三维设计高考数学湘教版文科一轮复习解答题规范专练(四)立体几何(含答案详析)
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测5函数的单调性与最值

课时跟踪检测(五) 函数的单调性与最值第Ⅰ组:全员必做题1.下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( )A .-7B .1C .17D .253.(创新题)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12 4.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)6.已知函数f (x )=1a -1x(a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =__________. 7.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.8.使函数y =2x +k x -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.10.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.第Ⅱ组:重点选做题1.设函数f (x )定义在R 上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2)D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫132.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.答 案第Ⅰ组:全员必做题1.选D y =x +1是非奇非偶函数,A 错;y =-x 3是减函数,B 错;y =1x在(0,+∞)上为减函数,C 错;y =x |x |为奇函数,当x ≥0时,y =x 2为增函数,由奇函数性质得y =x |x |在R 上为增函数,故选D.2.选D 依题意,知函数图像的对称轴为x =--m 8=m 8=-2,即 m =-16,从而f (x )=4x 2+16x +5,f (1)=4+16+5=25.3.选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.4.选D ∵函数f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.又∵函数g (x )=a x +1在区间[1,2]上也是减函数,∴a >0.∴a 的取值范围是(0,1]. 5.选C 由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,所以f (4)<f (6)⇔f (-4)>f (-6).6.解析:由反比例函数的性质知函数f (x )=1a -1x(a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫12=12,f (2)=2.即⎩⎨⎧ 1a -2=12,1a -12=2,解得a =25. 答案:25 7.解析:g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).答案:[0,1)8.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2(x -2)+4+k x -2=2+4+k x -2,使其在(3,+∞)上是增函数, 故4+k <0,得k <-4.答案:(-∞,-4)9.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.10.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数.∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.第Ⅱ组:重点选做题1.选C 由f (2-x )=f (x )可知f (x )的图像关于直线x =1对称,当x ≥1时,f (x )=ln x ,可知当x ≥1时f (x )为增函数,所以当x <1时f (x )为减函数,因为⎪⎪⎪⎪12-1<⎪⎪⎪⎪13-1<|2-1|,所以f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2).故选C.2.解析:由于f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有0<a <3a -1≤1,解得12<a ≤23. 答案:⎝⎛⎦⎤12,23。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测54定点、定值、探索性问题

课时跟踪检测(五十四) 定点、定值、探索性问题(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.已知椭圆C 过点M ⎝⎛⎭⎫1,62 ,点F (-2,0)是椭圆的左焦点,点P ,Q 是椭圆C 上的两个动点,且|PF |,|MF |,|QF |成等差数列.(1)求椭圆C 的标准方程;(2)求证:线段PQ 的垂直平分线经过一个定点A .2. (2013·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2).(1)求椭圆的标准方程;(2)四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,若k AC ·k BD =-b 2a 2.求证:四边形ABCD 的面积为定值.3. (2013·北京东城区期末)在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)△AOB 的面积是否存在最大值,若存在,求出△AOB 的面积的最大值;若不存在,说明理由.第Ⅰ卷:提能增分卷1.已知椭圆C :x 24+y 23=1,点F 1,F 2分别为其左、右焦点,点A 为左顶点,直线l 的方程为x =4,过点F 2的直线l ′与椭圆交于异于点A 的P ,Q 两点.(1)求AP ·AQ 的取值范围;(2)若AP ∩l =M ,AQ ∩l =N ,求证:M ,N 两点的纵坐标之积为定值,并求出该定值.2. (2013·合肥模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 23-m 2=1(0<m 2<3)有公共的焦点,过椭圆E 的右顶点R 任意作直线l ,设直线l 交抛物线y 2=2x 于M ,N 两点,且OM ⊥ON .(1)求双曲线的焦点坐标和椭圆E 的方程;(2)设P 是椭圆E 上第一象限内的点,点P 关于原点O 的对称点为A 、关于x 轴的对称点为Q ,线段PQ 与x 轴相交于点C ,点D 为CQ 的中点,若直线AD 与椭圆E 的另一个交点为B ,试判断直线P A ,PB 是否相互垂直?并证明你的结论.答 案第Ⅰ卷:夯基保分卷1.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由已知,得⎩⎪⎨⎪⎧1a 2+64b 2=1,a 2-b 2=2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 由椭圆的标准方程为x 24+y 22=1,可知|PF |=(x 1+2)2+y 21=()x 1+22+2-x 212=2+22x 1,同理|QF |=2+22x 2, |MF |=(1+2)2+⎝⎛⎭⎫622=2+22,∵2|MF |=|PF |+|QF |, ∴2⎝⎛⎭⎫2+22=4+22(x 1+x 2),∴x 1+x 2=2.(ⅰ)当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4.得x 21-x 22+2(y 21-y 22)=0,∴y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点为N (1,n ),由k PQ =y 1-y 2x 1-x 2=-12n ,得线段PQ 的中垂线方程为y -n =2n (x -1), ∴(2x -1)n -y =0, 该直线恒过一定点A ⎝⎛⎭⎫12,0. (ⅱ)当x 1=x 2时,P ⎝⎛⎭⎫1,-62,Q ⎝⎛⎭⎫1,62 或P ⎝⎛⎭⎫1,62,Q ⎝⎛⎭⎫1,-62, 线段PQ 的中垂线是x 轴, 也过点A ⎝⎛⎭⎫12,0.综上,线段PQ 的中垂线过定点A ⎝⎛⎭⎫12,0. 2.解:(1)由题意e =c a =22,4a 2+2b 2=1,又a 2=b 2+c 2,解得a 2=8,b 2=4,故椭圆的标准方程为x 28+y 24=1.(2)证明:设直线AB 的方程为y =kx +m , A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=8.得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=(4km )2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0, ①由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k2.∵k AC ·k BD =-b 2a 2=-12,∴y 1y 2x 1x 2=-12,∴y 1y 2=-12x 1x 2=-12·2m 2-81+2k 2=-m 2-41+2k 2. 又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 22m 2-81+2k 2+km -4km 1+2k2+m 2=m 2-8k 21+2k 2,∴-m 2-41+2k 2=m 2-8k 21+2k 2, ∴-(m 2-4)=m 2-8k 2, ∴4k 2+2=m 2.设原点到直线AB 的距离为d ,则 S △AOB =12|AB |·d =121+k 2·|x 2-x 1|·|m |1+k 2=|m |2(x 1+x 2)2-4x 1x 2=|m |2 ⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=|m |28m 2(1+2k 2)2=22, ∴S 四边形ABCD =4S △AOB =82, 即四边形ABCD 的面积为定值.3.解:(1)由椭圆定义可知,点P 的轨迹C 是以(-3,0),(3,0)为焦点,长半轴长为2的椭圆.故曲线C 的轨迹方程为x 24+y 2=1.(2)△AOB 的面积存在最大值.因为直线l 过点E (-1,0),所以可设直线l 的方程为x =my -1或y =0(舍). 由⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1.整理得(m 2+4)y 2-2my -3=0, Δ=(2m )2+12(m 2+4)>0.设点A (x 1,y 1),B (x 2,y 2),其中y 1>y 2. 解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4.则|y 2-y 1|=4m 2+3m 2+4. 因为S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设t =m 2+3,t ≥ 3,g (t )=t +1t,则g ′(t )=1-1t2,故当t ≥3时g ′(t )>0恒成立,则g (t )在区间[3,+∞)上为增函数,所以g (t )≥g (3)=433.所以S △AOB ≤32,当且仅当m =0时取等号. 所以S △AOB 的最大值为32. 第Ⅱ卷:提能增分卷1.解:(1)①当直线PQ 的斜率不存在时, 由F 2(1,0)可知PQ 的方程为x =1, 代入椭圆C :x 24+y 23=1,得点P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32, 又点A (-2,0),故AP =⎝⎛⎭⎫3,32,AQ =⎝⎛⎭⎫3,-32, AP ·AQ =274.②当直线PQ 的斜率存在时,设PQ 的方程为y =k (x -1)(k ≠0),代入椭圆C :x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,y 1y 2=k 2(x 1-1)(x 2-1)=k 2(-x 1-x 2+x 1x 2+1)=-9k 23+4k2, 故AP ·AQ =(x 1+2)(x 2+2)+y 1y 2=x 1x 2+2(x 1+x 2)+4+y 1y 2=27k 23+4k 2=273k 2+4∈⎝⎛⎭⎫0,274,综上,AP ·AQ 的取值范围是⎝⎛⎦⎤0,274. (2)证明:由(1)知,直线AP 的方程为y =y 1x 1+2(x +2),与直线l 的方程x =4联立,得M ⎝ ⎛⎭⎪⎫4,6y 1x 1+2,同理,得N ⎝ ⎛⎭⎪⎫4,6y 2x 2+2,故M ,N 两点的纵坐标之积y M y N =6y 1x 1+2·6y 2x 2+2=36y 1y 2x 1x 2+2(x 1+x 2)+4. ①当直线PQ 的斜率不存在时,y M y N =36×32×⎝⎛⎭⎫-321×1+2(1+1)+4=-9;②当直线PQ 的斜率存在时,由(1)可知,y M y N =-324k 23+4k 24k 2-123+4k 2+16k 23+4k 2+4=-9.综上所述,M ,N 两点的纵坐标之积为定值,该定值为-9. 2.解:(1)由题意可知c 双=m 2+3-m 2=3,故双曲线的焦点坐标为F 1(-3,0)、F 2(3,0).设点M (x 1,y 1)、N (x 2,y 2),设直线l :ty =x -a ,代入y 2=2x 并整理得y 2-2ty -2a =0,所以⎩⎪⎨⎪⎧y 1+y 2=2t ,y 1y 2=-2a .故OM ·ON =x 1x 2+y 1y 2=(ty 1+a )(ty 2+a )+y 1y 2 =(t 2+1)y 1y 2+at (y 1+y 2)+a 2=(t 2+1)(-2a )+2at 2+a 2=a 2-2a =0,解得a =2.又c 椭=c 双=3,所以椭圆E 的方程为x 24+y 2=1.(2)法一:判断结果:P A ⊥PB 恒成立. 证明如下:设P (x 0,y 0),则A (-x 0,-y 0), D (x 0,-12y 0),x 20+4y 20=4,将直线AD 的方程y =y 04x 0(x +x 0)-y 0代入椭圆方程并整理得(4x 20+y 20)x 2-6x 0y 20x +9x 20y 20-16x 20=0,由题意可知此方程必有一根为-x 0.于是解得x B =6x 0y 204x 20+y 20+x 0,所以y B =y 04x 0⎝ ⎛⎭⎪⎫6x 0y 204x 20+y 20+2x 0-y 0 =y 30-2x 20y 04x 20+y 20,所以k PB =y 30-2x 20y 04x 20+y 20-y 06x 0y 204x 20+y 2=-6x 20y 06x 0y 20=-x 0y 0, 故k P A k PB =-x 0y 0×y 0x 0=-1,即P A ⊥PB .法二:判断结果:P A ⊥PB 恒成立.证明如下:设B (x 1,y 1),P (x 0,y 0),则A (-x 0,-y 0),D ⎝⎛⎭⎫x 0,-y 02,x 214+y 21=1,x 204+y 20=1,两式相减得y 21-y 20x 21-x 20=-14,故k BA ·k BP =y 1+y 0x 1+x 0· y 1-y 0x 1-x 0=y 21-y 20x 21-x 20=-14.又k AB =k AD =-12y 0+y 0x 0+x 0=y 04x 0,代入上式可得k PB =⎝⎛⎭⎫-14÷y 04x 0=-x0y 0, 所以k P A k PB =y 0x 0·⎝⎛⎭⎫-x 0y 0=-1, 即P A ⊥PB .。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测45直线的倾斜角与斜率、直线的方程

课时跟踪检测(四十五) 直线的倾斜角与斜率、直线的方程第Ⅰ组:全员必做题1.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.232.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <03.若实数a ,b 满足a +2b =3,则直线2ax -by -12=0必过定点( ) A .(-2,8) B .(2,8) C .(-2,-8)D .(2,-8)4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +15.(2014·浙江诸暨质检)已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤46.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________.7.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则k 的取值范围是________.8.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 9.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈⎣⎡⎦⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围.10.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.第Ⅱ组:重点选做题1.(2014·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by+c =0的倾斜角为( )A .45°B .60°C .120°D .135°2.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________.答 案第Ⅰ组:全员必做题1.选B 设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.2.选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b<0且-cb>0,故ab >0,bc <0.3.选D a +2b =3⇒4a +8b -12=0,又2ax -by -12=0,比较可知x =2,y =-8故选D.4.选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.5.选A 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4,故选A.6.解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC , 即-x -54=2,解得x =-3.答案:-37.解析:y =k (x +1)是过定点P (-1,0)的直线,k PB =0,k P A =1-00-(-1)=1.∴k 的取值范围是[0,1]. 答案:[0,1]8.解析:(1)当过原点时, 直线方程为y =-53x ,(2)当不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0. 答案:y =-53x 或x -y +8=09.解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎡⎭⎫-33,0∪(0, 3 ], ∴k =1m +1∈(-∞,- 3 ]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3. 综合①②知,直线AB 的倾斜角α∈⎣⎡⎦⎤π6,2π3.10.解:(1)证明:法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). 法二:设直线l 过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立, 即(x 0+2)·k -y 0+1=0恒成立, ∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1, 故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞). (3)依题意,直线l 在x 轴上的截距为 -1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k (1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0. 第Ⅱ组:重点选做题1.选D 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝⎛⎭⎫π2, 即-b =a ,∴直线l 的斜率为-1, ∴倾斜角为135°.2.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.1答案:2。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测17任意角和弧度制及任意角的三角函数

课时跟踪检测(十七) 任意角和弧度制及任意角的三角函数第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6 C .-π3D .-π62.已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角D .第一或第四象限角3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.124.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.第Ⅱ组:重点选做题1.满足cos α≤-12的角α的集合为________.2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.答 案第Ⅰ组:全员必做题1.选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角.3.选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.选C sin(-1 000°)=sin 80°>0; cos(-2 200°)=cos(-40°)=cos 40°>0; tan(-10)=tan(3π-10)<0; sin7π10cos πtan 17π9=-sin 7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0. 6.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)7.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-358.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k ∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角. 答案:四9.解:设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H . 则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).10.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎨⎧⎭⎬⎫α⎪⎪(2k +1)π<α<2k π+3π2,k ∈Z .(2)由(2k +1)π<α<2k π+3π2,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第Ⅱ组:重点选做题1.解析:作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z . 答案:⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z2.解析:如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点.由题意知BP 的长为2.∵圆的半径为1, ∴∠BAP =2, 故∠DAP =2-π2.∴DP =AP ·sin ⎝⎛⎭⎫2-π2=-cos 2, ∴PC =1-cos 2,DA =AP cos ⎝⎛⎭⎫2-π2= sin 2.∴OC =2-sin 2.故OP =(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测32数列求和

课时跟踪检测(三十二) 数列求和(分Ⅰ、Ⅱ卷,共2页)第Ⅰ卷:夯基保分卷1.数列{1+2n -1}的前n 项和为( ) A .1+2nB .2+2nC .n +2n -1D .n +2+2n2.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.1011003.(2013·北京东城一模)已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .-100C .100D .10 2004.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( )A .6n -n 2B .n 2-6n +18 C.⎩⎪⎨⎪⎧ 6n -n 2(1≤n ≤3)n 2-6n +18(n >3) D.⎩⎪⎨⎪⎧ 6n -n 2 (1≤n ≤3)n 2-6n (n >3) 5.已知数列{a n }满足a n +a n +1=(-1)n +12(n ∈N *),a 1=-12,S n 是数列{a n }的前n 项和,则S 2 013=________.6.(创新题)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.7.(2013·江西高考)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .8.(2014·襄阳调研)已知数列{a n },如果数列{b n }满足b 1=a 1,b n =a n +a n -1,n ≥2,n∈N *,则称数列{b n }是数列{a n }的“生成数列”.(1)若数列{a n }的通项为a n =n ,写出数列{a n }的“生成数列”{b n }的通项公式;(2)若数列{c n }的通项为c n =2n +b (其中b 是常数),试问数列{c n }的“生成数列”{q n }是否是等差数列,请说明理由;(3)已知数列{d n }的通项为d n =2n +n ,求数列{d n }的“生成数列”{p n }的前n 项和T n .第Ⅱ卷:提能增分卷1.(2014·浙江协作体三模)在直角坐标平面上有一点列P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,对一切正整数n ,点P n 在函数y =3x +134的图像上,且P n 的横坐标构成以-52为首项,-1为公差的等差数列{x n }.(1)求点P n 的坐标;(2)设抛物线列C 1,C 2,C 3,…,C n ,…中的每一条的对称轴都垂直于x 轴,抛物线C n的顶点为P n ,且过点D n (0,n 2+1).记与抛物线C n 相切于点D n 的直线的斜率为k n ,求1k 1k 2+1k 2k 3+…+1k n -1k n.2.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *).(1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b n n,求数列{c n }的前n 项和T n .3.已知正项数列{a n },{b n }满足a 1=3,a 2=6,{b n }是等差数列,且对任意正整数n ,都有b n ,a n ,b n +1成等比数列.(1)求数列{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,试比较2S n 与2-b 2n +1a n +1的大小.答 案第Ⅰ卷:夯基保分卷1.选C 由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1,故选C. 2.选A 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧ a 1+4d =5,5a 1+5×(5-1)2d =15, ∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 1-12+12-13+…+1100-1101=1-1101=100101. 3.选B f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2 (n 为奇数)n 2 (n 为偶数)=(-1)n ·n 2, 由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.4.选C ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2.∴a n =-5+(n -1)×2=2n -7,∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3). 5.解析:由题意知,a 1=-12,a 2=1,a 3=-32,a 4=2,a 5=-52,a 6=3,…,所以数列{a n }的奇数项构成了首项为-12,公差为-1的等差数列,偶数项构成了首项为1,公差为1的等差数列,通过分组求和可得S 2 013=-12×1 007+1 007×1 0062×(-1)+⎝⎛⎭⎫1×1 006+1 006×1 0052×1=-1 0072. 答案:-1 00726.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2. 答案:2n +1-27.解:(1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n .(2)由a n =2n ,b n =1(n +1)a n, 得b n =12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1. T n =12⎝ ⎛1-12+12-13+…+1n -1-1n + ⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1). 8.解:(1)当n ≥2时,b n =a n +a n -1=2n -1,当n =1时,b 1=a 1=1适合上式,∴b n =2n -1(n ∈N *).(2)q n =⎩⎪⎨⎪⎧2+b ,n =1,4n +2b -2,n ≥2,当b =0时,q n =4n -2,由于q n +1-q n =4,所以此时数列{c n }的“生成数列”{q n }是等差数列.当b ≠0时,由于q 1=c 1=2+b ,q 2=6+2b ,q 3=10+2b ,此时q 2-q 1≠q 3-q 2,所以此时数列{c n }的“生成数列”{q n }不是等差数列.(3)p n =⎩⎪⎨⎪⎧3,n =1,3·2n -1+2n -1,n ≥2, 当n >1时,T n =3+(3·2+3)+(3·22+5)+…+(3·2n -1+2n -1), ∴T n =3+3(2+22+23+…+2n -1)+(3+5+7+…+2n -1)=3·2n +n 2-4. 又n =1时,T 1=3,适合上式,∴T n =3·2n +n 2-4. 第Ⅱ卷:提能增分卷1.解:(1)∵x n =-52+(n -1)×(-1)=-n -32,∴y n =3x n +134=-3n -54. ∴P n ⎝⎛⎭⎫-n -32,-3n -54. (2)∵C n 的对称轴垂直于x 轴,且顶点为P n , ∴设C n 的方程为y =a ⎝ ⎛⎭⎪⎫x +2n +322-12n +54. 把D n (0,n 2+1)代入上式,得a =1,∴C n 的方程为y =x 2+(2n +3)x +n 2+1.∴k n =y ′|x =0=2n +3,∴1k n -1k n =1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴1k 1k 2+1k 2k 3+…+1k n -1k n=12⎣⎡⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+ ⎦⎥⎤⎝ ⎛⎭⎪⎫12n +1-12n +3=12⎝ ⎛⎭⎪⎫15-12n +3 =110-14n +6. 2.解:(1)∵S n =3n ,∴S n -1=3n -1(n ≥2),∴a n =S n -S n -1=3n -3n -1=2×3n -1(n ≥2).当n =1时,2×31-1=2≠S 1=a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.(2)∵b n +1=b n +(2n -1),∴b 2-b 1=1,b 3-b 2=3,b 4-b 3=5,…,b n -b n -1=2n -3. 以上各式相加得b n -b 1=1+3+5+…+(2n -3)=(n -1)(1+2n -3)2=(n -1)2. ∵b 1=-1,∴b n =n 2-2n . (3)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,2(n -2)×3n -1,n ≥2. 当n ≥2时,T n =-3+2×0×31+2×1×32+2×2×33+…+2(n -2)×3n -1, ∴3T n =-9+2×0×32+2×1×33+2×2×34+…+2(n -2)×3n , ∴相减得-2T n =6+2×32+2×33+…+2×3n -1-2(n -2)×3n . ∴T n =(n -2)×3n -(3+32+33+…+3n -1)=(n -2)×3n -3n -32=(2n -5)3n +32. ∴T n =⎩⎨⎧ -3,n =1,(2n -5)3n +32,n ≥2.∴T n =(2n -5)3n +32(n ∈N *). 3.解:(1)∵对任意正整数n ,都有b n ,a n ,b n +1成等比数列,且{a n },{b n }都为正项数列,∴a n =b n b n +1(n ∈N *).可得a 1=b 1b 2=3,a 2=b 2b 3=6,又{b n }是等差数列,∴b 1+b 3=2b 2,解得b 1=2,b 2=322.∴b n =22(n +1). (2)由(1)可得a n =b n b n +1=(n +1)(n +2)2, 则1a n =2(n +1)(n +2)=2⎝ ⎛⎭⎪⎫1n +1-1n +2, ∴S n =2⎣⎡ ⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+ ⎦⎥⎤⎝ ⎛⎭⎪⎫1n +1-1n +2=1-2n +2, ∴2S n =2-4n +2,又2-b 2n +1a n +1=2-n +2n +3, ∴2S n -⎝⎛⎭⎪⎫2-b 2n +1a n +1=n +2n +3-4n +2=n 2-8(n +2)(n +3). ∴当n =1,2时,2S n <2-b 2n +1a n +1; 当n ≥3时,2S n >2-b 2n +1a n +1.。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测40空间几何体的结构特征及三视图与直观

课时跟踪检测(四十) 空间几何体的结构特征及三视图与直观图第Ⅰ组:全员必做题1.(2014·青岛模拟)将长方体截去一个四棱锥后,得到的几何体的直观图如右图所示,则该几何体的俯视图为( )2.三视图如图所示的几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台3.(2013·郑州模拟)一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是( )A .0B .1C .2D .35.用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 26.(2014·江西九校联考)如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的面积为23,则其侧视图的面积为()A.32 B.33C.34 D.367.如图所示,三棱锥P-ABC的底面ABC是直角三角形,直角边长AB=3,AC=4,过直角顶点的侧棱P A⊥平面ABC,且P A=5,则该三棱锥的正视图是()8.(2013·东莞调研)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()9.一个几何体的三视图如图所示,则侧视图的面积为________.10.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.11.(创新题)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为12,则这个几何体的俯视图可能是下列图形中的__________.(填入所有可能的图形前的编号)①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆. 12.(2013·合肥检测)已知正四面体(所有棱长都相等的三棱锥)的俯视图如图所示,其中四边形ABCD 是边长为2 cm 的正方形,则这个正四面体的正视图的面积为________cm 2.第Ⅱ组:重点选做题1.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.①②2.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.答 案第Ⅰ组:全员必做题1.选C 长方体的侧面与底面垂直,所以俯视图是C.2.选B 由三视图知该几何体为一四棱锥,其中有一侧棱垂直于底面,底面为一直角梯形.3.选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽度为32,与题中所给的侧视图的宽度1不相等,因此选C. 4.选A 反例:①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.5.选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC 、AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.6.选B 由题意知,该三棱锥的正视图为△VAC ,作VO ⊥AC 于O ,连接OB ,设底面边长为2a ,高VO =h ,则△VAC 的面积为12×2a ×h =ah =23.又三棱锥的侧视图为Rt △VOB ,在正三角形ABC 中,高OB =3a ,所以侧视图的面积为12OB ·OV =12×3a ×h =32ah =32×23=33. 7.选D 三棱锥的正视图.即是光线从三棱锥模型的前面向后面投影所得到投影图形.结合题设条件给出的数据进行分析.可知D 正确.8.选B 由三视图间的关系,易知其侧视图是一个底边为3,高为2的直角三角形,故选B.9.解析:依题意得设几何体的侧视图面积为 22+12×2×3=4+ 3.答案:4+ 310.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD -A 1B 1C 1D 1中的四面体A -CB 1D 1;②错误,反例如图所示,底面△ABC 为等边三角形,可令AB =VB =VC =BC =AC ,则△VBC 为等边三角形,△VAB 和△VCA 均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①11.解析:如图1所示,直三棱柱ABE -A 1B 1E 1符合题设要求,此时俯视图△ABE 是锐角三角形;如图2所示,直三棱柱ABC -A 1B 1C 1符合题设要求,此时俯视图△ABC 是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD -A 1B 1C 1D 1符合题设要求,此时俯视图(四边形ABCD )是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③12.解析:构造一个边长为2 cm 的正方体ABCD -A 1B 1C 1D 1,在此正方体中作出一个正四面体AB 1CD 1,易得该正四面体的正视图是一个底边长为2 2 cm ,高为2 cm 的等腰三角形,从而可得正视图的面积为2 2 cm 2.答案:2 2第Ⅱ组:重点选做题1.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱、下面为倒立的正六棱锥的组合体. 2.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝⎛⎭⎫23×32×232=23,∴S △VBC =12×23×23=6.。
2024年高考数学立体几何复习试卷及答案解析

2024年高考数学立体几何复习试卷及答案
一、选择题
1.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线()
A.只有一条,不在平面α内
B.只有一条,且在平面α内
C.有无数条,一定在平面α内
D.有无数条,不一定在平面α内
答案B
解析假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l,由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点P且平行于l的直线只有一条,又因为点P 在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选B.
2.设m,n为两条不同的直线,α为平面,则下列结论正确的是()
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥α
C.m∥n,m⊥α⇒n⊥αD.m∥n,m∥α⇒n∥α
答案C
解析对于A,若m⊥n,m∥α时,可能n⊂α或斜交,故错误;
对于B,m⊥n,m⊥α⇒n∥α或n⊂α,故错误;
对于C,m∥n,m⊥α⇒n⊥α,正确;
对于D,m∥n,m∥α⇒n∥α或n⊂α,故错误.
故选C.
3.已知l⊥平面α,直线m⊂平面β.有下面四个命题:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;
③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正确的命题是()
A.①②B.③④
C.②④D.①③
答案D
解析∵l⊥α,α∥β,∴l⊥β,∵m⊂β,∴l⊥m,故①正确;∵l∥m,l⊥α,∴m⊥α,又∵m⊂β,∴α⊥β,故③正确.
4.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()
第1页共11页。
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程
![2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程](https://img.taocdn.com/s3/m/d6043ee5534de518964bcf84b9d528ea81c72fb4.png)
2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P(某,y)是平面直角坐标系中的任意一点,在变换某,λ>0,某′=λ·φ:的作用下,点P(某,y)对应到点P′(某′,y′),称φ为平面直y′=μ·y,μ>0角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线O某,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴O某为始边,射线OM为终边的角某OM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M是坐标系平面内任意一点,它的直角坐标是(某,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M互化公式直角坐标(某,y)某=ρcoθρinθy=极坐标(ρ,θ)ρ=某+yytanθ=某某≠02224.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)ρ=2rco_θ圆心为(r,0),半径为r的圆-π≤θ≤π22ρ=2rin_θ(0≤θ<π)πr,,半径为r的圆圆心为2(1)θ=α(ρ∈R)或θ=π+α(ρ∈R)(2)θ=α(ρ≥0)和θ=π+α(ρ≥0)过极点,倾斜角为α的直线过点(a,0),与极轴垂直的直线πa,,与极轴平行的直线过点2ππ-<θ<ρco_θ=a22ρin_θ=a(0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.[试一试]1.点P的直角坐标为(1,-3),求点P的极坐标.π解:因为点P(1,-3)在第四象限,与原点的距离为2,且OP与某轴所成的角为-,3π2,-.所以点P的极坐标为32.求极坐标方程ρ=inθ+2coθ能表示的曲线的直角坐标方程.解:由ρ=inθ+2coθ,得ρ2=ρinθ+2ρcoθ,∴某2+y2-2某-y=0.故故极坐标方程ρ=inθ+2coθ表示的曲线直角坐标方程为某2+y2-2某-y=0.1.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.直角坐标(某,y)化为极坐标(ρ,θ)的步骤y(1)运用ρ=某2+y2,tanθ=(某≠0)某y(2)在[0,2π)内由tanθ=(某≠0)求θ时,由直角坐标的符号特征判断点所在的象限.某[练一练]1.在极坐标系中,求圆心在(2,π)且过极点的圆的方程.解:如图,O为极点,OB为直径,A(ρ,θ),则∠ABO=θ-90°,OBρ=22=,化简得ρ=-22coθ.inθ-90°π22.已知直线的极坐标方程为ρin(θ+)=,求极点到该直线的距离.4222π2in+co解:极点的直角坐标为O(0,0),ρin(θ+)=ρ=,∴ρinθ+4222ρcoθ=1,化为直角坐标方程为某+y-1=0.∴点O(0,0)到直线某+y-1=0的距离为d==π222θ+=的距离为.,即极点到直线ρin42222考点一平面直角坐标系中的伸缩变换1某′=2某,1.(2022·佛山模拟)设平面上的伸缩变换的坐标表达式为求在这一坐标变y′=3y,换下正弦曲线y=in某的方程.1某=2某′,某′=2某,解:∵∴1y=y′.y′=3y,3代入y=in某得y′=3in2某′.某′=2某,π2.求函数y=in(2某+)经伸缩变换14y′=y21某′=2某,某=2某′,解:由得①1y′=y,2y=2y′.π1π将①代入y=in(2某+),得2y′=in(2·某′+),4241π即y′=in(某′+).24后的解析式.某′=3某,y23.求双曲线C:某-=1经过φ:变换后所得曲线C′的焦点坐标.642y′=y21某=3某′,y22解:设曲线C′上任意一点P′(某′,y′),由上述可知,将代入某-=64y=2y′,某′24y′2某′2y′21得-=1,化简得-=1,964916某2y2即-=1为曲线C′的方程,可见仍是双曲线,则焦点F1(-5,0),F2(5,0)为所求.916[类题通法]某,λ>0某′=λ·平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换下,直y′=μ·y,μ>0线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化[典例](2022·石家庄模拟)在平面直角坐标系某Oy中,以坐标原点O为极点,某轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为3ρ2=12ρcoθ-10(ρ>0).(1)求曲线C1的直角坐标方程;某2y2(2)曲线C2的方程为+=1,设P,Q分别为曲线C1与曲线C2上的任意一点,求|PQ|164的最小值.[解](1)曲线C1的方程可化为3(某2+y2)=12某-10,2即(某-2)2+y2=.3(2)依题意可设Q(4coθ,2inθ),由(1)知圆C1的圆心坐标为C1(2,0).故|QC1|=4coθ-22+4in2θ=12co2θ-16coθ+8=222coθ-2+,33326,36.3|QC1|min=所以|PQ|min=[类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2022·安徽模拟)在极坐标系中,判断直线ρcoθ-ρinθ+1=0与圆ρ=2inθ的位置关系.解:直线ρcoθ-ρinθ+1=0可化成某-y+1=0,圆ρ=2inθ可化为某2+y2=2y,即某2+(y-1)2=1.圆心(0,1)到直线某-y+1=0的距离d=考点三|0-1+1|=0<1.故直线与圆相交.2极坐标方程及应用[典例](2022·郑州模拟)已知在直角坐标系某Oy中,曲线C的参数方程为某=2+2coθ,(θ为参数),在极坐标系(与直角坐标系某Oy取相同的长度单位,且以y=2inθπ原点O为极点,以某轴正半轴为极轴)中,直线l的方程为ρin(θ+)=22.4(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.[解](1)由已知得,曲线C的普通方程为(某-2)2+y2=4,即某2+y2-4某=0,化为极坐标方程是ρ=4coθ.(2)由题意知,直线l的直角坐标方程为某+y-4=0,22某+y-4某=0,由得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为22.某+y=4,π在本例(1)的条件下,求曲线C与曲线C1:ρcoθ=3(ρ≥0,0≤θ解:由曲线C,C1极坐标方程联立ρ=4coθ,33π∴co2θ=,coθ=±,又ρ≥0,θ∈[0,).422∴coθ=π3π23,.,θ=,ρ=23,故交点极坐标为626[类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.[针对训练](2022·荆州模拟)在极坐标系中,求过圆ρ=6coθ的圆心,且垂直于极轴的直线的极坐标方程.解:ρ=6coθ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于某轴的直线方程为某=3,其在极坐标系下的方程为ρcoθ=3.[课堂练通考点]π1.(2022·南昌调研)在极坐标系中,求圆ρ=2coθ与直线θ=(ρ>0)所表示的图形的交4点的极坐标.π解:圆ρ=2coθ可转化为某2-2某+y2=0,直线θ=可转化为y =某(某>0),两个方程联4π立得交点坐标是(1,1),可得其极坐标是(2,).4ππ2.(2022·惠州模拟)在极坐标系中,已知两点A,B的极坐标分别为(3,)、(4,),求36△AOB(其中O为极点)的面积.ππ1解:由题意知A,B的极坐标分别为(3,)、(4,),则△AOB的面积S△AOB=OA·OB·in3621π∠AOB=某3某4某in=3.263.(2022·天津高考改编)已知圆的极坐标方程为ρ=4c oθ,圆心为C,点P的极坐标为4,π,求|CP|的值.3解:由ρ=4coθ可得圆的直角坐标方程为某2+y2=4某,圆心C(2,0).点P的直角坐标为(2,23),所以|CP|=23.4.在极坐标系中,求圆:ρ=2上的点到直线:ρ(coθ+3inθ)=6的距离的最小值.解:由题意可得,圆的直角坐标方程为某2+y2=4,圆的半径为r=2,直线的直角坐标|0+3某0-6|方程为某+3y-6=0,圆心到直线的距离d==3,所以圆上的点到直线的距2离的最小值为d-r=3-2=1.某=-t,π5.(2022·银川调研)已知直线l:(t为参数)与圆C:ρ=42co(θ-).4y=1+t(1)试判断直线l和圆C的位置关系;(2)求圆上的点到直线l的距离的最大值.解:(1)直线l的参数方程消去参数t,得某+y-1=0.π由圆C的极坐标方程,得ρ2=42ρco(θ-),化简得ρ2=4ρcoθ+4ρinθ,所以圆C4的直角坐标方程为某2+y2=4某+4y,即(某-2)2+(y-2)2=8,故该圆的圆心为C(2,2),半径r=22.|2+2-1|32从而圆心C到直线l的距离为d=22=2,1+132显然<22,所以直线l和圆C相交.232(2)由(1)知圆心C到直线l的距离为d=,所以圆上的点到直线l的距离的最大值为23272+22=.22[课下提升考能]1.在直角坐标系某Oy中,以O为极点,某轴的正半轴为极轴建立极坐标系.曲线C的πθ-=1,M,N分别为曲线C与某轴,y轴的交点.极坐标方程为ρco3(1)写出曲线C的直角坐标方程,并求点M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.π13θ-=1得ρcoθ+inθ=1,解:(1)由ρco32213从而曲线C的直角坐标方程为某+y=1,即某+3y=2.22θ=0时,ρ=2,所以M(2,0).π2323πθ=时,ρ=,所以N.233,223(2)由(1)得点M的直角坐标为(2,0),点N的直角坐标为0,.3所以点P的直角坐标为1,323π,则点P的极坐标为,33,6π所以直线OP的极坐标方程为θ=,ρ∈(-∞,+∞).6π1,,点B在直线l:ρcoθ+ρinθ=0(0≤θ<2π)上运动,当2.在极坐标系中定点A2线段AB最短时,求点B的极坐标.解:∵ρcoθ+ρinθ=0,∴coθ=-inθ,tanθ=-1.3π∴直线的极坐标方程化为θ=(直线如图).4过A作直线垂直于l,垂足为B,此时AB最短.易得|OB|=22 .∴B点的极坐标为23π2,4.3.(2022·扬州模拟)已知圆的极坐标方程为:ρ2-42ρcoθ-π4+6=0.(1)将极坐标方程化为普通方程;(2)若点P(某,y)在该圆上,求某+y的最大值和最小值.解:(1)原方程变形为:ρ2-4ρcoθ-4ρinθ+6=0.某2+y2-4某-4y+6=0.(2)圆的参数方程为某=2+2coα,y=2+2inα(α为参数),所以某+y=4+2inα+π4.那么某+y的最大值为6,最小值为2.4.在同一平面直角坐标系中,已知伸缩变换φ:某′=3某,2y′=y.(1)求点A13,-2经过φ变换所得的点A′的坐标;(2)点B经过φ变换得到点B′-3,12,求点B的坐标;(3)求直线l:y=6某经过φ变换后所得到的直线l′的方程.某′=3某,解:(1)设A′(某′,y′),由伸缩变换φ:某′=3某,y′=y得到y′=12y,坐标为13,-2,于是某′=3某13=1,y′=12某(-2)=-1,∴A′(1,-1)为所求.(2)设B(某,y),由伸缩变换φ:某′=3某,某=3某′,y′=y得到y=2y′.由于点B′的坐标为-3,12,于是某=13某(-3)=-1,y=2某12=1,A的由于点∴B(-1,1)为所求.某=,某′=3某,3(3)由伸缩变换φ:得2y′=y,某′y=2y′.代入直线l:y=6某,得到经过伸缩变换后的方程y′=某′,因此直线l的方程为y=某.5.(2022·南京模拟)在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2coθ,ρcoθ+π=1.3(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹,并指出轨迹是什么图形.解:(1)C1的直角坐标方程为(某+1)2+y2=1,它表示圆心为(-1,0),半径为1的圆,C23的直角坐标方程为某-3y-2=0,所以曲线C2为直线,由于圆心到直线的距离为d=>1,2所以直线与圆相离,即曲线C1和C2没有公共点.ρρ0=2,(2)设Q(ρ0,θ0),P(ρ,θ),则θ=θ0,2ρ0=ρ,即①θ0=θ.因为点Q(ρ0,θ0)在曲线C2上,πθ0+=1,②所以ρ0co3π2θ+=1,将①代入②,得coρ3π13θ+为点P的轨迹方程,化为直角坐标方程为某-2+y+2=1,因即ρ=2co32213此点P的轨迹是以,-为圆心,1为半径的圆.22π2θ-=.6.(2022·苏州模拟)在极坐标系下,已知圆O:ρ=coθ+inθ和直线l:ρin42(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.解:(1)圆O:ρ=coθ+inθ,即ρ2=ρcoθ+ρinθ,圆O的直角坐标方程为:某2+y2=某+y,即某2+y2-某-y=0,π2θ-=,即ρinθ-ρcoθ=1,直线l:ρin42则直线l的直角坐标方程为:y-某=1,即某-y+1=0.22某+y-某-y=0,某=0,π1,.(2)由得故直线l与圆O公共点的一个极坐标为2某-y+1=0y =1,第二节参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数某,y中的一个与参数t的关系,例如某=f(t),把它代入普通方程,求某=ft,出另一个变数与参数的关系y=g(t),那么,就是曲线的参数方程.y=gt2.常见曲线的参数方程和普通方程点的轨迹直线普通方程y-y0=tanα(某-某0)参数方程某=某0+tcoαy=y0+tinα(t为参数)圆某+y=r某2y2+=1(a>b>0)a2b2222某=rcoθ(θ为参数)y=rinθ某=acoφ(φ为参数)y=binφ椭圆某=某0+tcoα,1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程y=y0+tinα.(t为参数)注意:t是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性.[试一试]3.(2022·合肥模拟)在平面直角坐标系中,直线l的参数方程为23y=+22t1某=t,2(t为参数),若以直角坐标系的原点O为极点,某轴非负半轴为极轴,且长度单位相同,建立极坐πθ-.若直线l与曲线C交于A,B两点,求|AB|的标系,曲线C的极坐标方程为ρ=2co4值.解:首先消去参数t,可得直线方程为3某-y+为某-2=0,极坐标方程化为直角坐标方程21-1062=.24222+y-2=1,根据直线与圆的相交弦长公式可得|AB|=2224.(2022·石家庄模拟)在平面直角坐标系某Oy中,以原点O为极点,某轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρin2θ=coθ.(1)求曲线C的直角坐标方程;某=2-22t,(2)若直线l的参数方程为2y=2t点,求|AB|的值.(t为参数),直线l与曲线C相交于A,B两解:(1)将y=ρinθ,某=ρcoθ代入ρ2in2θ=ρcoθ中,得y2=某,∴曲线C的直角坐标方程为:y2=某.某=2-22t,(2)把2y=2t,代入y2=某整理得,t2+2t-4=0,Δ>0总成立.设A,B两点对应的参数分别为t1,t2,∵t1+t2=-2,t1t2=-4,∴|AB|=|t1-t2|=-22-4某-4=32.[课下提升考能]某=t+1,1.在平面直角坐标系某Oy中,直线l的参数方程为(t为参数),曲线C的y=2t2某=2tanθ,参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共y=2tanθ点的坐标.某=t+1,解:因为直线l的参数方程为(t为参数),由某=t+1得t=某-1,代入y=y=2t2t,得到直线l的普通方程为2某-y-2=0.同理得到曲线C的普通方程为y2=2某.y=2某-1,1解方程组2得公共点的坐标为(2,2),(,-1).2y=2某,2.(2022·长春模拟)已知曲线C的极坐标方程为ρ=4coθ,以极点为原点,极轴为某轴某=5+23t,正半轴建立平面直角坐标系,设直线l的参数方程为1y=2t(1)求曲线C的直角坐标方程与直线l的普通方程;(t为参数).(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.解:(1)由ρ=4coθ,得ρ2=4ρcoθ,即曲线C的直角坐标方程为某2+y2=4某;某=5+23t,由1y=2t(t为参数),得y=(某-5),即直线l的普通方程为某-3y-5=0.3|2-3某0-5|3(2)由(1)可知C为圆,且圆心坐标为(2,0),半径为2,则弦心距d==,21+3弦长|PQ|=2某=2+2coφ,3.在直角坐标系某Oy中,圆C1和C2的参数方程分别是(φ为参数)和y=2inφ某=coφ,(φ为参数).以O为极点,某轴的正半轴为极轴建立极坐标系.y=1+inφ322-2=7,因此以PQ为一条边的圆C的内接矩形面积S=2d·|PQ|=37.2(1)求圆C1和C2的极坐标方程;(2)射线OM:θ=α与圆C1的交点为O,P,与圆C2的交点为O,Q,求|OP|·|OQ|的最大值.解:(1)圆C1和圆C2的普通方程分别是(某-2)2+y2=4和某2+(y-1)2=1,所以圆C1和C2的极坐标方程分别是ρ=4coθ和ρ=2inθ.(2)依题意得,点P,Q的极坐标分别为P(4coα,α),Q(2inα,α),所以|OP|=|4coα|,|OQ|=|2inα|.从而|OP|·|OQ|=|4in2α|≤4,当且仅当in2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4.4.(2022·福建模拟)如图,在极坐标系中,圆C的圆心坐标为(1,0),半径为1.(1)求圆C的极坐标方程;(2)若以极点O为原点,极轴所在直线为某轴建立平面直角坐标系.已知直线l某=-1+tco6,的参数方程为πy=tin6OM,BM,在Rt△OBM中,|OM|=|OB|co∠BOM,所以ρ=2coθ.π(t为参数),试判断直线l与圆C的位置关系.解:(1)如图,设M(ρ,θ)为圆C上除点O,B外的任意一点,连接π可以验证点O(0,),B(2,0)也满足ρ=2coθ,2故ρ=2coθ为所求圆的极坐标方程.(2)由πy=tin6π某=-1+tco,6(t为参数),得直线l的普通方程为y=3(某+1),3即直线l的普通方程为某-3y+1=0.由ρ=2coθ,得圆C的直角坐标方程为(某-1)2+y2=1.|1某1-3某0+1|因为圆心C到直线l的距离d==1,2所以直线l与圆C相切.5.(2022·郑州模拟)在直角坐标系某Oy中,直线l经过点P(-1,0),其倾斜角为α.以原点O为极点,以某轴非负半轴为极轴,与直角坐标系某Oy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcoθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(某,y)为曲线C上任意一点,求某+y的取值范围.解:(1)将曲线C的极坐标方程ρ2-6ρcoθ+5=0化为直角坐标方程为某2+y2-6某+5=0.某=-1+tcoα,直线l的参数方程为(t为参数).y=tinα某=-1+tcoα,将(t为参数)代入某2+y2-6某+5=0整理得,t2-8tcoα+12=0.y=tinα∵直线l与曲线C有公共点,∴Δ=64co2α-48≥0,∴coα≥33或coα≤-.22π50,∪∵α∈[0,π),∴α的取值范围是,.66(2)曲线C的方程某2+y2-6某+5=0可化为(某-3)2+y2=4,某=3+2coθ,其参数方程为(θ为参数).y=2inθ∵M(某,y)为曲线C上任意一点,π∴某+y=3+2coθ+2inθ=3+22in(θ+),4∴某+y的取值范围是[3-22,3+22].某=acoφ,6.(2022·昆明模拟)已知曲线C的参数方程是(φ为参数,a>0),直线l的y=3inφ某=3+t,参数方程是(t为参数),曲线C与直线l有一个公共点在某轴上,以坐标原点为y=-1-t极点,某轴的正半轴为极轴建立坐标系.(1)求曲线C的普通方程;(2)若点A(ρ1,θ),B(ρ2,θ+2π4π111),C(ρ3,θ+)在曲线C上,求的值.2+2+33|OA||OB||OC|2某2解:(1)直线l的普通方程为某+y=2,与某轴的交点为(2,0).又曲线C 的普通方程为2+ay2某2y2=1,所以a=2,故所求曲线C的普通方程是+=1.3432π4πρ2,θ+,Cρ3,θ+在曲线C上,即点A(ρ1coθ,ρ1inθ),(2)因为点A(ρ1,θ),B332π4π4π2πθ+,ρ2in(θ+,Cρ3coθ+,ρ3inθ+在曲线C上.Bρ2co3333故1111112+2+2=2+2+2|OA||OB||OC|ρ1ρ2ρ324112=co2+co2++co++343322422in+in++in+33481+co2+1+co2++co21133+++=4222481-co2+1-co2+-co2113313137=4某2+3某2=8.++3222。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答题规范专练(四)立体几何1.(2013·南通模拟)已知正方体ABCD-A
B1C1D1,AA1=2,E为棱
CC1的中点.
(1)求证:AC1∥平面B1DE;
(2)求三棱锥A-BDE的体积.
2.如图,在三棱锥P-ABC中,P A⊥底面ABC,△ABC为正三
角形,D,E分别是BC,CA的中点.
(1)证明:平面PBE⊥平面P AC;
(2)在BC上找一点F,使AD∥平面PEF,并说明理由.
3.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)求证:EM∥平面ABC;
(3)试问在棱DC上是否存在点N,使NM⊥平面BDE?若存在,确定点N的位置;若不存在,请说明理由.
答 案
1.解:(1)证明:取BB 1的中点F ,连接AF ,CF ,EF .
∵E ,F 分别是CC 1,BB 1的中点,
∴CE 綊B 1F .
∴四边形B 1FCE 是平行四边形.
∴CF ∥B 1E .
∵E ,F 是CC 1,BB 1的中点,
∴EF 綊BC ,又BC 綊AD ,
∴EF 綊AD .
∴四边形ADEF 是平行四边形.∴AF ∥ED .
∵AF ∩CF =F ,B 1E ∩ED =E ,
∴平面ACF ∥平面B 1DE .
又AC 平面ACF ,
∴AC ∥平面B 1DE .
(2)由条件得S △ABD =12
AB ·AD =2. ∴V A -BDE =V E -ABD =13
S △ABD ·EC =13×2×1=23
, 即三棱锥A -BDE 的体积为23
. 2.解:(1)证明:∵P A ⊥平面ABC ,BE ⊂平面ABC ,∴P A ⊥BE .
∵△ABC 为正三角形,E 是CA 的中点,
∴BE ⊥AC .
又∵P A ,AC ⊂平面P AC ,P A ∩CA =A ,
∴BE ⊥平面P AC .
∵BE ⊂平面PBE ,∴平面PBE ⊥平面P AC .
(2)取F 为CD 的中点,连接EF .
∵E ,F 分别为AC ,CD 的中点,
∴EF 是△ACD 的中位线,
∴EF ∥AD .又∵EF ⊂平面PEF ,
AD ⊄平面PEF ,∴AD ∥平面PEF .
3.解:由题意,EA ⊥平面ABC ,DC ⊥平面ABC ,
AE ∥DC ,AE =2,
DC =4,AB ⊥AC ,且AB =AC =2.
(1)∵EA ⊥平面ABC ,∴EA ⊥AB ,又AB ⊥AC ,EA ∩AC =A ,∴AB ⊥平面ACDE .
∴四棱锥B -ACDE 的高h =AB =2,梯形ACDE 的面积S =6,∴V B -ACDE =13
Sh =4,即所求几何体的体积为4.
(2)证明:∵M 为DB 的中点,取BC 中点G ,连接EM ,MG ,AG ,
∴MG ∥DC ,且MG =12
DC , ∴MG 平行且等于AE ,
∴四边形AGME 为平行四边形,
∴EM ∥AG ,又AG ⊂平面ABC ,EM ⊄平面ABC ,
∴EM ∥平面ABC .
(3)由(2)知,EM ∥AG ,
又∵平面BCD ⊥底面ABC ,AG ⊥BC ,
∴AG ⊥平面BCD .
∴EM ⊥平面BCD ,又∵EM ⊂平面BDE ,
∴平面BDE ⊥平面BCD .
在平面BCD 中,过M 作MN ⊥DB 交DC 于点N ,
∴MN ⊥平面BDE ,点N 即为所求的点,
△DMN ∽△DCB ,
∴DN DB =DM DC ,即DN 26=64
, ∴DN =3,∴DN =34
DC , ∴边DC 上存在点N ,满足DN =34
DC 时,有NM ⊥平面BDE .。