紫外可见光分光光度原理介绍
紫外可见分光光度计基本原理

应用
定量分析——标准曲线法
最大吸收波长
在一定波长下,测定某物质的标准 系列溶液的吸光度做标准曲线,然 后测定样品溶液的吸光度值,根据 所测吸光度,求出所测溶液浓度。
吸
AX
光
度
波长范围
CX
应用
定量分析——对照法
A标 = K c标 l Ax = K cx l
cx = Ax C标
A0
谢谢!
称为电荷迁移吸收光谱。
例如:某些取代芳烃可产生这种分子内电荷迁移跃迁吸收带。谱带较宽,吸收强度较大, εmax可大于104
无机化合物 电子迁移跃迁 吸收光谱 配位场跃迁
收能量后向σ*反键跃迁,这种跃迁可以吸收波长在200nm左右。
n
π *跃迁:含有杂原子不饱和基团,如C=O,C=S,-N=N-等化合物,这种跃
迁一般处于近紫外区(200 ~ 400nm)。
电荷迁移跃迁:用电磁辐射照射化合物时,电子从给予体向与接受体相联系
的轨道上跃迁。因此,电荷迁移跃迁实质是一个内氧化还原的过程,而相应的吸收光谱
吸光物质的溶液时,在入射光的波长强度以及溶液的温 度等因素保持不变的情况下,该溶液的吸光度A与溶液 的浓度c及液层厚度l的乘积成正比关系,称为朗伯比尔 定律。
A=K·c·l
适用条件:单色光、稀溶液
朗伯比尔定律
A=K·c·l K—比例常数,与入射光的波长、溶液的性质、
液层厚度以及温度有关。 c—吸光物质的浓度。 l—透光液层厚度。
定义
紫外-可见分光光度法(ultraviolet and visible spectrophotometry ;
UV- vis )是研究物质在紫外-可见光区(200 ~ 800nm)分子吸收光谱的分析方 法。
紫外可见分光光度计的原理

紫外可见分光光度计的原理
紫外可见分光光度计的原理主要基于比尔-朗伯定律和兰伯特-比尔定律。
比尔-朗伯定律是指溶液中溶质浓度与溶液对光的吸收成正比,兰伯特-比尔定律是指光在透过介质时强度与介质厚度成指数关系。
基于这两个定律,紫外可见分光光度计利用光源发出一定波长的光,样品吸收部分光线,其余光线通过样品,最后通过检测器测量透射光的强度,从而得到样品对特定波长光的吸收情况。
紫外可见分光光度计的工作原理可以简单概括为,光源产生一束宽波长的光,经过单色器选择特定波长的光线,然后通过样品池中的样品,样品吸收特定波长的光,其余光线透射到光电二极管检测器上,检测器测量透射光的强度,最后将数据转换成吸光度或透射率。
根据比尔-朗伯定律和兰伯特-比尔定律,可以计算出样品的浓度或含量。
紫外可见分光光度计的原理还涉及到一些关键部件,如光源、单色器、样品池和检测器。
光源通常采用氘灯或钨灯,能够发出紫外和可见光;单色器可以选择特定波长的光线,确保测量准确性;样品池用于容纳样品,使光能够充分与样品接触;检测器则用于测量透射光的强度,将其转换成电信号输出。
总的来说,紫外可见分光光度计的原理是基于比尔-朗伯定律和兰伯特-比尔定律,利用光的吸收和透射特性来分析样品的成分和浓度。
通过光源、单色器、样品池和检测器等部件的配合,实现了对样品光学特性的测量和分析。
这种原理的分析方法具有灵敏度高、分辨率高、操作简便等特点,因此在化学、生物、环境等领域得到了广泛的应用。
紫外可见分光度计原理

紫外可见分光度计原理紫外可见分光度计是一种广泛应用于化学分析和生物化学领域的仪器,它利用紫外可见光谱技术对样品进行定量和定性分析。
其原理主要基于样品对不同波长光的吸收特性,通过测量吸收光强度的变化来推断样品的成分和浓度。
下面将详细介绍紫外可见分光度计的工作原理。
首先,紫外可见分光度计是基于光的吸收原理工作的。
当样品被照射不同波长的光时,其中一部分光会被样品吸收,而另一部分则会透过样品。
吸收光的强度与样品的成分和浓度有关,因此可以通过测量吸收光的强度来推断样品的特性。
其次,紫外可见分光度计利用单色光源和光栅分光器将白光分解成不同波长的单色光。
这些单色光经过样品后,被光电二极管或光电倍增管接收,并转换为电信号。
然后,这些电信号经过放大和数字化处理,最终转换为吸收光强度的数值。
另外,紫外可见分光度计还需要一个参比溶液来校正测量结果。
通常情况下,水或有机溶剂被用作参比溶液,它们在被测波长范围内的吸光度应尽可能小,以确保测量结果的准确性。
此外,紫外可见分光度计还需要进行基线校正。
基线校正是为了消除仪器和溶剂对测量结果的影响,通常是通过将溶剂放入样品室进行测量,然后将测得的吸光度值作为基线值,再进行样品的测量。
最后,通过比较样品溶液和参比溶液在不同波长下的吸光度,可以得到样品的吸收光谱图。
根据吸收光谱图,可以推断样品的成分和浓度,从而实现定量和定性分析。
综上所述,紫外可见分光度计的原理是基于样品对不同波长光的吸收特性,利用光源、分光器、光电探测器等部件将光信号转换为电信号,并通过基线校正和参比溶液来实现对样品的准确测量。
紫外可见分光度计在化学分析和生物化学领域有着广泛的应用,为科研和生产提供了重要的技术支持。
简述紫外可见分光光度法的基本原理。

简述紫外可见分光光度法的基本原理。
紫外可见分光光度法是一种常用的分析方法,通过测量物质在紫外可见光区的吸光度来分析物质的浓度。
其基本原理如下:
1. 光源:使用特定波长范围的光源,通常是紫外光或可见光。
光源产生的光经过一系列光学元件聚焦后,成为一个具有特定波长范围的光束。
2. 分光器:分光器将光束分离成不同波长的光束。
分光器通常
使用棱镜或光栅等光学元件来分散光束,使其成为不同波长的光谱。
3. 样品池:将待测样品置于样品池中,光束通过样品时,样品
会吸收特定波长的光。
吸收光的强度与样品中某种物质的浓度成正比。
4. 检测器:检测器接收通过样品后的光束,并将光信号转化为
电信号。
光的强度由电压信号表示。
5. 计算和分析:使用计算机或其他数据处理设备对电信号进行
分析和计算,得出样品中某种物质的浓度。
通过测量样品在不同波长下的吸光度,可以得到样品的吸收光谱。
根据光的强度与浓度之间的线性关系,可以通过比较吸收光强度与标准曲线的关系来确定样品中某种物质的浓度。
紫外可见分光光度计原理

紫外可见分光光度计原理
紫外可见分光光度计是一种利用物质对紫外和可见光的吸收、散射和发射特性进行定量分析的仪器。
其原理基于比尔-朗伯定律和兰伯-拜尔定律。
比尔-朗伯定律是光通过吸收介质时强度的变化与介质中物质浓度的关系。
该定律表明,吸收介质的浓度越高,光的强度损失越大。
因此,可以通过测量光通过样品后的强度与未通过样品前的强度的差异来确定样品中物质的浓度。
兰伯-拜尔定律是紫外可见分光光度计常用的基本定律,它描述了光通过吸收介质时的强度变化与介质的光学路径长度和浓度的关系。
根据该定律,吸光度(A)与吸光介质的光学路径长度(b)和浓度(c)成正比。
即A=εbc,其中ε为吸光介质的摩尔吸光度。
在实际测量中,紫外可见分光光度计会对样品中通过的光进行分光,将光源发出的连续谱分解成不同波长的光线。
分光器将所需波长的光线传输到样品池中,样品池中的样品会选择性地吸收一部分光线。
光线通过样品后,进入光电转换器,转换为电信号,再通过电子系统进行放大和处理,最后显示出吸光度的数值。
紫外可见分光光度计可以在紫外(200-400 nm)和可见光(400-800 nm)范围内进行测量。
通过选择不同的滤光片或光栅,可以选择不同波长的光进行测量。
这样就可以根据吸光度与测量波长的关系,定量地分析样品中的物质浓度。
紫外可见分光光度法原理

紫外可见分光光度法原理
紫外可见分光光度法是一种用以测定溶液中有机物含量的快速、准确的分析方法,在医药行业、食品行业及环境检测行业中都得到了广泛的应用。
它是通过比较被测样品与标准样品的分光光度比值,从而计算指定物质的含量的方法。
紫外可见分光光度测试主要是“传感-数据处理-传感器”的模型,它通过测定样品中吸收光谱特性的分光光度,测量出样品中物质的含量。
紫外分光光度仪基于光谱对待解的化学物质暴露到指定波长范围的光源,当样品吸收光子时,两个灵敏的波长探测器计量研究的物质的定量含量。
当样品通过紫外可见分光光度仪测量时,其反应机理是:紫外可见光照射到样品中的有源化学物质,它会发生吸收并反射出去,被灵敏的光照度探测器感受到,并与用于提供参照的标准物质的反射值进行比较。
通过比较,可以确定被测样品中物质的含量,提高检测精度。
目前,紫外可见分光光度仪已成为各行各业测定物质含量的重要工具。
由于紫外可见分光光度仪的实时检测能力和快速测量功能,在医药,食品等行业中都得到了广泛应用,例如用于测试血液清液、药物相关物质含量及检测快检卡等。
紫外可见分光光度仪也可以检测一些重要耐用性性质,如油污、成分等,为企业提供检测数据及结果,以确保产品质量及符合环保要求。
总之,紫外可见分光光度法是一种用于测定溶液中有机物含量的分析方法。
它既能检测物质含量,还可以检测耐用性性质。
因此,在进行相关的材料检测时,可以采用紫外可见分光光度仪,为企业提供准确可靠的检测数据,以保证产品质量及符合环保要求。
紫外-可见分光光度计工作原理

紫外-可见分光光度计工作原理
紫外-可见分光光度计(UV-Vis spectrophotometer)是一种用
于测量物质吸光度的仪器。
它的工作原理基于比尔-朗伯定律,即吸光度与溶液中物质浓度之间的线性关系。
下面是紫外-可见分光光度计的工作原理:
1. 光源:紫外-可见分光光度计使用可见光或紫外光作为光源。
这些光源通常是氘灯(白炽灯带有氘灯或钨灯)、氙灯或者LED等Xe光源。
光源发出的宽谱光经过光学系统聚焦形成一
束平行光通过物质样品。
2. 样品室:样品室是光路中的一个空间,用于容纳待测样品。
样品可以是液体、溶液或者固体经过适当的预处理后放置在样品室中。
待测样品能够吸收一定波长范围内的光。
3. 分光器:分光器将平行进入的光束按照不同的波长进行分离。
这通常是通过光栅、光柱或者棱镜等光学元件完成的。
分光器可以调节光束的波长范围。
4. 选择性检测器:分光器将不同波长的光分离后,光束通过选择性检测器进行探测。
可见光范围内常见的检测器包括光电二极管(Photodiode)和光电倍增管(Photomultiplier tube,PMT),紫外光范围内常用的检测器是具有UV增益的PMT。
5. 数据采集和显示:分光光度计通过检测器获取到的光强度信号通过转换电路转换成电信号,然后将其输入数显器、计算机
等数据采集和显示设备。
在数显器上,用户可以观察到吸光度值随波长变化的光谱曲线。
根据比尔-朗伯定律,吸光度与样品中的物质浓度之间有一个线性关系。
因此,通过测量样品的吸光度,可以得到物质在不同波长下的吸光度光谱,从而研究物质的颜色、浓度、变化等信息。
紫外-可见分光光度法的基本原理

R
*
n
* 跃迁
所需能量最大; 电子只有吸收远紫外光的能量才能发生跃迁,
吸收光谱处于远紫外区,多为饱和烃。
甲烷 乙烷 125 nm 135 nm
n * 跃迁
所需能量较大,但小于 *跃迁;含有未共用电子对 (n电子)原子的饱和化合物都可发生,如含杂原子的分子: -NH2、-OH、-S、-X中的未成键的n电子 吸收波长为150~250nm,大部分在远紫外区
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原 旋 子 光 吸 法 收 光 谱
原 子 发 射 光 谱
原 子 荧 光 光 谱
红 外 光 谱 法
分 子 荧 光 光 谱 法
分 子 磷 光 光 谱 法
核 磁 共 振 波 谱 法
紫外-可见分光光度法的基本原理
1、紫外可见吸收光谱法 根据溶液中物质的分子或离子对紫外 光谱区或可见光谱区辐射能的吸收以研 究物质组成和结构的方法。
,即分子中含有孤对电子和键同时存在时,才发生n→ *跃迁;
吸收波长为200~400nm,一般在近紫外区;吸收系数较低
O
H3C-C-CH3
例:丙酮有280nm左右的n→ *跃迁吸收峰( =10~30 L· mol-1· cm-1 )
→ *跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或 近紫外区 含有不饱和键的有机分子易发生这类跃迁 C=C C=C ; N=N ; C=O 属于强吸收,max >104L· mol-1· cm-1, 具有共轭双键的化合物 → *跃迁所需能量降低
(2)准确度较高:相对误差为 2%-10%。如采用精密分光光 度计测量,相对误差可减少至1%-2%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.与其它光谱分析方法相比,其仪器设备和 操作都比较简单,费用少,分析速度快 2.灵敏度高 选择性好 3.精准度较高 4.用途广泛
二、仪器结构
• 光源 • 单色器 • 比色皿(吸收池) • 检测器 • 显示系统
二、仪器结构
• 光源:在紫外可见分光光度计中,常用的
光源有两类:热辐射光源和气体放电光源 热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
二、仪器结构
• 单色器:
单色器的主要组成:入射狭缝、出射 狭缝、色散元件和准直镜等部分。色散元 件主要分为棱镜和光栅两种
二、仪器结构
• 吸收池:
吸收池又称比色皿或比色杯,按材料 可分为玻璃吸收池和石英吸收池,前者用 于可见光区,后者用于紫外区。
二、仪器结构
• 检测器:光电倍增管
光电倍增管主要技术指标和特点如下: 1.阴极和阳极光谱灵敏度是其最重要的技术指标之 一。 2.放大倍数增益 3.阳极特性 4.暗电流 决定光电倍增管的极限灵敏度 5.稳定性
紫外可见光分光光度计 原理介绍
紫外可见光分光光度计
• 一、基本原理 • 二、仪器构造 • 三、应用领域
一、基本原理
紫外可见光分光光度法: 根据被测量物质分子对紫外可见波段 范围(150-800nm)单色辐射吸收或反射 强度对物质的定性、定量或结构分析的一 种方法 目前市场上均为双光束紫外分光光度计。
• 根据其波长或者光束的数量对其分类 • 影响比尔定律偏离因素在仪器结构上的体
现 • 测定方法ቤተ መጻሕፍቲ ባይዱ理解
一、基本原理
遵循朗伯-比尔定律:光度分析中定量分析的基本 原理 数学表达式:A=kbc A ——吸光度; K ——比例常数; B ——基态原子层的厚度(光程); C ——蒸汽中基态原子的浓度。 朗伯定律:物质对光的吸收与物质的厚度成正比。 比尔定律:物质对光的吸收与物质的浓度成正比。
二、仪器结构
二、仪器结构
• 显示系统:数据处理、打印输出系统
其中数据处理速度直接影响仪器的综合评分
三、应用领域
1.定性分析 先用标准样品扫描谱图,在扫待测样品 的谱图。拿两者进行比较,可进行定性。 但此方法误差 比较大。
三、应用领域
2.纯度的鉴定 用紫外吸收光谱确定试样的纯度是比较 方便的。
三、应用领域
3.结构分析 紫外-可见吸收光谱一般不用于化合物 的结构分析,但利用紫外吸收光谱鉴定化 合物中的共轭结构和芳环结构还是有一定 价值。
三、应用领域
可对物质进行定性,定量分析。广泛 的应用在冶金地质,机械制造,环境保护, 生物化学,医学卫生,临床检验,食品卫 生,药品检验,农业化学等领域的生产。
问题: