关于外接球的表面积与体积计算问题(二)
外接球的体积与表面积专题练习-2023届高三数学二轮复习

外接球的体积与表面积知识点一:特殊类型的外接球问题1.三棱锥P ﹣ABC 中,PA ,PB ,PC 两两垂直,AB=2,BC=5,AC=7,则该三棱锥外接球的表面积( )A .4πB .8πC .16πD .π3282.在四面体ABCD 中,AB=CD=10,AC=BD=5,AD=BC=13,则四面体的外接球的表面积为( )A .36πB .38πC .14πD .16π3.三棱锥D ﹣ABC 中,AB=CD=6,其余四条棱长均为2,则三棱锥D ﹣ABC 的外接球的表面积为( )A .14πB .7πC .21πD .28π4.已知三棱锥ABC P -的四个顶点在球O 的球面上,PC PB PA ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,︒=∠90CEF ,则球O 的体积为A .B .C . D5.在三棱锥S ﹣ABC 中,BC SB ⊥,AC SA ⊥,BC SB =,AC SA =,SC AB 22=,且三棱锥S ﹣ABC 的体积为38,则该三棱锥的外接球的表面积为( ) A .4π B .16πC .36πD .72π 6.已知三棱锥ABC S -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,AC SA =,BC SB =,三棱锥ABC S -的体积为9,则球O 的表面积为________.知识点二:非特殊类型外接球问题1.三棱锥P ﹣ABC 中,△ABC 为等边三角形,PA=PB=PC=3,PA ⊥PB ,三棱锥P ﹣ABC 的外接球的体积为( )A .π227B .π2327C .π327D .27π2.已知三棱锥P ﹣ABC 所有顶点都在球O 的球面上,底面△ABC 是以C 为直角顶点的直角三角形,AB=22,PA=PB=PC=3,则球O 的表面积为( )A .9πB .49πC .4πD .π3.已知三棱锥S ﹣ABC 的底面是以AB 为斜边的等腰直角三角形,且AB=SA=SB=SC=2,则该三棱锥的外接球的表面积为( )A .38πB .π334C .π34D .π316 4.四面体ABCD 中,AB=AC=BC=2,2==CD BD ,点E 是BC 的中点,点A 在平面BCD 的射影恰好为DE 的中点,则该四面体外接球的表面积为( )A .π1160B .π944C .π1136D .π1120 5.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,∠ACB=90°,AC=BC=22=PA ,则此三棱锥外接球的表面积为()A .5πB .10πC .20πD .40π6.已知三棱锥S ﹣ABC 所有顶点都在球O 的表面上,且SC ⊥平面ABC ,若SC=AB=AC=1,∠BAC=120°,则球O 的表面积为( )A .25πB .5πC .4πD .35π7.已知三棱锥P ﹣ABC ,在底面△ABC 中,∠A=60°,BC=3,PA ⊥面ABC ,PA=32,则此三棱锥的外接球的表面积为( )A .316πB .34πC .332πD .16π8.已知三棱锥D ﹣ABC 中,AB=BC=1,AD=2,5=BD ,2=AC ,BC ⊥AD ,则三棱锥的外接球的表面积为( )A .6πB .24πC .π6D .π689.已知三棱锥P ﹣ABC 的底面是边长为3的正三角形,PA ⊥底面ABC ,且PA=6,则该三棱锥的外接球的体积是()A .48πB .332πC .318πD .38π10.在四面体S ﹣ABCD 中,BC AB ⊥,2==BC AB ,SA=SC=SB=2,则该四面体外接球的表面积是( ) A .π34 B .π38C .π310D .π316 11.三棱椎S ﹣ABC 中,SA ⊥面ABC ,△ABC 为等边三角形,SA=2,AB=3,则三棱锥S ﹣ABC 的外接球的表面积为( )A .4πB .8πC .16πD .64π12.在四面体ABCD 中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD 的外接球的半径为( )A .2B .2C .3D .3。
几何体外接球表面积及体积的求法有答案

几何体外接球表面积及体积的求法答案1.D【考点】由三视图求面积、体积.【专题】数形结合;转化法;空间位置关系与距离.【分析】根据三视图得出该几何体是圆柱,求出圆柱体的表面积和它外接球的表面积即可得出结论.【解答】解:根据三视图得,该几何体是底面半径为3,高为4的圆柱体,所以该圆柱体的表面积为S1=2π×32+2π×3×8=66π;根据球与圆柱的对称性,得它外接球的半径R满足(2R)2=62+82=100,所以外接球的表面积为S2=4πR2=100π;所以剩余几何体的表面积是S=S1+S2=66π+100π=166π.故选:D.【点评】本题考查了三视图的应用问题,也考查了利用三视图研究直观图的性质,球与圆柱的接切关系,球的表面积计算问题,是基础题目.2.D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.C【考点】球内接多面体;球的体积和表面积.【专题】空间位置关系与距离.【分析】先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理列方程,解出球的半径即可.【解答】解:如图,设正四棱锥底面的中心为E,过点A,B,C,D,S的球的球心为O,半径为R,则在直角三角形AEO中,AO=R,AE=BD=4,OE=SE﹣AO=8﹣R由AO2=AE2+OE2得R2=42+(8﹣R)2,解得R=5球半径R=5,故选C.【点评】本题主要考查球,球的内接体问题,考查计算能力和空间想象能力,属于中档题.4.D考点:球的体积和表面积.专题:计算题.分析:由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.解答:解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.5.C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.6.C【考点】球的体积和表面积.【专题】空间位置关系与距离.【分析】将四面体补成长方体,通过求解长方体的对角线就是球的直径,然后求解外接球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=29,x2+z2=34,y2+z2=37,则有(2R)2=x2+y2+z2=50(R为球的半径),得R2=,所以球的表面积为S=4πR2=50π.故选:C.【点评】本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.7.B【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.8.B【考点】球内接多面体.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是,外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.9.D【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.10.B【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=4π故选:B.【点评】本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.11.D12.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.12.A考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.13.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S 在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.【解答】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为: =.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.15.【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.16.16π【考点】球的体积和表面积.【专题】计算题;方程思想;数形结合法;立体几何.【分析】正四棱锥P﹣ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=3,OO1=3﹣R,在Rt△AO1O中,AO1=AC=,由勾股定理R2=3+(3﹣R)2得R=2,∴球的表面积S=16π故答案为:16π.【点评】本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.17.36π【考点】球的体积和表面积.【专题】计算题.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2 ,∴R=3,∴S=4πR2=4π•(3)2=36π,故答案为:36π.【点评】本题是中档题,考查三棱锥的外接球的表面积,考查空间想象能力;三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.18.;。
立体几何之外接球问题含答案

立体几何之外接球问题一讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的表面积为( ? )A. B. C. D.2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为(??)A.B. C.D.3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ? ?)A. B. C. D.4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(?)A.B. C.D.5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为()A. B.C. D.6、某几何体的三视图如图所示,这个几何体的内切球的体积为(? )A.B.C. D.7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于(?)A. B. C. D.8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ? )A.B. C.D.9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ?)A.B.C. D.10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ? )A. B. C. D.立体几何之外接球问题二讲评课1课时总第课时月日11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________.12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________.13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________.14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________. 16.已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________. 16、在三棱锥中,平面,,,,则此三棱锥外接球的体积为__________18、底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.17、三棱柱的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为,则三棱柱的最大体积为__________.20、一长方体的各顶点均在同一个球面上,且一个顶点上的三条棱长分别为,则这个球的表面积为__________.立体几何之三视图问题1讲评课 1课时 总第 课时 月 日3、一个几何体的三视图如下图所示,则这个几何体的体积是( ) A. B. C. D.4、如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则它的体积为(??? ) A.B.C.D.5、某几何体的三视图如图所示,则它的表面积为( ? ?)A.B.C.D.6、某几何体三视图如图所示,则该几何体的体积为(?? ) A. B. C.D.7、多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为( ???) A.B.C.D.8、某一简单几何体的三视图如图所示,该几何体的外接球的表面积是(?? ) A.B.C.D.9、如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积的最大值是(?? ) A. B.C. D. 10、一个几何体的三视图如图,则这个几何体的表面积是(?? )A.B.C.D.11、若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(?? ) A.B.C.D.12、某几何体三视图如下图所示,则该几何体的体积是(?? )D.A. B. C.13、一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为(?)A. B.C. D.14、已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为(?)A.D.B. C.15、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的的体积为(?)C. D.A. B.立体几何之三视图问题2讲评课1课时总第课时月日16、某长方体的三视图如右图,长度为的体对角线在正视图中的长度为,在侧视图中的长度为,则该长方体的全面积为__________.17、一个空间几何体的三视图如下图所示,则该几何体外接球的表面积为__________.18、一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积__________.19、已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:),则该四棱锥的体积为__________.20、一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.21、已知一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.22、某三棱锥的三视图如图所示,其中俯视图是正方形,则该三棱锥最长棱的长是__________.23、一个多面体的三视图如图所示,则该多面体的表面积为____.24、2016年11月18日13时59分,神舟十一号飞船返回舱在内蒙古中部预定区域成功着陆. 神舟十一号载人飞行,是我国迄今为止时间最长的一次载人航天飞行,在轨33天飞行中,航天员景海鹏、陈冬参与的实验和实验多达38项. “跑台束缚系统”是未来空间站长期飞行的关键锻炼设备,本次任务是国产跑台首次太空验证. 如图所示是“跑台束缚系统”中某机械部件的三视图(单位:),则此机械部件的表面积为__________.25、一个几何体的三视图如图所示,则该几何体的表面积为__________.立体几何之外接球问题答案解析第1题答案C第1题解析如图所示,∵,∴为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则圆心在过的圆面上,即的外接圆为球的大圆,由等边三角形的重心和外心重合易得球半径,球的表面积为,故选.第2题答案B第2题解析设球心为,设正三棱柱上底面为,中心为,因为三棱柱所有棱的长都为,则可知?,,又由球的相关性质可知,球的半径,所以球的表面积为,故选.第3题答案C第3题解析如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选.第4题答案D第4题解析该几何体为三棱锥,设球心为,分别为和的外心,易求得,,∴球的半径,∴该几何体外接球的表面积为.第5题答案B第5题解析∵,∴,∴圆心在平面的射影为的中点,∴,∴.∴,当线段为截面圆的直径时,面积最小,∴截面面积的最小值为.第6题答案C第6题解析此几何体是底面边长为,高为的正四棱锥,可算出其体积为,表面积为. 令内切球的半径为,则,从而内切球的体积为,故选C.第7题答案B第7题解析由题意可知四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度为球的直径,且四棱锥的高半径,进而可知此四棱锥的四个侧面均是边长为的正三角形,底面为边长为的正方形,所以该四棱锥的表面积为?,于是,,进而球的体积. 故选.第8题答案B第8题解析由题可知该三棱锥为一个棱长的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为,则球半径为,则. 故选.第9题答案A第9题解析如图:设、为棱柱两底面的中心,球心为的中点.又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选.?第10题答案D第10题解析此几何体是三棱锥,底面是斜边长为的等腰直角三角形,且顶点在底面内的射影是底面直角三角形斜边的中点.易知,三棱锥的外接球的球心在上.设球的半径为,则,∵,∴,解得:,∴外接球的表面积为.第11题答案第11题解析过圆锥的旋转轴作轴截面,得及其内切圆⊙和外切圆⊙,且两圆同圆心,即的内心与外心重合,易得为正三角形,由题意⊙的半径为,∴的边长为,∴圆锥的底面半径为,高为,∴.第12题答案第12题解析设球心为,正三棱柱的上下底面的中心分别为,,底面正三角形的边长为,则,由已知得底面,在中,,由勾股定理得,故三棱柱体积,又,所以,则.第13题答案第13题解析底面正三角形外接圆的半径为,圆心到底面的距离为,从而其外接圆的半径,则该球的表面积.第14题答案第14题解析设正四面体棱长为,则正四面体表面积为,其内切球半径为正四面体高的,即,因此内切球表面积为,则.第15题答案第15题解析设正方体棱长为,则正方体表面积为,其外接球半径为正方体体对角线长的,即为,因此外接球表面积为,则.第16题答案第16题解析设正的外接圆圆心为,易知,在中,,故球的表面积为.第17题答案第17题解析根据题意球心到平面的距离为,在的外接圆的半径为,所以球的半径为,所以此三棱锥的外接球的体积为,所以答案为:.第18题答案第18题解析设所给半球的半径为,则棱锥的高,底面正方形中有,所以其体积,则,于是所求半球的体积为.第19题答案第19题解析依题意,外接球的表面积为,所以.如图所示,三棱柱外接圆球心为,设,在直角三角形中,所以.三棱柱的体积为,当且仅当时取得最大值.第20题答案第20题解析由已知可得长方体的体对角线为球的直径:,所以.所以球的面积为.。
2020高中数学 检测(六)球的体积和表面积(含解析)2

课时跟踪检测(六)球的体积和表面积一、题组对点训练对点练一球的体积和表面积1.两个半径为1的铁球,熔化成一个大球,这个大球的半径为( )A.2 B。
错误!C. 错误!D。
错误!错误!解析:选C 设熔化后的球的半径为R,则其体积是原来小球的体积的2倍,即V=错误!πR3=2×错误!π×13,得R=错误!。
2.等体积的球和正方体的表面积S球与S正方体的大小关系是()A.S正方体〉S球B.S正方体<S球C.S正方体=S球 D.无法确定解析:选A 设正方体的棱长为a,球的半径为R,由题意,得V =错误!πR3=a3,∴a=错误!,R=错误!,∴S正方体=6a2=6错误!=错误!,S球=4πR2=错误!<错误!.3.火星的半径约是地球半径的一半,则地球的体积是火星体积的________倍.解析:设火星半径为r,则地球半径为2r,错误!=错误!=8.答案:84.某几何体的三视图如图所示,则其表面积为________.解析:由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π。
答案:3π5.某组合体的直观图如图所示,它的中间为圆柱体,左右两端均为半球体,若图中r=1,l=3,试求该组合体的表面积和体积.解:该组合体的表面积S=4πr2+2πrl=4π×12+2π×1×3=10π,该组合体的体积V=错误!πr3+πr2l=错误!π×13+π×12×3=错误!.对点练二球的截面问题6.一平面截一球得到直径是6 cm的圆面,球心到这个圆面的距离是4 cm,则该球的体积是( )A.错误!cm3B。
错误!cm3C。
错误!cm3 D.错误!cm3解析:选C 根据球的截面的性质,得球的半径R=错误!=5(cm),所以V球=错误!πR3=错误!(cm3).7.已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是________.解析:过正方体的对角面作截面如图.故球的半径r=错误!,∴其表面积S=4π×(错误!)2=8π。
巧解外接球的体积与表面积

1.(2012•许昌三模)一个几何体的三视图如图所示,则该几何体的外接球体积为
考点:由三视图求面积、体积.
专题:图表型.
分析:由三视图得到这是一个四棱锥,底面是一个边长是2的正方形,一条侧棱与底面垂直,根据四棱锥的对称性知,外接球的直径是AC,利用勾股定理做出球的直径,得到球的体积.
解答:
解:由主视图和左视图是腰长为2的两个全等的等腰直角三角形,得到这是一个四棱锥,底面是一个边长是2的正方形,一条侧棱AE与底面垂直,
∴根据四棱锥的对称性知,外接球的直径是AC
根据直角三角形的勾股定理知AC=2根号3
∴外接球的体积是4根号3
点评:本题考查由三视图求几何体的面积,考查球的体积.考查多面体的外接球的运算,这是一个综合题目,解题时注意几何体对称性的应用.。
小题狂练系列---几何体的外接球体积表面积(构造法等)专题教师版

【解析】如图1所示,连接 ,则 ,解得
即 ,此圆锥外接球的球心为O,半径为2,表面积为
连接 ,则可得 ,则 过点 ∴
在平面图形中,以焦点在 轴正半轴为例,如图2,抛物线 过点 即 ,则 ,∴抛物线 的焦点 ,则
故答案为: ; .
A. B. C. D.
【答案】A
【解析】: , 为等腰直角三角形, ,
则 外接圆的半径为 ,又球的半径为1,
设 到平面 的距离为 ,
则 ,
所以 .
7.已知 为球 的球面上的三个点,⊙ 为 的外接圆,若⊙ 的面积为 , ,则球 的表面积为( )
A. B. C. D.
【答案】A
【解析】设圆 半径为 ,球的半径为 ,依题意,
10.《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为 ,圆锥的底面圆周和顶点都在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】B
【解析】设球半径为 ,圆锥的底面半径为 ,若一个直角圆锥的侧面积为 ,
设母线为 ,则 ,
故选:C.
4.已知三棱锥 的四个顶点在球 的球面上, , 是边长为2的正三角形, , 分别是 , 的中点, ,则球 的体积为( )
A. B. C. D.
【答案】D
【解析】:三棱锥 为正三棱锥,取 中点 ,连接 ,则 ,
,可得 平面 ,从而 ,又 ,可得 ,
又 ,所以 平面 ,从而 ,从而正三棱锥 的三条侧棱 两两垂直,且 ,可将该三棱锥还原成一个以 为棱的正方体,正方体的体对角线即为球 的直径,即 ,所以球 的体积为 .
所以直角圆锥的侧面积为: ,
关于外接球的表面积与体积计算问题(二)

关于外接球的表面积与体积问题(二)一.选择题(共30小题)1.已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.4πB.9πC.12π D.16π2.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,则此球的体积等于()A.B.C.D.3.三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A ﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12π C.16π D.28π4.已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为()A.28π B.C.32π D.5.已知三棱锥A﹣BCD中,,,且各顶点均在同一个球面上,则该球的体积为()A.B.4πC.2πD.6.如图,将边长为2的正△ABC沿着高AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的表面积为()A.B.C.D.7.设SA为球的直径,B、C、D三点在球面上,且SA⊥面BCD,三角形BCD 的面积为3,V S﹣BCD=3V A﹣BCD=3,则球的表面积为()A.16π B.64π C.πD.32π8.已知四面体A﹣BCD中,△ABC和△BCD都是边长为6的正三角形,则当四面体的体积最大时,其外接球的表面积是()A.60π B.30π C.20π D.15π9.在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A.B.C.D.36π10.在正方体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四面体M﹣ABD的外接球的表面积为36π,则正方体棱长为()A.2 B.3 C.4 D.511.三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是,则三棱锥P﹣ABC 的外接球的表面积是()A.2πB.4πC.8πD.16π12.如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为()A.B.C.16π D.21π13.已知P,A,B,C是球O球面上的四点,△ABC是正三角形,三棱锥P﹣ABC的体积为,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为()A.4πB.πC.16π D.12π14.已知底面边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O 上,则球的体积是()A.B.8πC.20π D.15.已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为4,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为()A.4πB.8πC.16π D.32π16.如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是()A.B.6πC.D.12π17.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A.1 B.C.D.18.三棱锥P﹣ABC三条侧棱两两垂直,三个侧面面积分别为,则该三棱锥的外接球表面积为()A.4πB.6πC.8πD.10π19.在四面体S﹣ABC中,,二面角S﹣AC﹣B的余弦值为,则该四面体外接球的表面积是()A.B.C.24π D.6π20.如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.21.一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,则球O的表面积为()A.84π B.96π C.112πD.144π22.三棱锥的棱长均为4,顶点在同一球面上,则该球的表面积为()A.36π B.72π C.144πD.288π23.已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比()A.5:1 B.2:1 C.4:1 D.:124.已知四面体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四面体的外接球的表面积为()A.43π B.17π C.34π D.25.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的表面积为()A.4πB.8πC.16π D.32π26.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的体积为()A.B.C.D.27.已知正四棱锥P﹣ABCD的底面边长为,体积为,则此棱锥的内切球与外接球的半径之比为()A.1:2 B.2:5 C.1:3 D.4:528.球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的表面积为()A.B.4πC.12π D.36π29.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12π C.16π D.32π30.已知在三棱锥P﹣ABC中,V P﹣ABC=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.关于外接球的表面积与体积问题(二)参考答案与试题解析一.选择题(共30小题)1.(2017•全国模拟)已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.4πB.9πC.12π D.16π【分析】设球心到平面ABCD的距离为d,利用△EAB所在的平面与矩形ABCD 所在的平面互相垂直,EA=EB=3,∠AEB=60°,可得E到平面ABCD的距离为,从而R2=()2+d2=12+(﹣d)2,求出R2=4,即可求出多面体E﹣ABCD 的外接球的表面积.【解答】解:设球心到平面ABCD的距离为d,则∵△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,∴E到平面ABCD的距离为,∴R2=()2+d2=12+(﹣d)2,∴d=,R2=4,∴多面体E﹣ABCD的外接球的表面积为4πR2=16π.故选D.【点评】本题考查多面体E﹣ABCD的外接球的表面积,考查学生的计算能力,正确求出多面体E﹣ABCD的外接球的半径是关键.2.(2017•大理州二模)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,则此球的体积等于()A.B.C.D.【分析】画出球的内接三棱柱ABC﹣A1B1C1,作出球的半径,然后可求球的表面积.【解答】解:设AA1=h,则∵棱柱的体积为,AB=2,∴∴h=1,∵AB=2,∴BC==,如图,连接上下底面外心,O为PQ的中点,OP⊥平面ABC,AP==则球的半径为OA,由题意OP=,∴OA==,所以球的体积为:πR3=π故选B.【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.3.(2017•福州一模)三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12π C.16π D.28π【分析】由题意画出图形,通过求解直角三角形可得三棱锥A﹣BCD的外接球的半径,代入球的表面积公式得答案.【解答】解:设球心为M,BC的中点为P,∵三角形BDC满足∠BDC=90°,∴P为三角形BDC的外心,设△ABC的外心为O,∵△ABC为等边三角形,∴MO⊥平面ABC,MP⊥平面BDC,∵二面角A﹣BC﹣D的大小为150°,∴∠OPM=60°,在等边三角形ABC中,由AB=2,得AP=3,∴OP=1,在Rt△MOP中,可得MO=,在Rt△MOA中,得MA=.∴三棱锥A﹣BCD的外接球的表面积为.故选:D.【点评】本题考查球的表面积与体积,考查空间想象能力和思维能力,属中档题.4.(2017•香坊区校级一模)已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为()A.28π B.C.32π D.【分析】三棱柱ABE﹣DCF的底面积最大时,其体积最大.设FC=x,DCF=6﹣x,s△DCF===.令f(x)=36x2﹣12x3,f′(x)=72x﹣36x2,令f(x)=0,可得x=2,即当x=2时,s△DCF最大,此时CF,CD,CB两两垂直,可以把此三棱柱补成长方体,外接球的半径为长方体对角线长的一半,得球半径R即可.【解答】解:将矩形ABCD沿EF折起,使得平面ABCD⊥平面BCFE,可得直三棱柱ABE﹣DCF,(如图)三棱柱ABE﹣DCF的底面△DCF,△ABE是直角△,AB⊥BE,FC⊥CD三棱柱ABE﹣DCF的底面积最大时,其体积最大.设FC=x,DCF=6﹣x,s△DCF===.令f(x)=36x2﹣12x3,f′(x)=72x﹣36x2,令f(x)=0,可得x=2∴当x=2时,s△DCF最大此时CF,CD,CB两两垂直,可以把此三棱柱补成长方体,外接球的半径为长方体对角线长的一半球半径R=,∴几何体外接球的体积为,故选:D.【点评】本题考查了折叠问题,及三棱柱的外接球,属于中档题.5.(2017•贵州模拟)已知三棱锥A﹣BCD中,,,且各顶点均在同一个球面上,则该球的体积为()A.B.4πC.2πD.【分析】由三棱锥的对边相等可得三棱锥A﹣BCD为某一长方体的对角线组成的三棱锥,求出长方体的棱长即可得出外接球的半径,从而计算出外接球的体积.【解答】解:补体为底面边长为1,高为的长方体,外接球的球心为长方体体对角线中点,所以球的半径r=1,球的体积,故选D.【点评】本题考查了棱锥与外接球的位置关系,棱锥的体积计算,转化思想,属于中档题.6.(2017•临川区校级模拟)如图,将边长为2的正△ABC沿着高AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的表面积为()A.B.C.D.【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OD,求出球O的半径,即可求解球O的表面积.【解答】解:△BCD中,BD=1,CD=1,∠BDC=60°,底面三角形的底面圆半径为:DM=CM=,AD是球的弦,DA=,∴OM=,∴球的半径OD==.该球的表面积为:4π×OD2=π;故选:B.【点评】本题考查球的表面积的求法,球的内接体,考查空间想象能力以及计算能力.7.(2017•贵阳一模)设SA为球的直径,B、C、D三点在球面上,且SA⊥面BCD,三角形BCD的面积为3,V S﹣BCD=3V A﹣BCD=3,则球的表面积为()A.16π B.64π C.πD.32π【分析】利用SA⊥面BCD,三角形BCD的面积为3,V S﹣BCD=3V A﹣BCD=3,求出球的直径,即可得出结论.【解答】解:设三棱锥A﹣BCD的高为h,则三棱锥S﹣BCD的高为3h,球的直径为2R,∵三角形BCD的面积为3,V A﹣BCD=1,∴=1,∴h=1,∴R=2,∴球的表面积为4π•22=16π,故选A.【点评】本题考查球的表面积,考查三棱锥体积的计算,考查学生的计算能力,属于中档题.8.(2017•南岗区一模)已知四面体A﹣BCD中,△ABC和△BCD都是边长为6的正三角形,则当四面体的体积最大时,其外接球的表面积是()A.60π B.30π C.20π D.15π【分析】当四面体的体积最大时,平面ABC⊥平面BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解三棱锥的外接球的表面积.【解答】解:当四面体的体积最大时,平面ABC⊥平面BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,由题意知AF⊥DF,AF=CF=3,∴EF=AD=,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R2=AE2+OE2,R2=DF2+OF2,∴R2=()2+OE2,R2=32+(﹣OE)2,∴R=,∴三棱锥的外接球的表面积为4πR2=60π.故选A.【点评】本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题.9.(2017•呼和浩特二模)在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A.B.C.D.36π【分析】要使球的体积V最大,必须使球的半径R最大.因为△ABC内切圆的半径为2,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值,求出三棱柱ABC﹣A1B1C1内切球半径即可【解答】解:要使球的体积V最大,必须使球的半径R最大.Rt△ABC中,AB⊥BC,AB=15,BC=8,∴AC=12,△ABC内切圆的半径为r=3,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值为.此时球的体积为πR3=,故选:B.【点评】本题考查了棱柱的内切球的体积,解题关键在于确定球何时半径最大,属于基础题.10.(2017•大东区一模)在正方体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四面体M﹣ABD的外接球的表面积为36π,则正方体棱长为()A.2 B.3 C.4 D.5【分析】设BD的中点O′,则球心O在MO′上,利用四面体M﹣ABD的外接球表面积为36π,求出球的半径,利用勾股定理建立方程,求出正方体棱长.【解答】解:设BD的中点O′,则球心O在MO′上,∵四面体M﹣ABD的外接球表面积为36π,∴4πR2=36π,∴R=3,设正方体棱长为2a,则O′A=a,由勾股定理可得32=()2+(2a﹣3)2,∴a=2,∴正方体棱长为2a=4.故选C.【点评】本题考查正方体棱长,考查四面体M﹣ABD的外接球表面积,确定球心的位置是关键.11.(2017•绵阳模拟)三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是,则三棱锥P﹣ABC的外接球的表面积是()A.2πB.4πC.8πD.16π【分析】PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,当PM最短时,即PM⊥BC时直线AM与平面PBC所成角的正切的最大,最大值是,求出PC=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为三棱锥P﹣ABC 的外接球的直径,即可得出结论.【解答】解:M是线段BC上一动点,连接PM,∵PA、PB、PC互相垂直,∴∠AMP就是直线AM与平面PBC所成角,当PM最短时,即PM⊥BC时直线AM与平面PBC所成角的正切的最大.此时,PM=,在Rt△PBC中,PB•PC=BC•PM⇒PC=⇒PC=.三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为,∴三棱锥P﹣ABC的外接球的半径为R=1,∴三棱锥P﹣ABC的外接球的表面积为4πR2=4π.故选:B.【点评】题考查三棱锥P﹣ABC的外接球的体积,考查线面垂直,线面角,考查学生分析解决问题的能力,属于中档题12.(2017•湖北模拟)如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为()A.B.C.16π D.21π【分析】由几何体的三视图知该几何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正主形,△SBC是边长为2 的等边三角形,AB⊥平面SBC,由此能求出该空间几何体的外接球的表面积.【解答】解:如图,由几何体的三视图知该几何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正方形,△SBC是边长为2 的等边三角形,AB⊥平面SBC,取BC中点F,AD中点E,连结SF,EF,取EF中点M,则MF=1,SF=,设该几何体外接球的球心为O,则OM⊥面ABCD,设OM=x,过O作OH⊥SF,交SF于H,则SH=,OH=MF=1,∴OD2=OS2=R2,即()2+x2=12+()2,解得x=,∴R==,∴该空间几何体的外接球的表面积S==.故选:B.【点评】本题考查空间几何体的外接球的表面积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运用.13.(2017•楚雄州一模)已知P,A,B,C是球O球面上的四点,△ABC是正三角形,三棱锥P﹣ABC的体积为,且∠APO=∠BPO=∠CPO=30°,则球O 的表面积为()A.4πB.πC.16π D.12π【分析】设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,由已知条件推导出a=R,再由三棱锥P﹣ABC的体积为,求出R=2,由此能求出球O的表面积.【解答】解:如图,P,A,B,C是球O球面上四点,△ABC是正三角形,设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,∵∠APO=∠BPO=∠CPO=30°,OB=OP=R,∴OS=,BS=R,∴=R,解得a=R,2a=R,∵三棱锥P﹣ABC的体积为,∴×××R×Rsin60°×R=,解得R=2,∴球O的表面积S=4πR2=16π.故选:C.【点评】本题考查球的表面积的求法,是中档题,解题时确定球O的半径是关键.14.(2017•临翔区校级一模)已知底面边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O上,则球的体积是()A.B.8πC.20π D.【分析】正三棱锥的顶点正好是球心,底面为一个小圆,求出小圆半径、三棱锥的高,可得球的半径,即可求出球的体积.【解答】解:正三棱锥的顶点正好是球心,底面为一个小圆,因正△ABC的边长为,所以小圆半径r=2,又因,所以三棱锥的高h=1,设球半径为R,则,,故选A.【点评】本题考查球的体积,考查学生的计算能力,求出球的半径是关键.15.(2017•灵丘县校级三模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为4,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为()A.4πB.8πC.16π D.32π【分析】设BC=2x,BB1=2y,则4xy=2,利用直三棱柱ABC﹣A1B1C1中,∠BAC=90°,可得直三棱柱ABC﹣A1B1C1外接球的半径为≥=,即可求出三棱柱ABC﹣A1B1C1外接球表面积的最小值.【解答】解:设BC=2x,BB1=2y,则4xy=4,∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,∴直三棱柱ABC﹣A1B1C1外接球的半径为≥=,∴直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π×2=8π.故选:B.【点评】本题考查三棱柱ABC﹣A1B确定1C1外接球表面积的最小值,考查基本不等式的运用,确定直三棱柱ABC﹣A1B1C1外接球的半径的最小值是关键.16.(2017•广安模拟)如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是()A.B.6πC.D.12π【分析】由已知得PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF 为棱构造一个长方体,则四面体PAEF的四个顶点在这个长方体的外接球上,由此能求出该球的表面积.【解答】解:∵ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,∴PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF为棱构造一个长方体,则四面体PAEF的四个顶点在这个长方体的外接球上,∴这个球的半径为R==,∴该球的表面积是S=4πR2=4π×=6π.故选:B.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意球、四面体的性质及构造法的合理应用.17.(2017•郴州二模)将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A.1 B.C.D.【分析】先求出V D﹣ABC,再求出四面体ABCD的表面积S=S△ADC+S△ABC+S△ABD+S△BCD,由四面体ABCD的内切球的半径r=,能求出结果.【解答】解:∵边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC ﹣D,∴=1,AC=2,取AC中点O,连结DO,BO,则DO=BO==1,且DO⊥平面ABC,∴V D﹣ABC==,BD==,AB=BC=AD=DC=,∴=,=1,∴四面体ABCD的表面积S=S△ADC+S△ABC+S△ABD+S△BCD=2+,∴四面体ABCD的内切球的半径r===2﹣.故选:D.【点评】本题考查四面体的内切球半径的求法,是中档题,解题时要认真审题,注意四面体内切球半径与其体积和表面积的关系式的合理应用.18.(2017春•简阳市期末)三棱锥P﹣ABC三条侧棱两两垂直,三个侧面面积分别为,则该三棱锥的外接球表面积为()A.4πB.6πC.8πD.10π【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,解得,a=,b=1,c=.则长方体的对角线的长为=.所以球的直径是,半径长R=,则球的表面积S=4πR2=6π故选B.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.将三棱锥扩展为长方体是本题的关键.19.(2016秋•晋中期末)在四面体S﹣ABC中,,二面角S﹣AC﹣B的余弦值为,则该四面体外接球的表面积是()A.B.C.24π D.6π【分析】取AC中点D,连接SD,BD,由题意可得∠SDB为二面角S﹣AC﹣B,取等边△SAC的中心E,找出O点为四面体的外接球球心.【解答】解:取AC中点D,连接SD,BD,因为AB=BC=,所以BD⊥AC,因为SA=SC=2,所以SD⊥AC,AC⊥平面SDB.所以∠SDB为二面角S﹣AC﹣B.在△ABC中,AB⊥BC,AB=BC=,所以AC=2.取等边△SAC的中心E,作EO⊥平面SAC,过D作DO⊥平面ABC,O为外接球球心,所以ED=,二面角S﹣AC﹣B的余弦值是﹣,所以cos∠EDO=,OD=,所以BO==OA=OS=OC所以O点为四面体的外接球球心,其半径为,表面积为6π.故选:D.【点评】解决此类问题的关键是熟悉几何体的结构特征,利用已知条件求出线段长度,进而确定圆心的位置即可求出圆的半径.20.(2017春•陆川县校级期中)如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【分析】利用已知条件说明三棱锥是长方体的一个角,扩展几何体为长方体,求出外接球的半径,然后求解球的体积.【解答】解:在三棱锥D﹣ABC中,,可得AC⊥BC,AC⊥CD,CD⊥CB,则C﹣ABD三棱锥看作是长方体的一个角,三棱锥的外接球计算长方体的外接球,外接球的半径为:=1.外接球的体积为:=.故选:D.【点评】本题考查三棱锥的外接球的体积的求法,考查空间想象能力以及最后思想计算能力.21.(2017春•山西月考)一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,则球O的表面积为()A.84π B.96π C.112πD.144π【分析】设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,设球O的半径为R,利用勾股定理求出R2,由此能求出球O的表面积.【解答】解:∵一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,∴设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,设球O的半径为R,则R2=()2+()2=28,∴球O的表面积S=4πR2=112π.故选:C.【点评】本题球的表面积的求法,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想、方程思想、整体思想,是中档题.22.(2017春•顺庆区校级月考)三棱锥的棱长均为4,顶点在同一球面上,则该球的表面积为()A.36π B.72π C.144πD.288π【分析】正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【解答】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同.∵三棱锥的棱长均为4,∴正方体的棱长是4,又∵球的直径是正方体的对角线,设球半径是R,∴2R=12,∴R=6,球的表面积为4π×62=144π.故选:C.【点评】巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化.若已知正四面体V﹣ABC的棱长为a,求外接球的半径,可以构造出一个球的内接正方体,再应用对角线长等于球的直径可求得.23.(2017春•东湖区校级月考)已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比()A.5:1 B.2:1 C.4:1 D.:1【分析】由题意得两球心是重合的,设球O1的半径为R,球O2的半径为r,则正三棱柱的高为2r,AB=2r,正三棱柱的底面中心的连线的中点就是外接球O1的球心,则(2r)2+r2=R2,即5r2=R2【解答】解:设球O2的为r,球O1的半径为R∵三棱柱ABC﹣A1B1C1的侧棱与底面垂直,三棱柱的六个顶点都在球O1的球面上,∴三棱柱的高(侧棱长)为2r.正三棱柱ABC﹣A1B1C1的底面与球O1的大圆截面如图(1)所示:可得AB=2r,BO1=2r正三棱柱的底面中心的连线的中点就是外接球O1的球心,∴(2r)2+r2=R2,∴5r2=R2,∴球O1与球O2的表面积之比为5:1.故选:A【点评】本题考查了球与三棱柱的组合体,根据几何体的性质,找到球心,求出半径是解题关键,属于中档题.24.(2017春•奉新县月考)已知四面体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四面体的外接球的表面积为()A.43π B.17π C.34π D.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以3,4,3为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以3,4,3为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=9,x2+z2=16,y2+z2=9,设球半径为R,则有(2R)2=x2+y2+z2=17,∴4R2=17,∴球的表面积为S=4πR2=17π.故选B.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.25.(2017春•高平市校级月考)若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA ⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的表面积为()A.4πB.8πC.16π D.32π【分析】如图,取BC中点D,连结AD、PD,过A作AH⊥PD于D,易知AH ⊥面PBC,即∠APD就是直线PA与平面PBC所成角,由tan∠APD=,得AP以AB,AC,AP为棱的长方体的外接球就是三棱锥P﹣ABC的外接球,即可求出半径.【解答】解:如图,取BC中点D,连结AD、PD,∵AB=AC,∴AD⊥BC,由因为PA⊥面ABC,∴BC⊥面PAD,过A作AH⊥PD于D,易知AH⊥面PBC,∴∠APD就是直线PA与平面PBC所成角,∴tan∠APD=,∵AD=,∴.∵AB,AC,AP相互垂直,∴以AB,AC,AP为棱的长方体的外接球就是三棱锥P﹣ABC的外接球,∴三棱锥P﹣ABC的外接球的半径R=,三棱锥P﹣ABC的外接球的表面积为4πR2=4π;故选:A.【点评】本题考查了三棱锥的外接球,转化已知求出球的半径是关键,属于中档题.26.(2017春•高平市校级月考)若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA ⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的体积为()A.B.C.D.【分析】利用AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,求出PA=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为=2,可得三棱锥P﹣ABC的外接球的半径为1,即可得出结论.【解答】解:∵AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,∴PA=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为=2,∴三棱锥P﹣ABC的外接球的半径为1,∴三棱锥P﹣ABC的外接球的体积为,故选A.【点评】本题考查三棱锥P﹣ABC的外接球的体积,考查线面垂直,线面角,考查学生分析解决问题的能力,属于中档题.27.(2017春•惠安县校级月考)已知正四棱锥P﹣ABCD的底面边长为,体积为,则此棱锥的内切球与外接球的半径之比为()A.1:2 B.2:5 C.1:3 D.4:5【分析】取BC中点E,求出PE,HP,可得四棱锥P﹣ABCD的表面积、体积,进而求出内切球的半径,利用勾股定理求出外接球的半径,即可求出四棱锥P﹣ABCD的内切球与外接球的半径之比.【解答】解:取BC中点E,由题意,正四棱锥P﹣ABCD的底面边长为,体积为,∴PE=,HP=2,从而四棱锥P﹣ABCD的表面积为S=+=8,V==,∴内切球的半径为r=.设四棱锥P﹣ABCD外接球的球心为O,外接球的半径为R,则OP=OA,∴(2﹣R)2+12=R2,∴R=,∴棱锥的内切球与外接球的半径之比为2:5.故选B.【点评】本题考查四棱锥P﹣ABCD的内切球与外接球的半径之比,考查四棱锥P﹣ABCD的表面积、体积,考查学生的计算能力,属于中档题.28.(2017春•建始县校级月考)球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的表面积为()A.B.4πC.12π D.36π【分析】设球O与平面α,β分别切于点P,Q,过点O作OR⊥l于低能R,连接PR,QR,PQ,设PQ与OR相交于点S,其抽象图如下图所示,则有PO⊥PR,OQ⊥QR,故P,O,Q,R四点共圆,此圆的直径为2,利用三角函数、平面几何知识求解.【解答】解:设球O与平面α,β分别切于点P,Q,过点O作OR⊥l于低能R,连接PR,QR,PQ,设PQ与OR相交于点S,其抽象图如下图所示,则有PO⊥PR,OQ⊥QR,故P,O,Q,R四点共圆,此圆的直径为2,由正弦定理得,∴,又二面角α﹣l﹣β为锐二面角,所以∠PRQ=60°,∠PRO=30°,∴OP=1,即球的半径为1,球O的表面积为S=4πR2=4π,故选B.【点评】本题考查了球的性质,空间问题转化为平面问题是解题的关键,属于中档题.29.(2016•衡水万卷模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12π C.16π D.32π【分析】取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,R===2.四面体ABCD外接球的表面积为:4πR2=16π.。
球的体积和表面积(附答案)

球得体积与表面积[学习目标] 1、记准球得表面积与体积公式,会计算球得表面积与体积、2、能解决与球有关得组合体得计算问题、知识点一 球得体积公式与表面积公式1、球得体积公式V =43πR 3(其中R 为球得半径)、 2、球得表面积公式S =4πR2、思考 球有底面吗?球面能展开成平面图形吗?答 球没有底面,球得表面不能展开成平面、知识点二 球体得截面得特点1、球既就是中心对称得几何体,又就是轴对称得几何体,它得任何截面均为圆,它得三视图也都就是圆、2、利用球半径、截面圆半径、球心到截面得距离构建直角三角形就是把空间问题转化为平面问题得主要途径、题型一 球得表面积与体积例1 (1)已知球得表面积为64π,求它得体积;(2)已知球得体积为错误!π,求它得表面积、解 (1)设球得半径为R ,则4πR2=64π,解得R=4,所以球得体积V=错误!πR 3=错误!π·43=错误!π、(2)设球得半径为R ,则错误!πR 3=错误!π,解得R =5,所以球得表面积S=4πR 2=4π×52=100π、跟踪训练1 一个球得表面积就是16π,则它得体积就是( )A、64π B、错误!C、32πD、错误!答案D解析设球得半径为R,则由题意可知4πR2=16π,故R=2、所以球得半径为2,体积V=错误!πR 3=\f(32,3)π、题型二球得截面问题例2平面α截球O得球面所得圆得半径为1、球心O到平面α得距离为\r(2),则此球得体积为()A、\r(6)π B、4错误!π C、4错误!π D、6错误!π答案 B解析如图,设截面圆得圆心为O′,M为截面圆上任一点,则OO′=错误!,O′M=1、∴OM=错误!=错误!、即球得半径为3、∴V=错误!π(错误!)3=4错误!π、跟踪训练2 已知长方体共顶点得三个侧面面积分别为3,错误!,错误!,则它得外接球表面积为________、答案9π解析如图,就是过长方体得一条体对角线AB得截面,设长方体有公共顶点得三条棱得长分别为x,y,z,则由已知,得错误!解得错误!所以球得半径R=错误!AB=错误!错误!=错误!,所以S球=4πR2=9π、题型三球得组合体与三视图例3 某个几何体得三视图如图所示,求该几何体得表面积与体积、解 由三视图可知该几何体得下部就是棱长为2得正方体,上部就是半径为1得半球,该几何体得表面积为S =12×4π×12+6×22-π×12=24+π、 该几何体得体积为V =23+\f (1,2)×43π×13=8+\f (2π,3)、 跟踪训练3 有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体得各个顶点,求这三个球得表面积之比、解 设正方体得棱长为a 、①正方体得内切球球心就是正方体得中心,切点就是正方体六个面得中心,经过四个切点及球心作截面,如图(1)所示,则有2r 1=a ,即r 1=错误!,所以S 1=4πr 错误!=πa2、②球与正方体得得各棱得切点在每条棱得中点,过球心作正方体得对角面得截面,如图(2)所示,则2r2=错误!a,即r2=错误!a,所以S2=4πr错误!=2πa2、③正方体得各个顶点在球面上,过球心作正方体得对角面得截面,如图(3)所示,则有2r3=\r(3)a,即r3=错误!a,所以S3=4πr错误!=3πa2、综上可得S1∶S2∶S3=1∶2∶3、轴截面得应用例4有一个倒圆锥形容器,它得轴截面就是一个正三角形,在容器内部放一个半径为r得铁球,并注入水,使水面没过铁球与球正好相切,然后将球取出,求这时容器中水得深度、分析分别表示出取出铁球前后水得体积→由水得体积不变建立等式→求出所求量、解如图,⊙O就是球得最大截面,它内切于△ABC,球得半径为r、设将球取出后,水平面在MN处,MN与CD交于点E、则DO=r,AD=错误!r,AB=AC=BC=2错误!r,∴CD=3r、由图形知V圆锥CE∶V圆锥CD=错误!∶错误!=CE3∶CD3、又∵V圆锥CD=\f(π,3)(3r)2·3r=3πr3,V圆锥CE=V圆锥CD-V球O=3πr3-错误!πr3=错误!πr3,∴错误!∶3πr3=CE3∶(3r)3,∴CE=错误!r、∴球从容器中取出后,水得深度为错误!r、1、直径为6得球得表面积与体积分别就是()A、36π,144π ﻩB、36π,36πC、144π,36πD、144π,144π2、若球得体积与其表面积数值相等,则球得半径等于()A、错误!B、1 C、2D、33、两个半径为1得实心铁球,熔化成一个球,这个大球得半径就是________、4、若球得半径由R增加为2R,则这个球得体积变为原来得________倍,表面积变为原来得________倍、5、某几何体得三视图如图所示,则其表面积为________、一、选择题1、设正方体得表面积为24,那么其外接球得体积就是( )A、错误!π B、错误!C、4错误!π D、32错误!π2、一个正方体得八个顶点都在半径为1得球面上,则正方体得表面积为()A、8B、82C、8错误!D、4错误!3、两个球得半径之比为1∶3,那么两个球得表面积之比为( )A、1∶9 B、1∶27 C、1∶3D、1∶14、设正方体得表面积为24cm2,一个球内切于该正方体,那么这个球得体积就是()A、6π cm3B、\f(32,3)π cm3C、\f(8,3)πcm3D、错误!π cm35、若与球外切得圆台得上、下底面半径分别为r,R,则球得表面积为()A、4π(r+R)2ﻩB、4πr2R2C、4πRrD、π(R+r)26、已知底面边长为1,侧棱长为\r(2)得正四棱柱得各顶点均在同一球面上,则该球得体积为()A、错误!B、4πC、2π D、错误!π7、如图,有一个水平放置得透明无盖得正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球得体积为()A、错误!cm3B、错误!cm3C、错误!cm3ﻩD、错误!cm3二、填空题8、一个几何体得三视图(单位:m)如图所示,则该几何体得体积为________ m3、9、已知一个正方体得所有顶点在一个球面上、若球得体积为\f(9π,2),则正方体得棱长为_____、10、正四棱锥得顶点都在同一球面上,若该棱锥得高为4,底面边长为2,则该球得表面积就是________、11、圆柱形容器内盛有高度为8 cm得水,若放入三个相同得球(球得半径与圆柱得底面半径相同)后,水恰好淹没最上面得球(如图所示),则球得半径就是______cm、三、解答题12、如图所示,半径为R得半圆内得阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体得表面积、(其中∠BAC=30°)13、一个高为16得圆锥内接于一个体积为972π得球,在圆锥内又有一个内切球,求:(1)圆锥得侧面积;(2)圆锥得内切球得体积、当堂检测答案1、答案 B解析 球得半径为3,表面积S=4π·32=36π,体积V=\f(4,3)π·33=36π、2、答案 D解析 设球得半径为R,则4πR 2=43πR 3,所以R=3、 3、答案 \r(3,2)解析 设大球得半径为R ,则有错误!πR 3=2×错误!π×13,R 3=2,∴R =32、4、答案 8 4解析 球得半径为R时,球得体积为V 1=错误!πR 3,表面积为S1=4πR 2,半径增加为2R 后,球得体积为V 2=错误!π(2R )3=错误!πR 3,表面积为S2=4π(2R )2=16πR 2、所以\f(V 2,V 1)=错误!=8,错误!=错误!=4,即体积变为原来得8倍,表面积变为原来得4倍、5、答案 3π解析 由三视图可知,该几何体为一个半径为1得半球,其表面积为半个球面面积与截面面积得与,即\f(1,2)×4π+π=3π、 课时精练一、选择题1、答案 C解析 由题意可知,6a2=24,∴a=2、设正方体外接球得半径为R,则\r(3)a=2R,∴R=错误!,∴V球=错误!πR3=4错误!π、2、答案 A解析∵球得半径为1,且正方体内接于球,∴球得直径即为正方体得对角线,即正方体得对角线长为2、不妨设正方体得棱长为a,则有3a2=4,即a2=错误!、∴正方体得表面积为6a2=6×错误!=8、3、答案A解析由表面积公式知,两球得表面积之比为R错误!∶R错误!=1∶9、4、答案 D解析由正方体得表面积为24 cm2,得正方体得棱长为2 cm,故这个球得直径为2cm,故这个球得体积为\f(4,3)π cm3、5、答案C解析方法一如图,设球得半径为r1,则在Rt△CDE中,DE=2r1,CE=R-r,DC=R+r、由勾股定理得4r错误!=(R+r)2-(R-r)2,解得r1=错误!、故球得表面积为S球=4πr 错误!=4πRr、方法二如图,设球心为O,球得半径为r1,连接OA,OB,则在Rt△AOB中,OF就是斜边AB 上得高、由相似三角形得性质得OF2=BF·AF=Rr,即r错误!=Rr,故r1=错误!,故球得表面积为S球=4πRr、6、答案D解析∵正四棱柱得底面边长为1,侧棱长为错误!,∴正四棱柱得体对角线得长为错误!=2、又∵正四棱柱得顶点在同一球面上,∴正四棱柱体对角线恰好就是球得一条直径,∴球得半径R=1、故球得体积为V=错误!πR3=错误!π、7、答案 A解析利用球得截面性质结合直角三角形求解、如图,作出球得一个截面,则MC=8-6=2(cm),BM=\f(1,2)AB=错误!×8=4(cm)、设球得半径为R cm,则R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=错误!π×53=错误!(cm3)、二、填空题8、答案9π+18解析将三视图还原为实物图后求解、由三视图知,几何体下面就是两个球,球半径为错误!;上面就是长方体,其长、宽、高分别为6、3、1,所以V=错误!π×错误!×2+1×3×6=9π+18、9、答案错误!解析先求出球得半径,再根据正方体得体对角线等于球得直径求棱长、设正方体棱长为a,球半径为R,则错误!πR3=错误!π,∴R=错误!,∴错误!a=3,∴a=错误!、10、答案错误!π解析由已知条件可知,球心在正四棱锥得高所在得直线上、设球得半径为R,球心为O,正四棱锥底面中心为E,则OE=|4-R|,所以(4-R)2+(错误!)2=R2,解得R=错误!、所以球得表面积S=4πR2=\f(81π,4)、11、答案4解析设球得半径为r,则圆柱形容器得高为6r,容积为πr2×6r=6πr3,高度为8 cm得水得体积为8πr2,3个球得体积与为3×错误!πr3=4πr3,由题意得6πr3-8πr2=4πr3,解得r =4(cm)、三、解答题12、解如图所示,过C作CO1⊥AB于O1、在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,∴AC=错误!R,BC=R,CO1=错误!R,∴S球=4πR2,=π×错误!R×错误!R=错误!πR2,=π×错误!R×R=错误!πR2,∴S几何体表=S球++=错误!πR2+错误!πR2=错误!πR2、故旋转所得几何体得表面积为错误!πR2、13、解(1)如图作轴截面,则等腰三角形CAB内接于⊙O,⊙O1内切于△ABC、设⊙O得半径为R,由题意,得错误!πR3=972π,所以R3=729,R=9,所以CE=18、已知CD=16,所以ED=2、连接AE,因为CE就是直径,所以CA⊥AE,所以CA2=CE·CD=18×16=288,所以CA=12错误!,因为AB⊥CD,所以AD2=CD·DE=16×2=32,所以AD=4错误!,S圆锥侧=π×4\r(2)×12\r(2)=96π、(2)设内切球O1得半径为r,因为△ABC得周长为2×(12错误!+4错误!)=32错误!,所以S△ABC=错误!r·32错误!=错误!×8错误!×16,解得r=4,所以内切球O1得体积V球=错误!πr3=错误!π、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于外接球的表面积与体积问题(二)一.选择题(共30小题)1.已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.4πB.9πC.12πD.16π2.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,则此球的体积等于()A. B.C.D.3.三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12π C.16πD.28π4.已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为()A.28πB.C.32πD.5.已知三棱锥A﹣BCD中,,,且各顶点均在同一个球面上,则该球的体积为()A.B.4πC.2πD.6.如图,将边长为2的正△ABC沿着高AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的表面积为()A.B.C.D.7.设SA为球的直径,B、C、D三点在球面上,且SA⊥面BCD,三角形BCD 的面积为3,V S﹣BCD=3V A﹣BCD=3,则球的表面积为()A.16πB.64π C.πD.32π8.已知四面体A﹣BCD中,△ABC和△BCD都是边长为6的正三角形,则当四面体的体积最大时,其外接球的表面积是()A.60πB.30π C.20πD.15π9.在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A.B.C.D.36π10.在正方体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四面体M﹣ABD 的外接球的表面积为36π,则正方体棱长为()A.2 B.3 C.4 D.511.三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是,则三棱锥P﹣ABC的外接球的表面积是()A.2πB.4πC.8πD.16π12.如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为()A.B.C.16πD.21π13.已知P,A,B,C是球O球面上的四点,△ABC是正三角形,三棱锥P ﹣ABC的体积为,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为()A.4πB.πC.16πD.12π14.已知底面边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O上,则球的体积是()A.B.8πC.20πD.15.已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为4,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为()A.4πB.8πC.16πD.32π16.如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是()A.B.6πC.D.12π17.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A.1 B.C.D.18.三棱锥P﹣ABC三条侧棱两两垂直,三个侧面面积分别为,则该三棱锥的外接球表面积为()A.4πB.6πC.8πD.10π19.在四面体S﹣ABC中,,二面角S﹣AC﹣B 的余弦值为,则该四面体外接球的表面积是()A.B.C.24πD.6π20.如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.21.一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,则球O的表面积为()A.84πB.96π C.112πD.144π22.三棱锥的棱长均为4,顶点在同一球面上,则该球的表面积为()A.36πB.72π C.144πD.288π23.已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比()A.5:1 B.2:1 C.4:1 D.:124.已知四面体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四面体的外接球的表面积为()A.43πB.17π C.34πD.25.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA 与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的表面积为()A.4πB.8πC.16πD.32π26.若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA 与平面PBC所成角的正切值为,则三棱锥P﹣ABC的外接球的体积为()A.B.C.D.27.已知正四棱锥P﹣ABCD的底面边长为,体积为,则此棱锥的内切球与外接球的半径之比为()A.1:2 B.2:5 C.1:3 D.4:528.球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的表面积为()A.B.4πC.12πD.36π29.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12π C.16πD.32π30.已知在三棱锥P﹣ABC中,V P﹣ABC=,∠APC=,∠BPC=,PA ⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.关于外接球的表面积与体积问题(二)参考答案与试题解析一.选择题(共30小题)1.(2017•全国模拟)已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.4πB.9πC.12πD.16π【分析】设球心到平面ABCD的距离为d,利用△EAB所在的平面与矩形ABCD 所在的平面互相垂直,EA=EB=3,∠AEB=60°,可得E到平面ABCD的距离为,从而R2=()2+d2=12+(﹣d)2,求出R2=4,即可求出多面体E﹣ABCD的外接球的表面积.【解答】解:设球心到平面ABCD的距离为d,则∵△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,∴E到平面ABCD的距离为,∴R2=()2+d2=12+(﹣d)2,∴d=,R2=4,∴多面体E﹣ABCD的外接球的表面积为4πR2=16π.故选D.【点评】本题考查多面体E﹣ABCD的外接球的表面积,考查学生的计算能力,正确求出多面体E﹣ABCD的外接球的半径是关键.2.(2017•大理州二模)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,则此球的体积等于()A. B.C.D.【分析】画出球的内接三棱柱ABC﹣A1B1C1,作出球的半径,然后可求球的表面积.【解答】解:设AA1=h,则∵棱柱的体积为,AB=2,∴∴h=1,∵AB=2,∴BC==,如图,连接上下底面外心,O为PQ的中点,OP⊥平面ABC,AP==则球的半径为OA,由题意OP=,∴OA==,所以球的体积为:πR3=π故选B.【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.3.(2017•福州一模)三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12π C.16πD.28π【分析】由题意画出图形,通过求解直角三角形可得三棱锥A﹣BCD的外接球的半径,代入球的表面积公式得答案.【解答】解:设球心为M,BC的中点为P,∵三角形BDC满足∠BDC=90°,∴P为三角形BDC的外心,设△ABC的外心为O,∵△ABC为等边三角形,∴MO⊥平面ABC,MP⊥平面BDC,∵二面角A﹣BC﹣D的大小为150°,∴∠OPM=60°,在等边三角形ABC中,由AB=2,得AP=3,∴OP=1,在Rt△MOP中,可得MO=,在Rt△MOA中,得MA=.∴三棱锥A﹣BCD的外接球的表面积为.故选:D.【点评】本题考查球的表面积与体积,考查空间想象能力和思维能力,属中档题.4.(2017•香坊区校级一模)已知矩形ABCD中,AB=6,BC=4,E,F分别是AB,CD上两动点,且AE=DF,把四边形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的几何体的体积最大,则该几何体外接球的体积为()A.28πB.C.32πD.【分析】三棱柱ABE﹣DCF的底面积最大时,其体积最大.设FC=x,DCF=6﹣x,s△DCF===.令f(x)=36x2﹣12x3,f′(x)=72x﹣36x2,令f(x)=0,可得x=2,即当x=2时,s△DCF最大,此时CF,CD,CB两两垂直,可以把此三棱柱补成长方体,外接球的半径为长方体对角线长的一半,得球半径R即可.【解答】解:将矩形ABCD沿EF折起,使得平面ABCD⊥平面BCFE,可得直三棱柱ABE﹣DCF,(如图)三棱柱ABE﹣DCF的底面△DCF,△ABE是直角△,AB⊥BE,FC⊥CD三棱柱ABE﹣DCF的底面积最大时,其体积最大.设FC=x,DCF=6﹣x,s△===.DCF令f(x)=36x2﹣12x3,f′(x)=72x﹣36x2,令f(x)=0,可得x=2∴当x=2时,s△DCF最大此时CF,CD,CB两两垂直,可以把此三棱柱补成长方体,外接球的半径为长方体对角线长的一半球半径R=,∴几何体外接球的体积为,故选:D.【点评】本题考查了折叠问题,及三棱柱的外接球,属于中档题.5.(2017•贵州模拟)已知三棱锥A﹣BCD中,,,且各顶点均在同一个球面上,则该球的体积为()A.B.4πC.2πD.【分析】由三棱锥的对边相等可得三棱锥A﹣BCD为某一长方体的对角线组成的三棱锥,求出长方体的棱长即可得出外接球的半径,从而计算出外接球的体积.【解答】解:补体为底面边长为1,高为的长方体,外接球的球心为长方体体对角线中点,所以球的半径r=1,球的体积,故选D.【点评】本题考查了棱锥与外接球的位置关系,棱锥的体积计算,转化思想,属于中档题.6.(2017•临川区校级模拟)如图,将边长为2的正△ABC沿着高AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的表面积为()A.B.C.D.【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OD,求出球O的半径,即可求解球O的表面积.【解答】解:△BCD中,BD=1,CD=1,∠BDC=60°,底面三角形的底面圆半径为:DM=CM=,AD是球的弦,DA=,∴OM=,∴球的半径OD==.该球的表面积为:4π×OD2=π;故选:B.【点评】本题考查球的表面积的求法,球的内接体,考查空间想象能力以及计算能力.7.(2017•贵阳一模)设SA为球的直径,B、C、D三点在球面上,且SA⊥面BCD,三角形BCD的面积为3,V S﹣BCD=3V A﹣BCD=3,则球的表面积为()A.16πB.64π C.πD.32π【分析】利用SA⊥面BCD,三角形BCD的面积为3,V S﹣BCD=3V A﹣BCD=3,求出球的直径,即可得出结论.【解答】解:设三棱锥A﹣BCD的高为h,则三棱锥S﹣BCD的高为3h,球的直径为2R,∵三角形BCD的面积为3,V A﹣BCD=1,∴=1,∴h=1,∴R=2,∴球的表面积为4π•22=16π,故选A.【点评】本题考查球的表面积,考查三棱锥体积的计算,考查学生的计算能力,属于中档题.8.(2017•南岗区一模)已知四面体A﹣BCD中,△ABC和△BCD都是边长为6的正三角形,则当四面体的体积最大时,其外接球的表面积是()A.60πB.30π C.20πD.15π【分析】当四面体的体积最大时,平面ABC⊥平面BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,求出EF,判断三棱锥的外接球球心O在线段EF 上,连接OA,OC,求出半径,然后求解三棱锥的外接球的表面积.【解答】解:当四面体的体积最大时,平面ABC⊥平面BCD,取AD,BC中点分别为E,F,连接EF,AF,DF,由题意知AF⊥DF,AF=CF=3,∴EF=AD=,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R2=AE2+OE2,R2=DF2+OF2,∴R2=()2+OE2,R2=32+(﹣OE)2,∴R=,∴三棱锥的外接球的表面积为4πR2=60π.故选A.【点评】本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题.9.(2017•呼和浩特二模)在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A.B.C.D.36π【分析】要使球的体积V最大,必须使球的半径R最大.因为△ABC内切圆的半径为2,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值,求出三棱柱ABC﹣A1B1C1内切球半径即可【解答】解:要使球的体积V最大,必须使球的半径R最大.Rt△ABC中,AB⊥BC,AB=15,BC=8,∴AC=12,△ABC内切圆的半径为r=3,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值为.此时球的体积为πR3=,故选:B.【点评】本题考查了棱柱的内切球的体积,解题关键在于确定球何时半径最大,属于基础题.10.(2017•大东区一模)在正方体ABCD﹣A1B1C1D1中,M是线段A1C1的中点,若四面体M﹣ABD的外接球的表面积为36π,则正方体棱长为()A.2 B.3 C.4 D.5【分析】设BD的中点O′,则球心O在MO′上,利用四面体M﹣ABD的外接球表面积为36π,求出球的半径,利用勾股定理建立方程,求出正方体棱长.【解答】解:设BD的中点O′,则球心O在MO′上,∵四面体M﹣ABD的外接球表面积为36π,∴4πR2=36π,∴R=3,设正方体棱长为2a,则O′A=a,由勾股定理可得32=()2+(2a﹣3)2,∴a=2,∴正方体棱长为2a=4.故选C.【点评】本题考查正方体棱长,考查四面体M﹣ABD的外接球表面积,确定球心的位置是关键.11.(2017•绵阳模拟)三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是,则三棱锥P﹣ABC的外接球的表面积是()A.2πB.4πC.8πD.16π【分析】PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,当PM 最短时,即PM⊥BC时直线AM与平面PBC所成角的正切的最大,最大值是,求出PC=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为三棱锥P﹣ABC的外接球的直径,即可得出结论.【解答】解:M是线段BC上一动点,连接PM,∵PA、PB、PC互相垂直,∴∠AMP就是直线AM与平面PBC所成角,当PM最短时,即PM⊥BC时直线AM与平面PBC所成角的正切的最大.此时,PM=,在Rt△PBC中,PB•PC=BC•PM⇒PC=⇒PC=.三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为,∴三棱锥P﹣ABC的外接球的半径为R=1,∴三棱锥P﹣ABC的外接球的表面积为4πR2=4π.故选:B.【点评】题考查三棱锥P﹣ABC的外接球的体积,考查线面垂直,线面角,考查学生分析解决问题的能力,属于中档题12.(2017•湖北模拟)如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为()A.B.C.16πD.21π【分析】由几何体的三视图知该几何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正主形,△SBC是边长为2 的等边三角形,AB⊥平面SBC,由此能求出该空间几何体的外接球的表面积.【解答】解:如图,由几何体的三视图知该几何体是四棱锥S﹣ABCD,其中ABCD是边长为2的正方形,△SBC是边长为2 的等边三角形,AB⊥平面SBC,取BC中点F,AD中点E,连结SF,EF,取EF中点M,则MF=1,SF=,设该几何体外接球的球心为O,则OM⊥面ABCD,设OM=x,过O作OH⊥SF,交SF于H,则SH=,OH=MF=1,∴OD2=OS2=R2,即()2+x2=12+()2,解得x=,∴R==,∴该空间几何体的外接球的表面积S==.故选:B.【点评】本题考查空间几何体的外接球的表面积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运用.13.(2017•楚雄州一模)已知P,A,B,C是球O球面上的四点,△ABC是正三角形,三棱锥P﹣ABC的体积为,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为()A.4πB.πC.16πD.12π【分析】设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,由已知条件推导出a=R,再由三棱锥P﹣ABC的体积为,求出R=2,由此能求出球O的表面积.【解答】解:如图,P,A,B,C是球O球面上四点,△ABC是正三角形,设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,∵∠APO=∠BPO=∠CPO=30°,OB=OP=R,∴OS=,BS=R,∴=R,解得a=R,2a=R,∵三棱锥P﹣ABC的体积为,∴×××R×Rsin60°×R=,解得R=2,∴球O的表面积S=4πR2=16π.故选:C.【点评】本题考查球的表面积的求法,是中档题,解题时确定球O的半径是关键.14.(2017•临翔区校级一模)已知底面边长为的正三棱锥O﹣ABC的体积为,且A,B,C在球O上,则球的体积是()A.B.8πC.20πD.【分析】正三棱锥的顶点正好是球心,底面为一个小圆,求出小圆半径、三棱锥的高,可得球的半径,即可求出球的体积.【解答】解:正三棱锥的顶点正好是球心,底面为一个小圆,因正△ABC的边长为,所以小圆半径r=2,又因,所以三棱锥的高h=1,设球半径为R,则,,故选A.【点评】本题考查球的体积,考查学生的计算能力,求出球的半径是关键.15.(2017•灵丘县校级三模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为4,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为()A.4πB.8πC.16πD.32π【分析】设BC=2x,BB1=2y,则4xy=2,利用直三棱柱ABC﹣A1B1C1中,∠BAC=90°,可得直三棱柱ABC﹣A 1B1C1外接球的半径为≥=,即可求出三棱柱ABC﹣A1B1C1外接球表面积的最小值.【解答】解:设BC=2x,BB1=2y,则4xy=4,∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,∴直三棱柱ABC﹣A 1B1C1外接球的半径为≥=,∴直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π×2=8π.故选:B.【点评】本题考查三棱柱ABC﹣A1B确定1C1外接球表面积的最小值,考查基本不等式的运用,确定直三棱柱ABC﹣A1B1C1外接球的半径的最小值是关键.16.(2017•广安模拟)如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是()A.B.6πC.D.12π【分析】由已知得PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF为棱构造一个长方体,则四面体PAEF的四个顶点在这个长方体的外接球上,由此能求出该球的表面积.【解答】解:∵ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,∴PA、PF、PE两两垂直,且PA=2,PE=PF=1,以PA、PE、PF为棱构造一个长方体,则四面体PAEF的四个顶点在这个长方体的外接球上,∴这个球的半径为R==,∴该球的表面积是S=4πR2=4π×=6π.故选:B.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意球、四面体的性质及构造法的合理应用.17.(2017•郴州二模)将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A.1 B.C.D.【分析】先求出V D﹣ABC,再求出四面体ABCD的表面积S=S△ADC+S△ABC+S△ABD+S,由四面体ABCD的内切球的半径r=,能求出结果.△BCD【解答】解:∵边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D,∴=1,AC=2,取AC中点O,连结DO,BO,则DO=BO==1,且DO⊥平面ABC,∴V D﹣ABC==,BD==,AB=BC=AD=DC=,∴=,=1,∴四面体ABCD的表面积S=S△ADC+S△ABC+S△ABD+S△BCD=2+,∴四面体ABCD的内切球的半径r===2﹣.故选:D.【点评】本题考查四面体的内切球半径的求法,是中档题,解题时要认真审题,注意四面体内切球半径与其体积和表面积的关系式的合理应用.18.(2017春•简阳市期末)三棱锥P﹣ABC三条侧棱两两垂直,三个侧面面积分别为,则该三棱锥的外接球表面积为()A.4πB.6πC.8πD.10π【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,解得,a=,b=1,c=.则长方体的对角线的长为=.所以球的直径是,半径长R=,则球的表面积S=4πR2=6π故选B.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.将三棱锥扩展为长方体是本题的关键.19.(2016秋•晋中期末)在四面体S﹣ABC中,,二面角S﹣AC﹣B的余弦值为,则该四面体外接球的表面积是()A.B.C.24πD.6π【分析】取AC中点D,连接SD,BD,由题意可得∠SDB为二面角S﹣AC﹣B,取等边△SAC的中心E,找出O点为四面体的外接球球心.【解答】解:取AC中点D,连接SD,BD,因为AB=BC=,所以BD⊥AC,因为SA=SC=2,所以SD⊥AC,AC⊥平面SDB.所以∠SDB为二面角S﹣AC﹣B.在△ABC中,AB⊥BC,AB=BC=,所以AC=2.取等边△SAC的中心E,作EO⊥平面SAC,过D作DO⊥平面ABC,O为外接球球心,所以ED=,二面角S﹣AC﹣B的余弦值是﹣,所以cos∠EDO=,OD=,所以BO==OA=OS=OC所以O点为四面体的外接球球心,其半径为,表面积为6π.故选:D.【点评】解决此类问题的关键是熟悉几何体的结构特征,利用已知条件求出线段长度,进而确定圆心的位置即可求出圆的半径.20.(2017春•陆川县校级期中)如图,在三棱锥D﹣ABC中,,若该三棱锥的四个顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【分析】利用已知条件说明三棱锥是长方体的一个角,扩展几何体为长方体,求出外接球的半径,然后求解球的体积.【解答】解:在三棱锥D﹣ABC中,,可得AC⊥BC,AC⊥CD,CD⊥CB,则C﹣ABD三棱锥看作是长方体的一个角,三棱锥的外接球计算长方体的外接球,外接球的半径为:=1.外接球的体积为:=.故选:D.【点评】本题考查三棱锥的外接球的体积的求法,考查空间想象能力以及最后思想计算能力.21.(2017春•山西月考)一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,则球O的表面积为()A.84πB.96π C.112πD.144π【分析】设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,设球O的半径为R,利用勾股定理求出R2,由此能求出球O的表面积.【解答】解:∵一个直三棱柱的每条棱长都是4,且每个顶点都在球O的球面上,∴设此直三棱柱两底面的中心分别为O1,O2,则球O的球心O为线段O1O2的中点,设球O的半径为R,则R2=()2+()2=28,∴球O的表面积S=4πR2=112π.故选:C.【点评】本题球的表面积的求法,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想、方程思想、整体思想,是中档题.22.(2017春•顺庆区校级月考)三棱锥的棱长均为4,顶点在同一球面上,则该球的表面积为()A.36πB.72π C.144πD.288π【分析】正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可.【解答】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同.∵三棱锥的棱长均为4,∴正方体的棱长是4,又∵球的直径是正方体的对角线,设球半径是R,∴2R=12,∴R=6,球的表面积为4π×62=144π.故选:C.【点评】巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化.若已知正四面体V﹣ABC的棱长为a,求外接球的半径,可以构造出一个球的内接正方体,再应用对角线长等于球的直径可求得.23.(2017春•东湖区校级月考)已知正三棱柱ABC﹣A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比()A.5:1 B.2:1 C.4:1 D.:1【分析】由题意得两球心是重合的,设球O1的半径为R,球O2的半径为r,则正三棱柱的高为2r,AB=2r,正三棱柱的底面中心的连线的中点就是外接球O1的球心,则(2r)2+r2=R2,即5r2=R2【解答】解:设球O2的为r,球O1的半径为R∵三棱柱ABC﹣A1B1C1的侧棱与底面垂直,三棱柱的六个顶点都在球O1的球面上,∴三棱柱的高(侧棱长)为2r.正三棱柱ABC﹣A 1B1C1的底面与球O1的大圆截面如图(1)所示:可得AB=2r,BO1=2r正三棱柱的底面中心的连线的中点就是外接球O1的球心,∴(2r)2+r2=R2,∴5r2=R2,∴球O1与球O2的表面积之比为5:1.故选:A【点评】本题考查了球与三棱柱的组合体,根据几何体的性质,找到球心,求出半径是解题关键,属于中档题.24.(2017春•奉新县月考)已知四面体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四面体的外接球的表面积为()A.43πB.17π C.34πD.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以3,4,3为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以3,4,3为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=9,x2+z2=16,y2+z2=9,设球半径为R,则有(2R)2=x2+y2+z2=17,∴4R2=17,∴球的表面积为S=4πR2=17π.故选B.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.25.(2017春•高平市校级月考)若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC 的外接球的表面积为()A.4πB.8πC.16πD.32π【分析】如图,取BC中点D,连结AD、PD,过A作AH⊥PD于D,易知AH ⊥面PBC,即∠APD就是直线PA与平面PBC所成角,由tan∠APD=,得AP以AB,AC,AP为棱的长方体的外接球就是三棱锥P﹣ABC的外接球,即可求出半径.【解答】解:如图,取BC中点D,连结AD、PD,∵AB=AC,∴AD⊥BC,由因为PA⊥面ABC,∴BC⊥面PAD,过A作AH⊥PD于D,易知AH⊥面PBC,∴∠APD就是直线PA与平面PBC所成角,∴tan∠APD=,∵AD=,∴.∵AB,AC,AP相互垂直,∴以AB,AC,AP为棱的长方体的外接球就是三棱锥P﹣ABC的外接球,∴三棱锥P﹣ABC的外接球的半径R=,三棱锥P﹣ABC的外接球的表面积为4πR2=4π;故选:A.【点评】本题考查了三棱锥的外接球,转化已知求出球的半径是关键,属于中档题.26.(2017春•高平市校级月考)若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为,则三棱锥P﹣ABC 的外接球的体积为()A.B.C.D.【分析】利用AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC 所成角的正切值为,求出PA=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为=2,可得三棱锥P﹣ABC的外接球的半径为1,即可得出结论.【解答】解:∵AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC 所成角的正切值为,∴PA=,三棱锥P﹣ABC扩充为长方体,则长方体的对角线长为=2,∴三棱锥P﹣ABC的外接球的半径为1,∴三棱锥P﹣ABC的外接球的体积为,故选A.【点评】本题考查三棱锥P﹣ABC的外接球的体积,考查线面垂直,线面角,考查学生分析解决问题的能力,属于中档题.27.(2017春•惠安县校级月考)已知正四棱锥P﹣ABCD的底面边长为,体积为,则此棱锥的内切球与外接球的半径之比为()A.1:2 B.2:5 C.1:3 D.4:5【分析】取BC中点E,求出PE,HP,可得四棱锥P﹣ABCD的表面积、体积,进而求出内切球的半径,利用勾股定理求出外接球的半径,即可求出四棱锥P﹣ABCD的内切球与外接球的半径之比.【解答】解:取BC中点E,由题意,正四棱锥P﹣ABCD的底面边长为,体积为,∴PE=,HP=2,从而四棱锥P﹣ABCD的表面积为S=+=8,V==,∴内切球的半径为r=.设四棱锥P﹣ABCD外接球的球心为O,外接球的半径为R,则OP=OA,∴(2﹣R)2+12=R2,∴R=,∴棱锥的内切球与外接球的半径之比为2:5.故选B.【点评】本题考查四棱锥P﹣ABCD的内切球与外接球的半径之比,考查四棱锥P﹣ABCD的表面积、体积,考查学生的计算能力,属于中档题.28.(2017春•建始县校级月考)球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的表面积为()A.B.4πC.12πD.36π【分析】设球O与平面α,β分别切于点P,Q,过点O作OR⊥l于低能R,连接PR,QR,PQ,设PQ与OR相交于点S,其抽象图如下图所示,则有PO ⊥PR,OQ⊥QR,故P,O,Q,R四点共圆,此圆的直径为2,利用三角函数、平面几何知识求解.【解答】解:设球O与平面α,β分别切于点P,Q,过点O作OR⊥l于低能R,连接PR,QR,PQ,设PQ与OR相交于点S,其抽象图如下图所示,则有PO⊥PR,OQ⊥QR,故P,O,Q,R四点共圆,此圆的直径为2,由正弦定理得,∴,又二面角α﹣l﹣β为锐二面角,所以∠PRQ=60°,∠PRO=30°,∴OP=1,即球的半径为1,球O的表面积为S=4πR2=4π,故选B.【点评】本题考查了球的性质,空间问题转化为平面问题是解题的关键,属于中档题.29.(2016•衡水万卷模拟)四面体ABCD的四个顶点都在球O的表面上,AB ⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12π C.16πD.32π【分析】取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,。