【最新】人教版八年级数学上册《15.2.1 分式的乘除(二)》导学案

合集下载

八年级数学上册15.2.1 分式的乘除(二)导学案(新版)新人教版

八年级数学上册15.2.1 分式的乘除(二)导学案(新版)新人教版

八年级数学上册15.2.1 分式的乘除(二)导
学案(新版)新人教版
15、2、1分式的乘除
(二)
【学习目标】
XXXXX:
1、熟练的进行分式乘除法的混合运算、
2、理解分式乘方的运算法则,熟练的进行分式乘方运算、
【学习重点】
XXXXX:
1、熟练地进行分式乘除法的混合运算、
2、熟练地进行分式乘方的运算、
【学习难点】
XXXXX:
1、熟练地进行分式乘除法的混合运算、关键是点拨运算符号问题、变号法则、
2、熟练地进行分式乘、除、乘方的混合运算、
一、自主学习
1、阅读课本P138 ~139 页,思考下列问题:(1)课本
P138页例4你能独立解答吗?(2)分式乘方的法则是什么?(3)课本P139页例5你能独立解答吗?
2、独立思考后我还有以下疑惑:
二、合作交流探究与展示:
【1】
分式的乘除法的法则是什么?计算时应注意什么问题?
【2】
乘方的意义是什么?
【3】
计算:(1) (2)
(预设:学生在上节课学习的基础上,通过预习能够完成的同学可能有一部分,教学时应该抓住这部分学生去引导、辅导其余的学生。


【4】
根据乘方的意义和分式乘法的法则计算:(1)==() (2) ==()(3)==() ===,===,……
【5】
根据计算推导可得:
三、当堂检测:(
1、2必做3选做)
1、p139练习1
2、计算:(1)(2)(3)
3、p139练习2
四、学习反思
1、这节课你学到了什么?。

2、还有什么疑惑?。

最新人教版初中八年级上册数学《分式的乘除》导学案

最新人教版初中八年级上册数学《分式的乘除》导学案

15.2.1 分式的乘除第1课时 分式的乘除学教目标1.理解并掌握分式的乘除法则,运用法则进行简单的分式乘除运算;2.经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。

3培养学生的观察、类比、归纳能力和与同伴合作交流的情感学教重点:掌握分式的乘除运算学教难点:正确运用分式的基本性质约分学教过程:一、温故知新:阅读课本P 135—137与同伴交流,猜一猜a b ×c d = a b ÷c d = a 、c 不为 观察上面运算,可知:分数的乘法法则:________________________________________________________分数的除法法则:________________________________________________________你能用类比的方法的出分式的乘除法法则吗?分式的乘法法则:_________________________________________________________分式的除法法则:_________________________________________________________ 用式子表示为:即a b ×c d = a b ÷c d =a b ×d c = 这里字母a ,b ,c ,d 都是整式,但a ,c ,d 不为二、 学教互动 :例1、计算:{分式乘法运算,进行约分化简,其结果通常要化成最简分式或整式}(1)y x 34·32x y (2)22-+a a ·a a 212+ (3)2226934x x x x x +-+⋅--例2 计算:(分式除法运算,先把除法变乘法)(1)3xy 2÷x y 26 (2)xx y x y y x x +÷-222 (3)4412+--a a a ÷4122--a a三、课堂小测1.计算:(1)22442bc a a b -⋅ (2)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342 (3)y x 12-÷21yx + (4)b a ·2a b(5)(a 2-a )÷1-a a 2.代数式3234x x x x ++÷--有意义的x 的值是( ) A .3x ≠且2x -≠ B .3x ≠且4x ≠C .3x ≠且3x -≠D .2x -≠且3x ≠且4x ≠3.甲队在n 天内挖水渠a 米,乙队在m 天内挖水渠b 米,如果两队同时挖水渠,要挖x 米,需要多少天才能完成?(用代数式表示)4.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x 〉0 B. x<0 C.x 0≠ D. x 1-≠5.若m 等于它的倒数,则分式22444222-+÷-++m m m m m m 的值为 6.计算(1) 2221211a a a a a a --÷+++ (2).2224369a a a a a --÷+++ (3) 222210522y x ab b a y x -⋅+五.小结与反思:非常感谢!您浏览到此文档。

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
2.教师通过具体的例题,演示分式乘除法的运算步骤,强调注意事项,如符号处理和化简方法。
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。

新人教版八年级数学上册15.2.1分式的乘除(2)导学案

新人教版八年级数学上册15.2.1分式的乘除(2)导学案
1、计算:(1) (2) ÷ ÷
2、完成教材P151.
反思提升
二、自学新知:
1、(1)计算:
(2)思考:()2=. ()3=. ()10=.
归纳:一般地,当n是正整数时,()n的意义是, =。
语言描述:,分式乘方的实质是什么?
2、计算(1) (2)
(3) ÷ ·
小结:
导学探究
典例分析:
计算: ÷ ·
归纳总结:
巩固练习:计算 ,找出你的问题.
达标拓展
一、达标测评:
课题
新人教版八年级数学上册15.2.1分式的乘除(2)导学案
5
学习目标
掌握分式的乘方法则,熟练进行分式的乘除法与乘方的混合运算。
重点
分式的乘方运算。
难点
分式运算的符号问题及混合运算的顺序。
自主学习
一、导入识标:
1、思考:(1)在分式的乘除法混什么运算?(3)在分式的乘方、乘除混合运算中,运算顺序是怎样的?

人教版八年级数学上册15.2.1分式的乘除2教学设计

人教版八年级数学上册15.2.1分式的乘除2教学设计
3.教学评价设想:
-采用过程性评价,关注学生在学习过程中的参与度、合作态度和解决问题的能力。
-定期进行总结性评价,通过测试和作业,评估学生对分式乘除知识的掌握程度。
-鼓励学生自我评价和同伴评价,培养他们的自我反思能力和批判性思维。
4.教学环境设想:
-创设一个积极的学习氛围,鼓励学生提问和表达自己的观点。
3.提高拓展题:设计一些难度较大的题目,让学生在解决问题的过程中提高思维能力和灵活运用知识的能力。
-例如:已知$x = \frac{a}{b}$,$y = \frac{c}{d}$,求解$\frac{x^2y}{x+y}$的值。
4.小组合作研究题:鼓励学生以小组为单位,共同探讨和研究一些开放性问题,培养学生的团队合作精神和探究能力。
-拓展阶段:鼓励学生尝试解决更复杂的实际问题,将分式乘除与之前学过的知识相结合,提高综合解决问题的能力。
2.教学方法设想:
-采用启发式教学法,通过提问和引导,激发学生的思考,帮助他们理解分式乘除的本质。
-利用信息技术,如多媒体演示、在线教学平台等,提供直观的学习资源,帮助学生克服学习难点。
-实施差异化教学,针对不同学生的学习情况,提供不同难度的练习题,确保每个学生都能在原有基础上得到提高。
-例如:计算下列分式的乘积或商,并简化结果:$\frac{a}{b} \times \frac{c}{d}$,$\frac{a}{b} \div \frac{c}{d}$。
2.实际问题应用题:将分式乘除与生活实际相结合,设计一些应用题,让学生学会将数学知识应用于解决生活中的问题。
-例如:小华有一块长方形的巧克力,长为$a$厘米,宽为$b$厘米,他想将其分成大小相等的正方形小块,每块边长为$c$厘米,问最多可以分成多少块?

新人教版八年级数学上册《15.2.1分式的乘除》导学案

新人教版八年级数学上册《15.2.1分式的乘除》导学案
新人教版八年级数学上册《 15.2.1 分式的乘除》导学案
1、使学生理解并掌握分式的乘除法则,运 用法则进行运算,能解决一些与分式有关的实际问 题. 导学目标 2、经历探索分式的乘除运算法则的过程,并 能结合具体情境说明其合理性 3、教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 运用分式的乘除法则进行运算 分子、分母为多项式的分式乘除法运算. 教 教学 教学 环节 内容 备 习 预习教材 约分方法。 倾听学生的回答, 做必要的纠正。 认真完成后,倾听 同学的回答,及时 补充并纠正。 预见性问题: 1.回答不全面, 组间 交流补充完整 教学任务 学 过 程 学生活动 预见性问题及对策
2、你能归纳总结出分式的乘除 法法则吗? 3、怎样用式子表示这些法则?
试一试 1 计算: ( 1 ) 4x y 3y 2 x3
3 2 2 (2) ab3 5a b 2c 4cd 2、计算:

分 式 的 乘 除
2 1 (1) a 2 4a 4 a 2 a 2a 1 a 4 1 1 (2) 2 2 49 m m 7m
教师指导学生根据 分式的基本性质进 行填空,对于学困 生给予帮助和鼓励
对知识运用部分 的问题先独立完 成,再小组交流合 作,完成知识运用。
解决的对策: 按分式的分子、分 母是单项式还是多 项式分类讨论,总 结解题方法。
先独立完成后,小 组交流,统一答案, 准备组间交流。
时 习
板 书 设 计
问题一:
15.1.2 分式的乘除 例题:
2 4 2 4 5 2 5 2 2 4 2 5 25 , , , 3 5 3 5 7 9 7 9 3 5 3 4 3 4
5 2 5 9 59 . 7 9 7 2 72

八年级数学上册 15.2.1 分式的乘除法导学案

八年级数学上册 15.2.1 分式的乘除法导学案

分式的乘除法学习目标1、 明白得分式的乘除法运算法那么,并能熟练地运用法那么进行分式的乘除运算. 二、以分数的乘除法法那么为基础,探讨分式的乘除法法那么,渗透类比的数学思想. 一、课前预习一、分数的乘除法法那么:两个分数相乘,把分子相乘的积作为 ,把分母相乘的积作为 . 两个分数相除,把除数的分子和分母 后再与被除数相乘. 二、观看以下运算:24243535⨯⨯=⨯, 52527979⨯⨯=⨯, 242525353434⨯÷=⨯=⨯, 525959797272⨯÷=⨯=⨯(1)猜一猜::=⨯c d a b ;=÷cda b . 3、分式乘除法的法那么:①两个分式相乘,把 作为积的分子,把 作为积的分母。

②两个分式相除,把 倒置位置后再与被除式相乘。

二、例一、计算:(分式乘法运算,进行约分化简,其结果通常要化成最简分式或整式。

)(1)223286a y y a ⋅; (2)aa a a 21222+⋅-+; (3))4(2222y x xy x y -⋅- 解:⑴原式= ⑵ 原式= ⑶原式= 例二、计算:(分式除法运算,先把除法变乘法)2221211a a aa a a --÷+++ 解:原式=(a +1)(a −1)(a +1)2÷a (a −1)a +1=(a +1)(a −1)(a +1)2×a +1a (a −1)=1a(1)x y xy 2263÷ (2)41441222--÷+--a a a a a (3)()22224244y x y x y xy x -÷-+- 解:(1)原式= (2)原式= ⑶原式= ※小结提炼1.进行分式的乘除运算时必然要将分子、分母中的多项式 后才能进行 2.分式的乘除运算与分数的乘除运算类似,可类比进行 ※反馈练习 计算: (1);bab a a -•-b (2)cb aa bc 222•(3)bb a a b -+•-2239 (4)22441y x y x y x +÷-+ (5)mm m m m --⋅-+-3249622 (6)()22224244y x y x y xy x -÷-+-。

最新人教版初中八年级数学上册《分式的乘除》导学案 (2)

最新人教版初中八年级数学上册《分式的乘除》导学案 (2)

15.2分式的运算15.2.1分式的乘除第1课时分式的乘除一、新课导入1.导入课题:通过前面分式的学习,知道分式和分数有很多的相似性,如性质、约分和通分.事实上,在运算上它们也有许多的相似性.今天我们一起类比分数的运算来研究分式的运算,首先学习分式的乘除.2.学习目标:(1)知道并熟记分式乘除法法则.(2)能准确地进行分式的乘除法的计算.(3)通过分式乘除法法则得出体会类比的数学思想方法.3.学习重、难点:重点:分式乘除运算法则.难点:分式乘除运算法则的运用.二、分层学习1.自学指导:(1)自学内容:教材第135页到第136页例1上面的内容.(2)自学时间:8分钟.(3)自学方法:回顾分数乘除运算法则,类比分数的乘除运算法则探讨分式乘除运算法则.(4)自学参考题纲:②类比以上方法,填写:③分式乘法法则:分式乘分式,分子相乘,作为积的分子,分母相乘,作为积的分母,分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.④写出下列各式结果:⑤计算:2.自学:学生结合自学指导自主学习.3.助学:(1)师助生:①明了学情:了解学生能否从分数乘法法则中类比出分式乘法法则.②差异指导:对认知不清的学生进行点拨引导.(2)生助生:同桌间相互交流自学参考提纲的问题,各小组间相互交流帮助.4.强化:(1)分式乘除法法则.(2)对照法则练一练:1.自学指导:(1)自学内容:教材第136页例1到例3. (2)自学时间:10分钟.(3)自学方法:结合例2体会分子、分母是多项式的分式乘除的计算方法,例3中弄清a 2-1与(a -1)2的大小关系.(4)自学参考提纲:①例1中参与乘除运算的两个分式的分子和分母都是单项式,这种分式的乘除运算有何特点?先做乘除法,再进行约分②由例2知,分子、分母是多项式时,通常先因式分解,再约分. ③运算结果应化为最简分式或整式. ④例3是分式的应用问题,其中25001a -<2500(1)a -是怎样来的?除教材上的方法外,还可作差比较大小,即判断25001a --2500(1)a -与0的大小,有兴趣者不妨试一试.解:∵a>1,∴a 2-1>0,(a-1)2>0而(a-1)2-(a 2-1)=-2a+2<0, ∴(a-1)2<a 2-1, ∴25001a -<2500(1)a -.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清分式乘除的运算方法和运算步骤.②差异指导:对有困难的学生予以分类指导.(2)生助生:学生之间相互交流和帮助.4.强化:(1)分式乘除,当分子、分母是多项式时,通常先分解因式再约分.(2)运算结果应为最简分式.(3)对照法则练一练:三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获及学习体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行总结点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种,并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,应将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出式子并计算.一、基础巩固(第1题30分,第2、3、4题每题10分,共60分)2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机工作效率是小拖拉机的工作效率的(C)倍.,3.一艘船顺流航行n千米用了m小时,如果逆流速度是顺流速度的pq那么这艘船逆流航行t小时走了npt千米.mq4.计算:二、综合应用(每题10分,共20分)三、拓展延伸(20分)7.已知|a-2|+b-3=0,计算a2+abb2·a2-aba2-b2的值.非常感谢!您浏览到此文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册《15.2.1 分式的乘除(二)》导学案
学教目标: 1.能应用分式的乘除法法则进行乘除混合运算。

2.能灵活应用分式的乘除法法则进行分式的乘除混合运算。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣。

一、温故知新:
1.分式的约分:__________________________________________
最简分式:__________________________________________
下列各分式中,最简分式是( )
A .()()y x y x +-8534
B .y x x y +-22
C .2222xy y x y x ++
D .()
22
2y x y x +- 2.分解因式:2232x y xy y -+= 3
a a -= 2312x -= 220.01a
b -=
21222
x x ++
= 2242x y x y -++= 3. 计算 (1)=÷⨯4156523 (2)=⨯÷25122535 分式的乘除法混合运算顺序 二、学教互动 :例1.计算 :
(1) (2)3
592533522+∙-÷-x x x x x
注意:过程中,分子、分母一般保持分解因式的形式。

三、随堂练习
1.计算: (1)2224369
a a a a a --÷+++ (2)(a
b -b 2)÷b a b a +-22
2. 计算
(1)2222255343x y m n xym mn xy n ⋅÷ (2) 2
21642168282
m m m m m m m ---÷⋅++++
3.先化简,再求值:
232282421x x x x x x x x x +--+⎛⎫÷⋅ ⎪+++⎝⎭.其中45
x =-
2.观察下列运算


分式的乘方法则:公式: 文字叙述:
例1.计算 (1) 3223a b c ⎛⎫- ⎪⎝⎭ (2) 234
22x y y y x x ⎛⎫⎛⎫⎛⎫⋅÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
例2.计算(1) 23324b b b a a a -⎛⎫⎛⎫⎛⎫÷⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2) 23
32x y xz yz z y x ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
4.计算 -()
4425m n m n n m -÷⎪⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛。

相关文档
最新文档