MO段运动时,以10m/s的速度匀速运动,有F1=f1,P=F1v1联立解得f1=20×10310N=2000N.(2)轿车在ON段保持额定功率不变,由图象可知t=15s时轿车开始做匀速直线运动,此时由力的平衡答案:(1)2000N(2)1m/s2(3)68.75m7.如图所示,QB段为一半径为R=1m的光滑圆弧轨道,AQ段为一长度为L=1m的粗糙水平轨道,两轨道相切于Q 点,Q在圆心O的正下方,整个轨道位于同一竖直平面内.物体P的质量为m=1kg(可视为质点),P与AQ间的动摩擦因数μ=0.1,若物块P以速度v0从A点滑上水平轨道,到C点后又返回A点时恰好静止.(g取10m/s2)求:(1)v0的大小;(2)物块P第一次刚通过Q点时对圆弧轨道的压力.解析:(1)物块P从A到C又返回A的过程中,由动能定理有-μmg2L=0-12mv20答案:(1)2m/s(2)12N,方向竖直向下8.(2016高考全国甲卷)(多选)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM∠OMNπ2.在小球从M点运动到N点的过程中()A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差解析:选BCD.在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM∠OMNπ2,则小球在M点时弹簧处于压缩状态,在N点时弹簧处于拉伸状态,小球从M点运动到N点的过程中,弹簧长度先缩短,当弹簧与竖直杆垂直时弹簧达到最短,这个过程中弹力对小球做负功,然后弹簧再伸长,弹力对小球开始做正功,当弹簧达到自然伸长状态时,弹力为零,再随着弹簧的伸长弹力对小球做负功,故整个过程中,弹力对小球先做负功,再做正功,后再做负功,选项A错误.在弹簧与杆垂直时及弹簧处于自然伸长状态时,小球加速度等于重力加速度,选项B正确.弹簧与杆垂直时,弹力方向与小球的速度方向垂直,则弹力对小球做功的功率为零,选项C正确.由机械能守恒定律知,在M、N两点弹簧弹性势能相等,在N点的动能等于从M点到N点重力势能的减小值,选项D 正确.9.(2015高考全国卷Ⅰ)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B.W>12mgR,质点不能到达Q点C.W=12mgR,质点到达Q点后,继续上升一段距离D.W<12mgR,质点到达Q点后,继续上升一段距离10.(2016高考全国乙卷)如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态.直轨道与一半径为56R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R.已知P与直轨道间的动摩擦因数μ=14,重力加速度大小为g.(取sin37°=35,cos37°=45)(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距72R、竖直相距R.求P运动到D点时速度的大小和改变后P的质量.(2)设BE=x.P到达E点时速度为零,设此时弹簧的弹性势能为EP.P由B点运动到E点的过程中,由动能定理有mgxsinθ-μmgxcosθ-Ep=0-12mv2B④E、F之间的距离l1为l1=4R-2R+x⑤P到达E点后反弹,从E点运动到F点的过程中,由动能定理有Ep-mgl1sinθ-μmgl1cosθ=0⑥联立③④⑤⑥式并由题给条件得x=R⑦Ep=125mgR⑧(3)设改变后P的质量为m1.D点与G点的水平距离x1和竖直距离y1分别为x1=72R-56Rsinθ⑨y1=R+56R+56Rcosθ⑩式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ的事实.设P在D点的速度为vD,由D点运动到G点的时间为t.由平抛运动公式有y1=12gt2⑪x1=vDt⑫Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=12m1v2C⑮联立⑦⑧⑬⑭⑮式得m1=13m⑯答案:(1)2gR(2)125mgR(3)355gR13m易错起源1、功功率的分析与计算例1.如图3所示,将一个倾角为θ的光滑斜面体放在水平面上,一根长为L的轻质细绳悬挂着一个质量为m 的小球,开始时小球与斜面体刚刚接触且细绳恰好竖直.现在用水平推力F缓慢向左推动斜面体,直至细绳与斜面体平行,则下列说法中正确的是()图3A.由于小球受到斜面的弹力始终与斜面垂直,故对小球不做功B.细绳对小球的拉力始终与小球的运动方向垂直,故对小球不做功C.小球受到的合外力对小球做功为零,故小球在该过程中机械能守恒D.若水平面光滑,则推力做功为mgL(1-cosθ)【答案】B【解析】小球受到斜面的弹力沿竖直方向有分量,故对小球做正功,A错误;细绳的拉力方向始终和小球的运动方向垂直,故对小球不做功,B正确;合外力对小球做的功等于小球动能的改变量,虽然合外力做功为零,但小球的重力势能增加,故小球在该过程中机械能不守恒,C错误;若水平面光滑,则推力做功为mgL(1-sinθ),D错误.【变式探究】如图5所示,两个完全相同的小球A、B,在同一高度处以相同大小的初速度v分别水平抛出和竖直向上抛出,下列说法正确的是()图5A.两小球落地时的速度相同B.两小球落地时,A球重力的瞬时功率较小C.从开始运动至落地,A球重力做功较大D.从开始运动至落地,重力对A小球做功的平均功率较小【举一反三】若汽车在平直公路上匀速行驶,牵引力为F0.P随时间t的变化规律如图6所示,t2时刻汽车又恢复了匀速直线运动,则下列图象正确的是()图6ABCD【名师点睛】1.高考考查特点(1)本考点命题角度为功的定义式的理解及应用,机车启动模型的分析.(2)理解公式W=Fscosα,P=Fv,F-f=ma,P=fvm及机车启动的两种方式是解题的关键.2.解题的常见误区及提醒(1)应用公式W=Fscosα时,忘掉公式仅用于恒力做功的条件.(2)机车启动问题中要分清匀加速启动还是恒定功率启动.(3)匀加速过程的末速度不是机车启动的最大速度.(4)恒定功率启动中功的计算可用W=Pt计算.【锦囊妙计,战胜自我】1.计算功、功率时应注意的三个问题①功的公式W=Fl和W=Flcosα仅适用于恒力做功的情况.②变力做功的求解要注意对问题的正确转化,如将变力转化为恒力,也可应用动能定理等方法求解.③对于功率的计算,应注意区分公式P=Wt和公式P=Fv,前式侧重于平均功率的计算,而后式侧重于瞬时功率的计算.2.机车启动模型中的两点技巧机车启动匀加速过程的最大速度v1此时机车输出的功率最大和全程的最大速度vm此时F牵=F阻求解方法:①求v1:由F牵-F阻=ma,P=F牵v1可求v1=PF阻+ma.②求vm:由P=F阻vm,可求vm=PF阻.易错起源2、动能定理的应用例2.一质量为m的物体在水平恒力F的作用下沿水平面运动,在t0时刻撤去力F,其v­t图象如图9所示.已知物体与水平面间的动摩擦因数为μ,则下列关于力F的大小和力F做功W的大小关系式正确的是()图9A.F=μmgB.F=2μmgC.W=μmgv0t0D.W=32μmgv0t0【变式探究】若将圆弧轨道和斜面的连接方式调为如图10所示,AB是倾角为θ=30°的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;(2)为使物体能顺利到达圆弧轨道的最高点D,释放点P 距B点的距离至少多大?图10【解析】(1)对整体过程由动能定理得mgRcosθ-μmgcosθs=0所以s=Rμ.(2)物体刚好到D点,有mg=mv2DR对全过程由动能定理得mgL′sinθ-μmgcosθL′-mgR(1+cosθ)=12mv2D 得L′=3+2cosθ2sinθ-μcosθR =3+3R1-3μ.【答案】(1)Rμ(2)3+3R1-3μ【举一反三】如图11甲所示,用固定的电动机水平拉着质量m=2kg的小物块和质量M=1kg的平板以相同的速度一起向右匀速运动,物块位于平板左侧,可视为质点.在平板的右侧一定距离处有台阶阻挡,平板撞上后会立刻停止运动.电动机功率保持P=3W不变.从某时刻t=0起,测得物块的速度随时间的变化关系如图乙所示,t=6s后可视为匀速运动,t=10s时物块离开平板.重力加速度取g=10m/s2,求:图11(1)平板与地面间的动摩擦因数μ为多大?(2)物块在1s末和3s末受到的摩擦力各为多大?(3)平板长度L为多少?(2)物块在1s末时与平板一起做匀速运动,合力为零.物块受到水平向右的拉力与水平向左的静摩擦力,因此静摩擦力大小为:Ff1=FT1=Pv1=6N物块在2s末之后与平板发生相对运动,物块与平板间的摩擦力为滑动摩擦力且大小保持不变.物块在6s后可视为匀速运动,此时物块受到的合力为零,即拉力与滑动摩擦力大小相等方向相反,即:Ff2=FT2=Pv2=10N物块在3s末时受到的滑动摩擦力大小与6s后受到的摩擦力大小相等,为10N.(3)依题意,物块在2s末之后一直到10s时,物块从平板的一端运动到另一端,对物块由动能定理得:PΔt-Ff2L=12mv22-12mv21代入数据解得:L=PΔt-12mv22+12mv21Ff2=2.416m.【答案】(1)0.2(2)6N10N(3)2.416m【名师点睛】1.高考考查特点本考点命题角度多为应用动能定理解决变力做功及多过程问题,题目综合性较强,正确理解动能定理,灵活分析物体的受力特点、运动特点及做功情况是常用方法.2.解题的常见误区及提醒(1)公式W=12mv2t-12mv20中W应是总功,方程为标量方程,不能在某方向上应用.(2)功的计算过程中,易出现正、负功判断及漏功的现象.(3)多过程问题中,不善于挖掘题目中的隐含条件,运动物体的过程分析易出现错误.【锦囊妙计,战胜自我】1.应用动能定理解题的4个步骤(1)确定研究对象及其运动过程;(2)分析受力情况和各力的做功情况;(3)明确物体初末状态的动能;(4)由动能定理列方程求解.2.应用动能定理解题应注意的3个问题(1)动能定理往往用于单个物体的运动过程,由于不牵扯加速度及时间,比动力学研究方法要简洁.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但若能对整个过程利用动能定理列式则可使问题简化.。