第十七届中国科协年会在广州隆重开幕

合集下载

word策划书封面模板

word策划书封面模板

word策划书封面模板篇一:封皮、策划书、总结书模板酒泉职业技术学院机电工程系XX策划(总结)(顶头空一格,黑体二号加粗,空两格)某某月团组织生活会(黑体二号空两行,落款为黑体三号不加粗)机电工程系团总支组织部XXXX年XX月XX日(日期为插入格式 )机电工程系三月份团组织生活会策划(标题为黑体二号,居中)(正文与题目之间为黑体二号空两行。

)正文为仿宋GB2312三号,大写一后为顿号,小写一后为英文全角点。

大标题为仿宋GB2312加粗,行距为倍。

(日期及落款从最右边往左边缩4个字符)机电工程系团总支某某部XXXX年XX月XX日(日期为插入格式 )篇二:策划书word模板华南理工大学广州汽车学院科技文化艺术节之中华蕴策划书篇三:大学活动策划书格式Word模板策划书格式与样例为指导同学们写出专业化、规范化的策划书,有效开展各项活动,现提供基本策划书模式如下:注:1、策划书须制作一张封面,装订时从纸张长边装订;2、系级以上的策划须按如上格式交电子版和打印版各一份。

社团活动策划书格式要求一、策划书名称写清策划书名称,简单明了,如“xx 活动策划书”,“xx”为活动内容或活动主题,不需要冠以协会名称。

如果需要冠名协会,则可以考虑以正、副标题的形式出现。

避免使用诸如“社团活动策划书”等模糊标题。

二、活动背景、目的与意义活动背景、活动目的与活动意义要贯穿一致,突出该活动的核心构成或策划的独到之处。

活动背景要求紧扣时代背景、社会背景与教育背景,鲜明体现在活动主题上;活动目的即活动举办要达到一个什么样的目标,陈述活动目的要简洁明了,要具体化;活动意义其中包括文化意义、教育意义和社会效益,及预期在活动中产生怎样的效果或影响等,书写应明确、具体、到位。

三、活动时间与地点该项必须详细写出,非一次性举办的常规活动、项目活动必须列出时间安排表(教室申请另行安排)。

活动时间与地点要考虑周密,充分顾到各种客观情况,比如教室申请、场地因素、天气状况等。

金属卤化物钙钛矿光催化材料研究进展

金属卤化物钙钛矿光催化材料研究进展

第41卷㊀第9期2020年9月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 41No 9Sept.ꎬ2020文章编号:1000 ̄7032(2020)09 ̄1058 ̄24金属卤化物钙钛矿光催化材料研究进展黄㊀浩ꎬ赵韦人∗ꎬ李㊀杨ꎬ罗㊀莉(广东工业大学物理与光电工程学院ꎬ广东广州㊀510006)摘要:发展绿色㊁环保㊁可持续的化学过程是当今环境㊁能源㊁化学学科面临的重大挑战ꎮ太阳能驱动光催化实现化学燃料制备㊁降解环境污染物㊁高附加值产物转化是解决目前面临的能源和环境问题的一条有效途径ꎮ近年来ꎬ金属卤化物钙钛矿材料作为一种新型高效的光催化材料受到了广泛关注ꎮ本文系统地阐述了金属卤化物钙钛矿材料在光催化析氢㊁光催化CO2还原和光催化有机物转化中的研究进展ꎬ讨论了金属卤化物钙钛矿的光催化作用机理和面临的困难ꎬ最后对金属卤化物钙钛矿光催化材料的发展方向进行了分析和展望ꎮ关㊀键㊀词:金属卤化物钙钛矿ꎻ光生载流子ꎻ光催化析氢ꎻ光催化CO2还原ꎻ光催化有机物转化中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/fgxb20204109.1058ResearchAdvancesofMetalHalidePerovskitesforPhotocatalysisHUANGHaoꎬZHAOWei ̄ren∗ꎬLIYangꎬLUOLi(SchoolofPhysicsandOptoelectronicEngineeringꎬGuangdongUniversityofTechnologyꎬGuangzhou510006ꎬChina)∗CorrespondingAuthorꎬE ̄mail:zwren@gdut.edu.cnAbstract:Thedevelopmentofgreenꎬenvironmentalꎬsustainablechemicalprocessesiscurrentlyahugechallengeforenvironmentꎬenergyandchemistry.Solar ̄drivenphotocatalyticchemicalfuelspreparationꎬdegradationofpollutantsandtransformationofhighvalue ̄addedproductsisaneffectivepathwaytosolvethecurrentenergyandenvironmentalproblems.Inrecentyearsꎬmetalhalideperovskitesasanemergingandhigh ̄efficiencyphotocatalysthavegainedwidelyinterest.InthispaperꎬwesystematicallyreviewedtheresearchadvancesofmetalhalideperovskitesinphotocatalytichydrogenevolutionꎬphotocatalyticCO2reductionandphotocatalyticorganictransformation.Thephotocatalyticmechanismofmetalhalideperovskitesandthekeychallengesinphotocatalysisapplicationsaredescribedꎬandthefurtherdevelop ̄mentofmetalhalideperovskitesphotocatalysisisanalyzedandprospected.Keywords:metalhalideperovskitesꎻphotocarriersꎻphotocatalytichydrogenevolutionꎻphotocatalyticCO2reduc ̄tionꎻphotocatalyticorganictransformation㊀㊀收稿日期:2020 ̄05 ̄06ꎻ修订日期:2020 ̄06 ̄09㊀㊀基金项目:广州市产学研协同创新重大专项(201704030106)ꎻ广东省科学技术厅应用型科技研发及重大科技成果转化专项(2017B010127002)资助项目SupportedbyMajorProgramforCooperativeInnovationofProductionꎬEducation&ResearchofGuangzhouCity(201704030106)ꎻSpe ̄cialFundforApplicationꎬScienceandTechnologyPlanningProjectsofGuangdongProvince(2017B010127002)1㊀引㊀㊀言随着世界人口的日益增长及社会经济的飞速发展ꎬ传统的化石能源消耗给地球生态环境造成了巨大压力ꎮ气候变暖㊁环境污染正日益明显地影响人类社会的可持续发展ꎮ因此ꎬ大力发展可㊀第9期黄㊀浩ꎬ等:金属卤化物钙钛矿光催化材料研究进展1059㊀持续的清洁能源显得尤为迫切ꎮ太阳能是一种清洁㊁可持续的能源ꎬ其每天辐射到地球表面的能量是全人类一年消耗总能量的200倍ꎮ因此ꎬ合理高效地利用太阳能是解决目前面临的环境㊁能源问题的最理想途径ꎮ1972年ꎬFujishima和Honda首次报告了利用光能进行TiO2水解析氢实验[1]ꎬ开启了光催化应用的研究热潮ꎮ通过光催化反应将太阳能转化为化学能ꎬ是高效利用太阳能的最具代表性的一种策略[2]ꎮ至今已报道包括氧化物钙钛矿[3 ̄6]㊁金属氧化物[7 ̄9]㊁硫化物[10]㊁氮化物[11]㊁磷化物[12]以及非金属材料[13]等许多光催化材料ꎮ但目前光催化材料普遍面临的问题是:光吸收范围窄㊁可见光利用率低㊁制备工艺复杂㊁载流子利用率及光催化效率低等[14 ̄16]ꎮ因此ꎬ寻找开发新型高效㊁稳定的光催化材料仍十分迫切ꎮ近年来ꎬ以铅卤钙钛矿材料(Leadhalideper ̄ovskitesꎬLHPs)为代表的金属卤化物钙钛矿材料(MetalhalideperovskitesꎬMHPs)以其简易的制备方法和优异的光电特性ꎬ如光致发光量子产率高[17 ̄19]㊁带隙可调[20]㊁光吸收系数高[21]㊁载流子扩散长度大[22]和寿命长[23]等ꎬ在太阳能电池[24]㊁发光二极管[25]㊁激光器[26]㊁光电探测器[27]等光电领域中得到了广泛研究ꎮ特别地ꎬ在短短十年间MHPs太阳能电池的功率转换效率从起初的3.8%[24]发展到25.2%[28]ꎬ并有望在未来突破30%[29]ꎮMHPs优异的光电特性及其在太阳能电池领域的飞速发展ꎬ使其成为一种极具发展前景的新型高效光催化材料[30 ̄31]ꎮ钙钛矿的化学分子式为CaTiO3ꎬ最早于1839年被GustavRose发现ꎬ随后俄罗斯矿物学家L.A.Perovski(1792 1856)命名了该种化合物[32]ꎮ此后ꎬ将具有与CaTiO3相似晶体结构的材料统称为钙钛矿材料ꎮ其中ꎬ氧化物钙钛矿材料通常由二价金属阳离子(如Ca2+㊁Sr2+㊁Ba2+等)㊁四价金属阳离子(如Ge4+㊁Ti4+㊁Zr4+等)和氧离子组成ꎬ结构通式为ABO3ꎻ金属卤化物钙钛矿的结构通式为ABX3ꎬ其阳离子A通常为一价金属离子或一价有机离子(如Cs+㊁Rb+㊁CH3NH3+(MA+)㊁CH(NH2)2+(FA+)等)㊁阳离子B为二价金属离子(如Pb2+㊁Sn2+㊁Cu2+㊁Ge2+等)或三价阳离子(如Bi3+㊁Sb3+等)ꎬ阴离子X为卤素离子(Cl-㊁Br-㊁I-)ꎮ当A为有机阳离子时ꎬ称为有机 ̄无机杂化卤化物钙钛矿材料ꎬ如MAPbX3㊁FAPbX3㊁MASnX3等ꎻ当A为金属阳离子时ꎬ称为全无机卤化物钙钛矿材料ꎬ如CsPbX3㊁CsSnX3等ꎻ当阳离子B为除Pb2+以外的其他阳离子时ꎬ称为无铅卤化物钙钛矿材料ꎬ如MASnX3㊁MA3Bi2X9等ꎮ本文从MHPs的结构特点出发ꎬ概述了光催化反应的作用机理以及MHPs在光催化应用中的优势ꎬ分析讨论了MHPs的环境稳定性并对提高MHPs光催化反应稳定性的方法进行了概括总结ꎬ综述了近年来MHPs在光催化应用中的发展现状ꎬ包括光催化析氢㊁光催化CO2还原㊁光催化有机转化等ꎬ对比分析了不同光催化策略的作用机理及发展中面临的困难与挑战ꎬ最后分析和展望了高效稳定金属卤化物钙钛矿光催化材料的发展前景ꎮ2㊀金属卤化物钙钛矿的结构理想MHPs的晶体结构为具有高度对称性的立方相结构(空间群:Pm3m)ꎬ如图1(a)所示ꎮ金属阳离子A和卤素离子X(X=ClꎬBrꎬI)分别占据立方体的顶角和面中心ꎬ6个卤素离子X和1个阳离子B构成BX6八面体ꎬ其中阳离子B位于(a)Cubic OrthorhombicXBA(b)(c)图1㊀(a)MHPs的立方相结构示意图ꎻ(b)MHPs的三维立方相结构ꎻ(c)MHPs的正交相结构ꎮFig.1㊀(a)Depictionofmetalhalideperovskiteswithcubicstructure.Three ̄dimensioncrystalstructureofmetalhalideperovs ̄kiteswithcubic(b)andorthorhombic(c)phase.1060㊀发㊀㊀光㊀㊀学㊀㊀报第41卷八面体的中央ꎮBX6八面体通过顶角彼此相连构成了钙钛矿材料的三维框架ꎬ相邻两个八面体间的B X B键角成180ʎꎬ阳离子A则嵌在BX6八面体形成的三维框架的空隙中ꎬ如图1(b)所示ꎮ通常ꎬBX6八面体间的扭曲会使得MHPs的结构偏离立方相结构ꎬ形成对称性较低的正交相结构ꎬ如图1(c)所示ꎮ阳离子A为12配位离子ꎬ不同半径的阳离子A会对MHPs的可成型性和相结构稳定造成影响:阳离子A的半径过大则无法嵌入空隙ꎬ过小则不足以支撑三维框架ꎬ使钙钛矿结构坍塌ꎮ一般采用半经验的几何参数ꎬGoldschmidt容忍因子tꎬ来预测钙钛矿材料的可成型性和结构相稳定性[33]ꎮt可以写成:t=rA+rX2(rB+rX)ꎬ(1)其中ꎬrA㊁rB和rX分别为离子A㊁B和X的尺寸半径ꎮ一般认为ꎬ当t=0.813~1.107时ꎬ绝大多数的钙钛矿材料可以维持其结构的稳定性[34]ꎻ当t=0.9~1时ꎬ钙钛矿材料具有立方相结构ꎬ而在0.71~0.9范围则可能形成BX6八面体扭曲的正交相ꎻ当t>1或<0.71时ꎬ由于BX6八面体的严重扭曲ꎬ形成非钙钛矿相结构ꎬ导致带隙加宽ꎬ电导性下降[35 ̄36]ꎮ预测钙钛矿结构相稳定性的另一个半经验几何参数为八面体因子μ:μ=rBrXꎬ(2)275150275r A /pmr X /p m30032525022520017515012510075125175200225250300t =1滋=0.9滋=0.44I Br Cl F Cs MAFA t =0.81图2㊀LHPs的可成型性和相稳定性关于阳离子A和卤素阴离子X的关系ꎮ红色实线和虚线分别对应Gold ̄schmidt容忍因子t和八面体因子μ[37]ꎮFig.2㊀Formabilityandphase ̄stabilityof3Dleadhalideper ̄ovskitesasafunctionofA ̄sitecationandX ̄sitehal ̄ideanionradii.RedsolidanddashrepresentGold ̄schmidttolerancefactorandoctahedralfactorꎬrespectively[37].㊀一般地ꎬ当μ=0.442~0.895时ꎬ认为BX6八面体是稳定的ꎮ根据Goldschmidt容忍因子t和八面体因子μꎬ可以得到LHPs(A=Cs+ꎬMA+ꎬFA+)可成型性和相稳定性与离子半径(阳离子A和阴离子X)的关系ꎬ如图2所示ꎮ对于阳离子Cs+㊁MA+和FA+而言ꎬMAPbX3的结构非常接近理想的立方相结构ꎬ而对于理想的A位阳离子ꎬ阳离子Cs+的尺寸略微偏小ꎬ阳离子FA+的尺寸则略微偏大ꎮ需要指出的是ꎬGoldschmidt容忍因子t和八面体因子μ并非判断MHPs可成型性和相结构稳定性的充分条件ꎮ因为MHPs为离子晶体结构ꎬ原子间的相互作用力较弱ꎬ形成能较低ꎬ因此外界因素(如温度㊁压力㊁湿度等)容易对其相结构稳定性产生较大影响ꎮ一般地ꎬ钙钛矿材料随着温度的改变会发生结构相变ꎬ且立方相结构通常在高温下趋于稳定[38]ꎮ例如ꎬMAPbI3薄膜随着温度升高存在两个相变温度(160K和330K)ꎬ分别对应γ相向β相的转变和β相向α相的转变[39]ꎮ3㊀金属卤化物钙钛矿的光催化特点3.1㊀光催化机理自然界中ꎬ绿色植物通过自然光合作用利用太阳能将CO2和H2O转化成碳水化合物和O2ꎬ从而实现太阳能 ̄化学能的转化ꎮ光催化反应也称为人工光合作用ꎬ通过模拟自然光合作用将光能转化为化学能ꎬ从而实现能量转换和再利用ꎬ图3(a)㊁(b)分别展示了两种光合作用过程的机理[40]ꎮ通常ꎬ光催化反应涉及3个反应过程:(1)光捕获ꎻ(2)产生光生电子 ̄空穴对并迁移至光催化材料表面相应的氧化 ̄还原位点ꎻ(3)催化反应过程ꎬ光生电子和光生空穴在催化活性位点进行氧化㊁还原反应ꎮ反应底物的氧化 ̄还原电势应位于光催化材料的带隙之间ꎬ且光催化材料的导带底相对于还原电势越负ꎬ光生电子的还原效率越高ꎬ价带顶相对于氧化电势越正ꎬ光生空穴的氧化效率越高ꎮ因此ꎬ光催化材料的光吸收系数㊁能级结构及光生电子 ̄空穴对的分离和迁移对光催化反应的性能具有至关重要的影响ꎮ3.2㊀金属卤化物钙钛矿的光催化优势基于上述光催化机理的分析可知ꎬ高效的光催化材料对其能级结构㊁光生载流子的分离和迁移㊁光吸收系数等光电特性有较高的要求[41]ꎮ㊀第9期黄㊀浩ꎬ等:金属卤化物钙钛矿光催化材料研究进展1061㊀MHPs作为直接带隙半导体ꎬ其导带底主要由阳离子B的p轨道和卤素离子X的p轨道组成ꎬ价带顶主要由阳离子B的部分s轨道和卤素离子X的p轨道杂化的反键轨道组成ꎬ阳离子A则平衡三维BX6八面体框架的电负性[42]ꎮ以MAPbX3为例ꎬ当X分别为I㊁Br㊁Cl时ꎬ其带隙大小分别为1.6ꎬ2.39ꎬ3.1eVꎬ对应可见光的红㊁绿㊁蓝区域[43]ꎮ通过卤素原子替换[44]或量子限域效应[45]ꎬMAPbX3的带隙可以实现整个可见光范围的覆盖ꎮ如图3(c)所示ꎬ简易的带隙可调性使得MHPs可以更好地与光催化反应中地氧化 ̄还原电势相匹配ꎮ(a )H 2O H 2OCO 2O 2H 2OH 2O O 2ThylakoidCO 2CO 2O 2C h lo r op l as t Photosystems Ⅰ+ⅡCalvin cycleSugar O 2H 2OCO 2Light absorberCocatalystH 2OSolar fuels1/2O 2+2H +ADP+P 1NADP +NADPH ATP(b )(c )E vs .vacuum -3.5-4.5-5.5-6.5-7.5CB VB-5.2-4.1-4.0-4.2-3.9-3.7-3.4-3.4-4.0-3.6-4.2-4.9-5.5-5.4-5.8-5.6-5.4-5.4p 鄄S iC d ST i O 2-6.3-7.4M A P b l 3M A P b l 3-x C l xM A P b B r 3C s P b B r 3F A P b B r 3C s S n l 3M A S n l 3+3+2+10-1.0E (vs .NHE)@pH7E /V(vs .NHE)@pH7CO 2/HCO 2H CO 2/COCO 2/HCOH H 2O/H 2H 2O/O 2CO 2/CH 3OH CO 2/CH 4-0.665-0.521-0.485-0.414+0.82-0.399-0.246Natural photosynthesisArtificial photosynthesis图3㊀(a)自然光合作用机理ꎻ(b)人工光合作用机理[40]ꎻ(c)MHPs与典型的半导体材料(p ̄Si㊁CdS㊁TiO2)的能级比较及反应底物(H2O㊁CO2)对应不同光催化产物的氧化 ̄还原电势的排列情况[46]ꎮFig.3㊀Schematicillustrationfornatural(a)andartificial(b)photosynthesis[40].(c)Conductionbandandvalencebandpoten ̄tialsofrepresentativesemiconductors(p ̄SiꎬCdSꎬTiO2)andhalideperovskitesforsolar ̄to ̄chemicalfuelconversion[46].TherelativepotentialsoftheCO2andwaterredoxcouplesatpH=7areplottedversusvacuum(left)andnormalhydrogenelectrode(NHE)(right).目前多数光催化材料的光吸收范围局限于紫外波段ꎬ对约占太阳能40%的可见光部分吸收较少ꎬ这极大地限制了在光催化反应中对太阳能的利用率[47 ̄50]ꎮ由于MHPs中B位离子的s轨道和卤素离子的p轨道存在的强反键耦合[51]ꎬ相比于氧化物钙钛矿和氮化物钙钛矿的吸收边缘(分别为~200nm和~650nm)ꎬMHPs具有更长的吸收边缘(MAPbI3:~700nm)[52]ꎮ此外ꎬMHPs的光吸收系数可达1ˑ104~1ˑ105cm-1ꎬ表现出良好的光吸收性质[21ꎬ53]ꎬ因此极大地提高了其在光催化应用中对可见光的利用率ꎮ在光催化反应中ꎬ光催化材料中的空位及表面缺陷对光生载流子的捕获会大大降低催化效率ꎮ相较于其他半导体材料ꎬ如CdSe和GaAsꎬMHPs具有更高的缺陷容忍度[54]ꎬ有效地限制了光生载流子的缺陷复合几率ꎬ提高了光生载流子的利用率ꎮ此外ꎬMHPs的光生载流子寿命可达微秒量级[55 ̄56]ꎬ扩散长度可达几十到上百微米[56 ̄57]ꎬ这对光生载流子迁移到材料表面的催化活性位点提供了有力的保障ꎮ综上所述ꎬ简易的带隙可调性㊁更宽的光吸收范围㊁更高的缺陷容忍度㊁较长的载流子寿命和扩散长度充分表明了MHPs在光催化应用中巨大的发展潜力ꎮ3.3㊀金属卤化物钙钛矿的环境稳定性及动态平衡概念3.3.1㊀环境稳定性光催化反应通常在连续光照射㊁大气环境㊁液1062㊀发㊀㊀光㊀㊀学㊀㊀报第41卷相反应体系等条件下进行ꎮ因此ꎬMHPs作为光催化材料需要克服环境因素(光㊁氧气㊁水分等)对其稳定性造成的影响ꎮ以MHPs纳米晶(NanocrystalsꎬNCs)为例ꎬ通常采用表面配体(油酸㊁油胺等)维持其单分散性和胶体稳定性ꎮ当NCs受到持续的光照射时ꎬ容易引起表面配体质子化ꎬ使得表面配体的吸附能力下降并从表面脱落ꎮ表面配体脱落后导致表面缺陷态增加并引发NCs团聚ꎬ导致光催化性能下降[58]ꎮ此外ꎬ在氧气氛围中ꎬ光照引起的光氧化效应会使MHPs发生分解反应[59 ̄60]ꎮ例如ꎬ在光照下ꎬ氧气分子和MAPbI3相互作用形成超氧自由基ꎬ随后超氧自由基进一步与MAPbI3反应使其分解为PbI2㊁H2O㊁I2和CH3NH2[59]ꎮ相比于表面配体质子化和光氧化ꎬ水分的影响更显著ꎮMHPs的离子晶体结构很容易在湿度环境下发生分解[61 ̄62]ꎮ通过时间分辨椭圆光度法及X射线衍射ꎬBarnes等揭示了MAPbI3的水解作用机理ꎬ如公式(3)~(4)[63]:4(CH3NH3)PbI3+4H2O↔4[CH3NH3PbI3 H2O]↔(CH3NH3)4PbI6 2H2O+3PbI2+2H2Oꎬ(3) (CH3NH3)4PbI6 2H2O(s)H2O(l)ң4CH3NH3I(aq)+PbI2(s)+2H2O(l)ꎬ(4)MAPbI3在水氛围中首先形成MAPbI3 H2Oꎮ随后ꎬMAPbI3 H2O在H2O的作用下形成二水化物(CH3NH3)4PbI6 2H2O和PbI2ꎮ因为MA+对I-的束缚力较弱ꎬ最终导致二水合物不可逆地分解为MAI㊁PbI2和H2Oꎮ水分引起的分解在黑暗的条件下仍可进行ꎬ而光照会进一步加剧水分对MHPs的分解作用ꎮ为了提高MHPs的环境稳定性ꎬ可以通过组分工程和表面工程两方面进行改进ꎬ如将有机官能团替换为无机阳离子[20]㊁调控卤素成分[21]或引入掺杂离子精确优化晶体结构[64]㊁对材料进行表面包裹[65]等ꎮ此外ꎬ通过原位钝化[18]和引入等效配体[66]减少材料内部空位和表面缺陷ꎬ同样可以提升MHPs的环境稳定性ꎮ在光催化反应中ꎬ需要注重提升MHPs对湿度环境的耐受性ꎮ因为光生载流子参与光催化的氧化 ̄还原反应ꎬ因此在提升MHP的抗水能力时也需要注重内部光生载流子向外传输的特性ꎮ目前主要的策略包括:(1)通过MHPs在水溶液中实现动态平衡[67]ꎻ(2)优化表面配体密度ꎬ平衡其湿稳定性和光生载流子向外传输[68]ꎻ(3)构建异质结构ꎬ在促进光生载流子分离和迁移的同时对MHPs起到一定的钝化作用ꎬ常用的材料有石墨烯[69]㊁金属氧化物[70]㊁硫化物[71]㊁氮化物[72]以及金属有机框架材料[73]等ꎻ(4)选择非极性或弱极性的溶剂作为反应载体ꎬ降低MHPs与水的接触ꎬ如乙酸乙酯[74]㊁乙腈[72]㊁异丙醇[75]等ꎮ3.3.2㊀动态平衡概念2016年ꎬNam等[67]首次提出动态平衡概念以解决MAPbI3在水溶液中的光催化稳定性问题ꎬ并在HI水溶液中实现了MAPbI3光催化析氢反应ꎮ所谓动态平衡是指当离子晶体结构的MAPbI3加入HI水溶液时ꎬMAPbI3分解成MA+和PbI3-ꎬ当继续添加MAPbI3时ꎬ溶液中的溶质将达到过饱和临界状态ꎬ此时MAPbI3的溶解和沉淀处于平衡状态ꎬ如图4(a)㊁(b)所示ꎮ实验表明ꎬ当HI水溶液中I-和H+的浓度满足[I-]ɤ[H+]㊁pHɤ-0.5㊁-log[I-]ɤ-0.4时ꎬMAPbI3可以在HI水溶液中实现溶解 ̄沉淀动态平衡ꎬ如图4(c)所示ꎮMHPs的湿稳定性是实现高效率光催化反应的关键ꎮ光催化析氢实验表明ꎬ通过MAPbI3在HI水溶液中的动态平衡ꎬMAPbI3可连续光催化析氢160hꎬ且催化性能并未减弱ꎮ此外ꎬ当使用极性溶剂(二甲基甲酰胺ꎬDMFꎻ二甲基亚砜ꎬDMSO)对MAPbI3进行热处理后ꎬMAPbI3光催化析氢速率均获得较大提升ꎮ将Pt作为助催化剂可实现57μmol g-1 h-1的析氢速率ꎬ如图4(d)所示ꎮ随后ꎬGoddard等[76]通过理论模拟计算提出了基于两步铅活化 ̄胺辅助(Pb ̄activatedamine ̄as ̄sistedꎬPbAAA)的MAPbI3光催化析氢反应机理ꎮ计算表明ꎬ在饱和HI水溶液中ꎬMAPbI3光催化析氢产生的两个H原子分别来源于两个MA+ꎬ其作用机理如图5所示ꎮ该反应过程由两个状态组成:(Ⅰ)首先ꎬMA+中的一个氢原子与其邻近的Pb原子键合ꎬ形成PbH-中间态ꎬMA+因失去一个H原子从而形成MA分子ꎬ随后通过Grotthuss机制[77]重新获得一个H+形成MA+ꎻ(Ⅱ)随后ꎬ邻近的一个MA+提供一个H+与PbH-中的H-结合形成H2ꎬ而后MA+再次通过Grotthuss机制㊀第9期黄㊀浩ꎬ等:金属卤化物钙钛矿光催化材料研究进展1063㊀1t /h23452001000300MAPbl 3DMF treated MAPbl 3DMSO treated MAPbl 3Pt_DMSO treated MAPbl 3H 2e v o l u t i o n /(滋m o l ·g -1)(d )(c )MAPbl 3Monohydrate DihydrateMonohydrate+dihydrate Lead iodideMonohydrate+lead iodide-0.78-0.60-0.50-0.40-0.2000.51.01.00.50-0.4-0.5-0.78-0.2-0.6PbI -3Methylammonium cationMethylammonium lead iodide(MAPbl 3)(b )(a )[MAPbl ]0mol ·L [MAPbl ]0.1mol ·L [MAPbl ]0.3mol ·L [MAPbl ]0.5mol ·L [MAPbl ]0.7mol ·L [MAPbl ]0.9mol ·L -l g /[I -]pH图4㊀(a)不同浓度的MAPbI3在HI水溶液的情况ꎻ(b)MAPbI3在饱和HI溶液中实现溶解 ̄沉淀动态平衡的机理ꎻ(c)不同H+和I-浓度下的结构相图ꎻ(d)MAPbI3在不同情况下的光催化析氢性能[67]ꎮFig.4㊀(a)MAPbI3inaqueousHIsolutionwithdifferentconcentrations.(b)SchematicillustrationofMAPbI3powderindynam ̄icequilibriumwithasaturatedHIsolution.(c)Constructedphasemapasafunctionof[I-]and[H+].(d)Photocat ̄alyticH2evolutionfromMAPbI3powderunderdifferentsituation[67].1.35eV1.08eVTSISFSISTS2.30eV0.08eVFSIntermediate state(Ⅰ)CH 3NH 3++Pb+2e -→CH 3NH 2+PbH -H 3O ++CH 3NH 2→CH 3NH 3++H 2O(Ⅱ)PbH -+CH 3NH 3+→Pb+CH 3NH 2+H 2H 3O ++CH 3NH 2→CH 3NH 3++H 2OH +图5㊀两步铅活化 ̄胺辅助的光催化析氢机理[76]Fig.5㊀Pb ̄activatedamine ̄assisted(PbAAA)reactionpathwayforH2generationonMAPbI3surfaceinacidicsolvent[76]从溶液中获得一个H+重新形成MA+ꎮ该研究表明ꎬMAPbI3在饱和HI水溶液光催化析氢中不仅作为吸光材料提供光生载流子ꎬ其MA+和Pb2+对于H2的产生起到桥梁作用ꎮ动态平衡概念的引入对发展MHPs在光催化领域的应用具有里程碑意义ꎮ近几年来ꎬMHPs光催化的应用研究得到了快速发展ꎬ下面将介绍MHPs在光催化应用中的3个主要分支:析氢反应㊁CO2还原反应㊁有机物转化反应ꎮ4㊀金属卤化物钙钛矿在光催化中的应用4.1㊀光催化析氢典型的光催化水解析氢是吸能反应过程ꎬ反1064㊀发㊀㊀光㊀㊀学㊀㊀报第41卷应前后体系的标准吉布斯自由能变化为+237kJ/mol:H2Oң12O2+H2ꎬΔG=+237kJ/molꎬ㊀(5)因此ꎬ光催化材料的带隙需要大于1.23eV(<1000nm)ꎬ且光催化材料的导带底相对于H+/H2的还原电势(0Vvs.NHEꎬpH=0)越负㊁价带顶相对O2/H2O的氧化电势(1.23Vvs.NHEꎬpH=0)越正时ꎬ光催化效率越高[78]ꎮ由于水分对MHPs结构稳定性的影响ꎬ目前MHPs光催化析氢通常采用卤化氢水溶液(如HBr和HI)作为反应体系ꎬ通过动态平衡的方式实现钙钛矿在湿度环境下的结构稳定ꎮ为了提高MHPs的光催化析氢速率ꎬ通常采用界面工程构建表面异质结构ꎬ促进光生载流子的分离和迁移效率ꎬ或采用组分工程精确调控MHPs的光电特性以及提升晶体结构稳定性ꎬ从而获得更优的能级匹配和晶体结构ꎮ4.1.1㊀通过界面工程构造异质结构Huang等[69]将还原型石墨烯(rGO)与MAPbI3复合制备了MAPbI3/rGO异质结构ꎬ将其用于饱和HI水溶液中进行光催化析氢ꎬ光催化机理如图6(a)所示ꎮrGO作为电荷接收器和传输体ꎬ可以促进光生载流子的分离与提高迁移效率ꎬ且对MAPbI3起到一定的钝化作用ꎬ使得光催化稳定性超过200hꎮ得益于rGO的复合ꎬMAPbI3/rGO的析氢速率达到938.9μmol g-1 h-1ꎬ是纯MAPbI3的67倍ꎬ如图6(b)所示ꎮ类似地ꎬZhao等[79]将rGO与无铅钙钛矿Cs2AgBiBr6复合ꎬ使得Cs2AgBiBr6/rGO的析氢速率相较于纯Cs2AgBiBr6提升了80倍ꎬ且光催化稳定性达到120hꎮ需要注意的是ꎬrGO为黑色固体材料ꎬ当rGO与MHPs复合提高光催化速率的同时也会降低MHPs的光吸收能力ꎬ因此实际应用中需要控制rGO的用量以平衡光照强度与光催化速率ꎮ(a )H 2e v o l u t i o n /滋m o l80008t /h1000600400200024610MAPbI 3MAPbI 3/Pt MAPbI 3/rGO(c )(b )rGOMAPbI 33I-I 3-h +H 22H +OO O O OHOH HOHO h 淄(d )abI I H h MAPbl TiO A B DC A BTiO DissolutionSaturated MAPbI solutionDCPrecipitation TiO H H H I Pb MABr Br HBrPbPEDOT ∶PSSTa 2O 5H 2H +MAbaTa 2O5MAPbBr 3PEDOT ∶PSSe -h h H +/H 2Br/Br 2e e e 图6㊀(a)~(b)MAPbI3/rGO的光催化析氢机理及其光催化效率[69]ꎻ(c)Pt/TiO2 ̄MAPbI3通过纳米电荷传输通道的光催化析氢机理[70]ꎻ(d)MAPbBr3/Pt ̄Ta2O5/PEDOTʒPSS的光催化析氢机理及其能带结构[81]ꎮFig.6㊀(a)-(b)SchematicillustrationoftheH2evolutionusingMAPbI3/rGOanditsphotocatalyticH2evolutionactivitiesofMAPbI3ꎬMAPbI3/PtꎬandMAPbI3/rGO[69].(c)SchematicillustrationoftheH2evolutionusingPt/TiO2 ̄MAPbI3throughananoscaleelectron ̄transportingchannel[70].(d)SchematicillustrationofthereactionmechanismforMAPbBr3withPt/Ta2O5andPEDOTʒPSSastheelectron ̄andhole ̄transportingmotifsꎬrespectively.AndschematicenergyleveldiagramsofMAPbBr3ꎬTa2O5andPEDOTʒPSSforHBrsplittingreaction[81].考虑到rGO会对MHPs的光吸收带来消极影响ꎬZhao等[80]制备了MA3Bi2I9/PtꎬPt作为助催化剂提高了光生载流子的迁移效率ꎬ使得MA3Bi2I9/Pt的析氢速率相较于纯MA3Bi2I9提高了14倍ꎮ此外ꎬLi等[70]从纳米电荷传输通道的角度来寻找合适的电荷提取材料ꎮ因为TiO2与MAPbI3的能级㊀第9期黄㊀浩ꎬ等:金属卤化物钙钛矿光催化材料研究进展1065㊀相匹配ꎬ可通过TiO2在MAPbI3和助催化剂Pt之间建立一条纳米电荷传输通道ꎬ从而显著地提升了MAPbI3与Pt之间的电荷传输效率ꎬ作用机理如图6(c)所示ꎮ通过调控Pt/TiO2之间的含量ꎬPt/TiO2 ̄MAPbI3的析氢速率相比于同一条件下的Pt/MAPbI3提升了89倍ꎬ达到7300μmol g-1 h-1ꎬ且表观量子效率(ApparentquantumefficiencyꎬηAQE=Nelectron/Nphoton)高达70%(λ=450nm)ꎬ表明光生载流子得到了有效的分离和迁移ꎮ随后ꎬ他们又进一步增加纳米电荷传输通道的数量ꎬ分别引入Pt/Ta2O5和PEDOTʒPSS作为光生电子传输通道和光生空穴传输通道ꎬ使得光生电子和光生空穴的迁移路径分离ꎬ如图6(d)所示[81]ꎮMAPbBr3/Pt ̄Ta2O5/PEDOTʒPSS的光催化析氢速率较纯MAPbBr3提升了约52倍(1050μmol g-1h-1ꎻηAQE=16.4ꎬλ=450nm)ꎮ双纳米电荷传输通道策略进一步促进了光生载流子有序地向催化活性位点迁移ꎬ提高了光生载流子的利用率ꎮ但由于光生空穴传输通道PEDOTʒPSS在反应溶液中会发生团聚现象ꎬ造成电荷传输效率下降ꎬ因此仍需对该催化体系进行优化ꎬ以提高光催化反应的稳定性ꎮNi3C作为一种过渡金属碳化物常被用于光(电)催化析氢ꎬ其相比于助催化剂Pt具有更强的电荷提取能力ꎬ可以进一步促进光生载流子的分离和迁移效率ꎮTao等[82]通过表面电荷促进的自组装方法将Ni3C锚定在MAPbI3表面ꎬ如图7(a)所示ꎮMAPbI3与Ni3C的复合使其获得了2363μmol g-1 h-1的析氢速率ꎬ是纯组分MAPbI3的55倍ꎮ通过光致发光光谱和荧光寿命光谱发现ꎬNi3C锚定在MAPbI3表面后其荧光强度几乎消失且发光寿命变短ꎬ表明Ni3C对光生载流子的分离和迁移起到极大的促进作用ꎬ如图7(b)㊁(c)所示ꎮ此外ꎬ由于Ni3C具有较好的耐酸性ꎬ使得MAPbI3在酸性溶液中建立动态平衡时对钙钛矿结构起到保护作用ꎬ通过优化Ni3C的用量ꎬ15%Ni3C/MAPbI3的光催化析氢稳定性达到200hꎬ如图7(d)所示ꎮ类似地ꎬLi等[83]通过静电耦合的方法将二维黑磷(BlackphosphorusꎬBP)锚定在MAPbI3表面ꎬBP促进了光催化反应中的光生载流子的利用率ꎬ使得BP/MAPbI3获得3742μmol g-1 h-1的析氢速率ꎬ是纯MAPbI3的106倍ꎮMin等[71]将MoS2纳米片(NanosheetsꎬNSs)通过原位耦合的方法制备MoS2NSs/MAPbI3ꎬ同样(a )MAPbI 3Ni 3C/MAPbI 3Ni 3C loading720姿/nmI n t e n s i t y /a .u .15%Ni 3C/MAPbI 3MAPbI 3(b )700740760780800820840100t /nsP L i n t e n s i t y /a .u .20030040015%Ni 3C/MAPbI 3MAPbI 3500Stored1monthE v o l v e d H 2/(m m o l ·g -1)2520151050020406080100100120140160180200t /h(c )(d )图7㊀(a)Ni3C/MAPbI3的合成策略ꎻ(b)Ni3C/MAPbI3和MAPbI3的光致发光光谱ꎻ(c)Ni3C/MAPbI3和MAPbI3的荧光寿命光谱ꎻ(d)15%Ni3C/MAPbI3的光催化稳定性[82]ꎮFig.7㊀(a)SchematicdiagramofNi3C/MAPbI3photocatalystpreparationprocess.PL(b)andtime ̄resolvedPL(c)spectrabasedonNi3C/MAPbI3andMAPbI3.(d)CyclingphotocatalyticHERperformanceover15%Ni3C/MAPbI3[82].1066㊀发㊀㊀光㊀㊀学㊀㊀报第41卷获得了较高的析氢速率和催化稳定性(2061μmol g-1 h-1ꎬ156h)ꎮ通过表面耦合的方式对电荷提取材料和MHPs进行组装ꎬ一方面ꎬ促进了MHPs内部光生载流子的向外传输能力ꎻ另一方面ꎬ由于较强的键合力使得光催化材料获得了较高的稳定性ꎮ4.1.2㊀通过组分工程优化光电特性和晶体结构通过组分工程对MHPs光电特性和晶体结构进行精确调控ꎬ实现更优的能级匹配ꎬ可以进一步提升MHPs的光催化析氢速率ꎮ已有研究表明ꎬ在含有两种卤素成分(Br和I)的MHPs中ꎬ光生载流子将从宽禁带的富Br区域向窄禁带的富I区域定向迁移[84 ̄85]ꎮ因此ꎬ调控MHPs中卤素离子的分布ꎬ可以有效地引导光生载流子向光催化位点迁移ꎮ例如ꎬHuang等采用光辅助卤素交换法分别以MAPbBr3和CsPbBr3为本体合成I-由核心到壳层浓度逐渐减小的MAPbBr3-xIx[86]和CsPbBr3-xIx[87]ꎬ由于I-的梯度分布使MAPbBr3-xIx和CsPbBr3-xIx具有由核心到壳层逐渐递减的漏斗状能带结构ꎬ如图8(a)所示ꎮ由于漏斗状的能带结构促使光生载流子向表面迁移ꎬ使得MAPbBr3-xIx/Pt和CsPbBr3-xIx/Pt在饱和HBr/HI水溶液中均表现出较高的光催化析氢速率ꎬ分别为2604.8μmol g-1 h-1和1120μmol g-1 h-1ꎮ但由于MHPs的离子晶体结构性质ꎬ材料中的空位将作为卤素离子间的迁移通道[88]ꎬ使得漏斗状能带结构随着卤素迁移而受到破坏ꎬ因此该催化体系的稳定性还有待进一步提升ꎮ随后ꎬTao等[89]采用Br部分取代I的方式制备了MAPb(I1-xBrx)3(x=0~0.2)ꎮ在不使用共催化剂的情况下ꎬMAPb(I0.9Br0.1)3的光催化析氢速率高达1471μmol g-1 h-1ꎬ约是纯MAPbI3的40倍ꎮ密度泛函理论分析表明析氢速率的提高来源于:(1)由于Br离子比I离子的尺寸小ꎬ当Br替换I时ꎬ使得Br Pb Br键的其中一个Pb Br键发生断裂ꎬ从而将Pb暴露于MA+ꎬ促进了MA+中H向Pb迁移ꎻ(2)Pb Br键断裂降低了Pb H的能量ꎬ使得其更容易与另一个H形成80020140t /hA m o u n t o f H 2/(滋m o l ·g -1)40608001001201606004002000CsPbBr 3鄄1/Pt 鄄TiO 2(b )(a )h 淄H +H 2Pth +e -Iodide gradientH +Br -Pb 0or Br 0defectsK 鄄MAPbBr 3Br -Br 2MAPbBr 3Br2KBrH +H H H H H (c )图8㊀(a)MAPbBr3-xIx/Pt的漏斗状带隙结构[86]ꎻ(b)CsPbBr3/Pt ̄TiO2的光催化析氢稳定性[68]ꎻ(c)MAPbBr3和K ̄MAPbBr3光催化析氢机理[91]ꎮFig.8㊀(a)BandgapfunnelstructureofMAPbBr3-xIxnearthesurfaceinMAPbBr3-xIx/PtenhancingthephotocatalyticH2evo ̄lutiononthePtparticlesloadedonthesurfaceofMAPbBr3-xIx[86].(b)Long ̄termH2generationofCsPbBr3/Pt ̄TiO2photocatalystundervisiblelightirradiation[68].(c)SchematicillustrationoftheH2evolutionusingMAPbBr3andK ̄MAPbBr3[91].㊀第9期黄㊀浩ꎬ等:金属卤化物钙钛矿光催化材料研究进展1067㊀H2ꎮ此外ꎬ较小的Br离子提升了材料结构相的稳定性ꎬ使得MAPb(I0.9Br0.1)3的光催化析氢稳定性达到252hꎮ通过将有机官能团替换成无机离子或A位离子掺杂也是提升MHPs稳定性的常用策略[20ꎬ90]ꎮ最近ꎬWang等[68]通过优化CsPbBr3量子点(QuantumdotsꎬQDs)表面配体密度(油酸ꎬ油胺)ꎬ并采用气相光催化析氢方法ꎬ提升了CsPbBr3QDs的湿稳定性ꎬ使其能够连续光催化160hꎬ如图8(b)所示ꎮ一方面ꎬ表面配体作为疏水层使得钙钛矿量子点在一定的湿度环境下稳定存在ꎻ另一方面ꎬ其高阻特性阻碍了QDs内部光生载流子向外传输的能力ꎮ因此ꎬ通过优化表面配体密度ꎬ可以实现MHPs光催化析氢速率和光催化稳定性的平衡ꎮ此外ꎬZhao等[91]采用K+掺杂和沉积KBr钝化层两种策略结合的方法制备了K ̄MAPbBr3@KBrꎬ并与[Mo3S13]2-2纳米团簇组合ꎬ使得K ̄MAPbBr3/[Mo3S13]2-2获得了稳定的光催化析氢性能ꎮ进一步研究表明ꎬK+掺杂可以有效地抑制Pb0和Br0缺陷的产生ꎬ使K ̄MAPbBr3获得了更好的催化活性和催化稳定性ꎬ其作用机理如图8(c)所示ꎮ不同组分的MHPs光催化析氢性能总结在表1中ꎮ目前取得的实验成果充分证明了MHPs在表1㊀MHPs在不同实验条件下的光催化析氢性能Tab.1㊀SummaryofthephotocatalyticH2evolutionperformancesusingmetalhalideperovskiteunderdifferentexperimentalcon ̄ditionsCatalystReactionsystemLightsource(λ/nm)Activity(H2/(μmol g-1h-1)StabilityAQE/%Splitting㊀efficiency/%Ref./yearMAPbI3/PtAqueousHISolarsimulator(λ>475)57.0>160hN/A0.81(2016)[67]CsPbBr3/Pt ̄TiO2Methanol/Watervapor300WXelamp(λ>420)N/A>160hN/AN/A(2019)[68]MAPbI3/rGOAqueousHI300WXelamp(λ>420)939>200h1.5(λ=450nm)N/A(2018)[69]MAPbI3/Pt ̄TiO2AqueousHI300WXelamp(λ>420)7300>12h~70%(λ=420nm)0.86(2018)[70]MAPbI3/MoS2NSsAqueousHI10WLEDlamp(380<λ<780)2061>156hN/AN/A(2020)[71]Cs2AgBiBr6/rGOAqueousHBr300WXelamp(λ>420)48.9>120h0.16(λ=450nm)N/A(2020)[79]MA3Bi2I9/PtAqueousHI300WXelamp(λ>400)169.21>70hNA0.48(2019)[80]MAPbBr3/Pt ̄Ta2O5/PEDOTʒPSSAqueousHBr300WXelamp(λ>420)1050>4h16.4(λ=440nm)N/A(2019)[81]MAPbI3/Ni3CAqueousHI300WXelamp(λ>420)2362>200h16.6(λ=420nm)0.91(2019)[82]MAPbI3/BlackphosphorusAqueousHI300WXelamp(λ>420)3472>200h23.2(λ=420nm)1.2(2019)[83]MAPbBr3-xIx/PtAqueousHI/HBr300WXelamp(λ>420)2604.8>30h8.1(λ=450nm)1.05(2018)[86]CsPbBr3 ̄xIx/PtAqueousHBr/KI300WXelamp(λ>420)1120>50h2.15(λ=450nm)N/A(2019)[87]K ̄MAPbBr3@KBr/Mo3S2-13nanoclusterAqueousHI300WXelamp(λ>420)7.84>200h18.3(λ=450nm)N/A(2020)[91]光催化析氢方面的应用潜力ꎬ但纯组分的MHPs光催化效率及稳定性较低ꎬ通过构建异质结构㊁引入电荷传输通道㊁优化能级结构和表面配体密度㊁引入掺杂离子或采用全无机卤化物钙钛矿材料等策略可以进一步提升光催化析氢速率和稳定性ꎮ在提高光催化效率方面ꎬ提高光生载流子的分离和迁移效率是关键ꎬ需要限制光生载流子在迁移过程中的非辐射复合ꎬ缩短其到反应位点的迁移距离ꎮ在提高稳定性方面ꎬ需要平衡催化速率与稳定性的关系ꎬ可以采用一些电导性良好的材料对MHPs进行表面钝化ꎬ在提升其湿稳定性的同时不降低光生载流子向外传输的能力ꎬ例如TiO2㊁聚乙烯二氧噻吩等ꎮ总的来说ꎬMHPs光催化析氢的应用研究尚处于初步阶段ꎬ其光催化速率和稳定性仍有待进一步提升ꎮ4.2㊀光催化CO2还原4.2.1㊀光催化CO2还原机理光催化CO2还原的反应机理与光催化析氢类似ꎬ但线性排列的CO2分子具有较高的热力学稳定性(ΔfG0298=-394.36kJ/mol)[92]ꎬ因此需要有足够的能量对其活化ꎮ当CO2在光催化材料表面被活化形成活性物质后ꎬ通常存在两种不同的反应方式[93]:(1)活性物质先转化成CO进而被还原为碳自由基C ꎬ随后C 逐一与单电子和单质子作用ꎬ最后生成CH4ꎻ(2)活性物质直接与多电子和多质子相互作用生成CO㊁HCOOH㊁HCOH㊁CH3OH㊁CH4等产物ꎬ作用式如(6)~ (10)所示:CO2+2H++2e-ңCO+H2Oꎬ(6)CO2+2H++2e-ңHCOOHꎬ(7)CO2+4H++4e-ңHCOH+H2Oꎬ(8)CO2+6H++6e-ңCH3OH+H2Oꎬ(9)CO2+8H++8e-ңCH4+H2Oꎬ(10)其相应的还原电势如图9(a)所示ꎮ在CO2还原反应中ꎬ使一个CO2分子接受一个电子形成CO2/CO -2自由基需要克服较大的能量势垒(-1.9Vvs.NHEꎬpH=7)ꎬ而多电子和多质子的CO2还原反应则具有相对低的能量势垒ꎬ因而在热力学上更有利于反应的进行[94]ꎮ通常ꎬ光催化CO2还原反应存在8个动态过程ꎬ如图9(b)所示:(1)半导体的光吸收和光激发ꎻ(2)光生电子 ̄空穴对的形成和向半导体表面迁移ꎻ(3)和(4)光生电子 ̄空穴对的复合ꎻ(5)光生电子催化H2还原反应ꎻ(6)光生空穴催化CO2还原反应ꎻ(7)光生空穴催化H2O发生氧化反应ꎻ(8)水氧催化还原产物进一步氧化ꎮ为保障光催化CO2还原获得较高的速率和产率ꎬ需要抑制(3)~(5)和(8)这4个反应过程ꎬ从而提高光生载流子的利用率ꎮPotenial/(Vvs.NHE,pH=7)(a)(b)Overpotenial(驻E o)for OERVBh+h+h+OERE g hv>E gH2OO2h+CRRe-e-e-CBe-E(H2OO2)E(CO/HCO H)E(CO/CO)E(CO/HCOH)E(CO/CH OH)E(H/H)E(CO/CH)Solar fuelsCO2+H2OE(CO/CO)Overpotenial(驻E g)for CRR-1.9CRCH2H+(5)HER(6)CRR(2)(3)(4)e-CH3OH(ads)HCO2H(ads)CH4(ads)CO(ads)(2)(1)h+h+e-(1)e-CBh+VB WOC(7)O2OER)H2O(8)SBRCO2(ads/activation)图9㊀(a)光催化CO2还原机理ꎻ(b)光催化CO2还原的过程[95]ꎮFig.9㊀(a)SchematicillustrationofCO2photoreductiononasemiconductor.(b)ProcessofCO2photoreductionwithwater[95].4.2.2㊀光催化CO2还原的研究进展2017年ꎬXu等[74]率先报道了CsPbBr3QDs的光催化CO2还原的性能ꎮ以乙酸乙酯/水作为溶剂ꎬCsPbBr3QDs光催化CO2还原速率为23.7μmol g-1 h-1ꎬ还原产物为CO㊁CH4㊁H2ꎬ其中CO2的选择性催化率超过99.3%ꎮ通过将CsPb ̄Br3QDs与石墨烯(GO)复合ꎬ促进了光生载流子的分离和传输ꎬCsPbBr3QDs/GO的电荷消耗速率相较于CsPbBr3QDs提升了25.5%ꎬ如图10(a)㊁(b)所示ꎮ几乎在同一时间ꎬHou等[96]研究了不。

科协代表大会开幕词

科协代表大会开幕词

科协代表大会开幕词科协是党领导下的人民团体和科技工作者的群众组织,是推动科技事业发展的重要力量。

下面是小编给大家整理的科协代表大会开幕词,仅供参考。

科协代表大会开幕词【篇一】各位代表、同志们:在举国上下深入学习贯彻党的十七大和“两会”精神,同心协力为推动科学发展、促进社会和谐而努力奋斗之际,天津市科学技术协会第七次代表大会今天隆重开幕了。

这是一次承前启后、继往开来的大会,更是动员和组织全市广大科技工作者高举中国特色社会主义伟大旗帜、为完成党的十七大确定的各项任务而努力奋斗的大会。

在此,我谨代表中国科协向大会的召开表示热烈祝贺,向全体与会代表,并通过你们向全市广大科技工作者致以亲切的问候和崇高的敬意!五年来,在天津市委、市政府的正确领导和大力支持下,市科协坚持深入实施科教兴市和人才强市战略,围绕中心、服务大局,求真务实、开拓创新,团结动员全市广大科技工作者,在为经济社会发展服务、为提高全民科学素质服务、为科技工作者服务方面做了大量工作,为推进天津科学发展、和谐发展、率先发展作出了积极贡献。

一是决策咨询、科技服务取得佳绩。

以推进决策科学化民主化为目标,组织各类发展研究、决策咨询200多项,其中《天津市产业技术进步研究》荣获中国发展研究奖,13项研究成果分获中国科协和天津市优秀调研成果奖。

广泛开展科技咨询、“厂会协作”、“讲、比”竞赛、科普惠农兴村计划、科技下乡等专项活动,完成科技服务项目1万余项,为推动全市经济社会全面协调可持续发展发挥了重要作用。

二是科学普及活动蓬勃开展。

认真贯彻落实《科普法》和《科学素质纲要》,每年举办科普日、科技周和社区科普月等活动数千项,百余万群众参与;社区科普大学、农村实用技术培训、农村“科普四个一”工程、“百万青少年科学体验活动”等经常性科普活动常抓不懈;认真履行市科学素质工作领导小组办公室的职责,扎实推进公民科学素质建设。

三是服务科技工作者渠道拓宽。

每年开展调研服务月和走访慰问月活动,设立科技工作者状况调查站点,及时了解反映科技工作者的实际困难和需求;举办面向科技人员的继续教育培训班1800余期,参加培训达10万多人次;与市委组织部、人事局联合开展“天津青年科技奖”和“天津市优秀科技工作者”等评选活动,与媒体联合举办《科技英才访谈录》等栏目,大力表彰宣传优秀科技工作者;加强外资企业、民营企业和高新技术产业园区科协基层组织建设,科协的凝聚力、服务能力和社会影响力明显提高。

汤涛 中国科学院院士

汤涛  中国科学院院士

汤涛中国科学院院士
作者:
来源:《科学中国人》2024年第06期
广州南方学院校长
现今中国年轻数学家研究的深度和广度,加起来不比美国20世纪40年代本土数学家的水平差。

而中国青年才俊的涌现说明,过去30年,中国数学人才培养之路是相当成功的,这是中国数学教育近百年来最成功的30年。

在中国数学界,年轻一代成长趋势明显。

尤其是改革开放后,经过数代人努力,一批年轻人逐渐成长起来,在国际数学界取得了很好的地位,比如千禧年前后进入北大数学系学习的“黄金一代”。

这批优秀的年轻人有不少放弃了国外名校的教职,回到祖國从事数学教研工作,比如美国加州大学伯克利分校的袁新意和孙崧、宾西法尼亚大学的丁剑、康涅狄格大学的肖梁、耶鲁大学的刘一峰,以及加拿大多伦多大学的姚方于近几年纷纷回国。

这在以前是没有的,以前我们是单向的留美就回不来了,现在确实有很多人才回国了,这是历史的突破,是一个非常可喜的现象,它将大大提高整个国家的数学研究水平。

我们要沉得住气,不要盲目自大,但更不应妄自菲薄,要稳住今天良好的发展势头,让年轻人成为振兴中国数学的主力军,他们合在一起,应该是中国数学的未来,他们肯定会做得很好。

会议主持词开场白及结束语范例

会议主持词开场白及结束语范例

会议主持词开场白及结束语范例【篇一】会议主持词开场白及结束语范例现在我们开始开会,请大家保持安静,手机调整至静音,不要随意走动。

尊敬的各位领导、各位同仁,下午好!今天,****服务中心在这里召开20XX年年度工作报告,回顾一年来的工作业绩,并展望明年的美好蓝图。

今天有幸邀请到公司领导**总参加我们的会议,以我们热烈的掌声表示真诚的感谢!今天的会议共有3项议程:第一项议程是请各部门负责人和员工代表做工作报告及服务中心**总做工作点评;第二项议程是请**总对服务中心进行工作指导;第三项议程是对工作优秀的员工进行嘉奖;年终总结会议主持词首先让我们以热烈的掌声欢迎欢迎客服部**经理做“上半年工作总结和下半年工作报告”;**经理的报告指出围绕公司“**”特色服务执行方案和服务中心具体措施开展亲情服务工作,敢于创新、勇于探索,取得了较好的成绩。

下面让我们以热烈的掌声欢迎工程部**经理做“上半年工作总结和下半年工作报告”;通过工程部**经理的报告让我们看到各位技术人员为保证****的设备设施正常运行和执行“**”特色服务做出的贡献。

现在让我们以热烈的掌声欢迎安防部**经理做“上半年工作总结和下半年工作报告”;好!感觉**经理的报告,从报告中体现了安防部在保障****业户人身和财产做出了很大贡献,是服务中心开展“**”特色服务的坚强后盾。

接下来有请财务部会计**为我们做上半年经营指标完成和成本控制的情况!感谢**为我们提供了精确的财务数据,这也是我们劳动成果的体现。

下面是我们服务中心的员工代表:区域客户主任***为我们做上半年工作报告,掌声欢迎!从客服部**的报告中可以看出我们****的基层员工的用心工作和敢于担当精神风貌!下面有请服务中心**总对上半年工作做点评,掌声欢迎!感谢**总对服务中心点评,同时也为我们下半年工作指明了方向。

现在进行第二项议程是请**总对服务中心进行工作指导;非常感谢**总对我们工作的肯定,以及对我们的期望,请再以热烈掌声送给我们的**总!下面是会议第三项议程是对工作优秀的员工进行嘉奖;***、***、***、***(员工名单)以上就是今天的会议内容,感谢**总在百忙中抽出时间参加我们的总结会议,请全体员起立,以热烈的掌声欢送公司领导**总!【篇二】会议主持词开场白及结束语范例同志们:经街道研究决定,今日召开全街道食品安全工作会议,主要是贯彻落实上级会议精神,下发相关文件,对街道食品安全整治摸底调查工作进行安排部署,确保整治工作扎实有效的开展。

2010年9月至2011年3月时事政治之一句话新闻

2010年9月至2011年3月时事政治之一句话新闻

2010年9月时事政治1.9月3日是中国人民抗日战争胜利65周年纪念日。

2.2009年,我国对外直接投资位居发展中国家、地区首位,名列全球第五位。

至此,我国对外直接投资已连续8年保持增长势头。

3.深圳经济特区建立30周年庆祝大会9月6日上午在广东深圳隆重举行。

4.中国积极扩大进口,已成为世界第二大进口国。

5.世界经济论坛2010年新领军者年会(第四届夏季达沃斯论坛)9月13日下午在天津梅江会展中心开幕,本届论坛以“推动可持续增长”为主题。

6.第五届全国特殊奥林匹克运动会火炬9月19日晚在福建省体育中心点燃。

第五届全国特奥运动会主题为“共享阳光,你我同行”。

7.国际和平日庆祝大会9月20日在北京举行。

联合国宣布今年国际和平日的主题是“青年与和平和发展”,口号是“和平等于未来”。

8.9月26日,全国人口普查宣传月启动仪式暨北京市第六次全国人口普查动员誓师大会在北京国家会议中心举行,11月1日零点是第六次全国人口普查的标准时间。

9.9月27日,我国核科学技术发祥地和综合研究基地——中国原子能科学研究院迎来成立60周年。

10当今世界第一高的电视观光塔——广州塔,9月29日宣布落成。

11.第三十三届世界海洋和平大会暨联合国教科文组织政府间海洋学委员会成立50周年庆典9月4日圆满闭幕。

12.9月14日下午,第六十五届联合国大会在纽约联合国总部开幕。

第六十四届联大当天上午闭幕。

13.联合国千年发展目标高级别会议9月20日在纽约联合国总部开幕。

14.为期一天的朝鲜劳动党代表会议28日在平壤闭幕,会议再次选举金正日为朝鲜劳动党总书记。

2010年10月时事政治1.2010年上海世界博览会中华人民共和国国家馆日仪式10月1日上午在上海世博中心隆重举行。

2.10月1日,长征三号丙火箭在我国西昌卫星发射中心点火发射,把嫦娥二号卫星成功送入太空。

这标志着探月工程二期任务迈出了成功的第一步。

3.国务院总理总理10月4日出席了在布鲁塞尔举行的第八届亚欧首脑会议开幕式并致辞。

学术协会年会开幕式主持词

学术协会年会开幕式主持词

学术协会年会开幕式主持词(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作资料、合同协议、条据文书、方案大全、职场资料、个人写作、教学资料、经典美文、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays for everyone, such as work materials, contracts and agreements, clauses, documents, plans, workplace materials, personal writing, teaching materials, classic American essays, essays, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!学术协会年会开幕式主持词学术协会年会开幕式主持词精选5篇浮在上面的,不必骄傲;沉在底下的,更用不着悲观。

幼儿教师年会文案范文推荐7篇

幼儿教师年会文案范文推荐7篇

幼儿教师年会文案范文推荐7篇幼儿教师年会文案范文第一篇活动时间:12月30日上午 8:30-11:00活动内容:活动一:亲子包水饺以班级为单位,每位幼儿邀请一位家长〔尽量是爸爸或者妈妈〕来园参与活动,与家长一起包水饺庆祝新年,感受新年的到来。

活动二:亲子新年会1、幼儿表演类:以班级为单位的幼儿集体表演〔可以表演本学期幼儿学过的儿歌、歌曲等〕。

2、亲子游戏类:以级部为单位,每班根据游戏人数要求派出家长幼儿代表进行游戏。

〔1〕围围接力赛准备:帽子、围巾、手套。

规那么:5-10个家庭一组同时进行,幼儿再起点处戴好自己的帽子、围巾、手套,然后快速跑到对面的家长处,帮家长围好围巾〔要求围巾要绕一圈〕,速度最快者获胜。

〔2〕喂娃娃规那么:5-10个家庭一组同时进行,家长抱着孩子在起点处将碗里的豆子舀起,家长抱着孩子跑到对面,孩子将勺子里的豆子倒在终点处的碗里,在规定时间内,终点处碗里豆子最多的家庭获胜。

〔3〕占圈规那么:21名家长手抱自己的孩子围着圆圈走,当音乐停止时家长抱着孩子站到圈中,没有占到圈的家庭离开,然后依次减少圈,最后占到圈的家庭为胜利者。

〔4〕抓尾巴规那么:10名家长手抱自己的孩子走,当音乐停止时,能保护好自己尾巴的家长为胜利者。

〔5〕叠报纸规那么:音乐响起时家长和幼儿站在报纸上根据主持人的要求模仿相应动物的动作,音乐停止时,家长和幼儿一起将报纸对折后再次站到报纸上,反复操作数次,最后看哪一个家庭能在报纸上坚持的时间最长。

3、亲子祝福类:〔1〕打扮自己。

请幼儿带来各式帽子或打扮的道具。

〔2〕欢乐舞。

家长幼儿集体跳欢乐舞。

〔3〕写新年心愿。

为每个孩子准备一张爱心彩纸,写上新年心愿,张贴在祝福墙上。

幼儿教师年会文案范文第二篇一、指导思想相约20某某年,共迎我校美好的明天。

为推进校园文化建设,丰富师生文化生活,充分展示我校办学取得的喜人成绩和全校师生的良好精神风貌,努力营造文明高雅、发奋向上的。

校园文化气氛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档