第五章 MOS场效应管的特性.
合集下载
MOS场效应管

两个N区
N
N
P
G
P型基底 SiO2绝缘层
S
导电沟道
N沟道增强型
3
SG D
P
P
N
D G
S
P 沟道增强型
4
2、MOS管的工作原理
UGS=0时
UGS UDS
S GD
ID=0
对应截止区
N
N
P
D-S 间总有一
个反接的PN
结
5
UGS>0时
UGS UDS
S GD
UGS足够大时 (UGS>VGS(Th)) 感应出足够多电
画电路的交流等效电路如右图,这里采用的是MOS管的简化模型,可得:
AVv vo i gm vvggsR s DgmRD
46
二、有源电阻
ID
unCoxW 2L
(VGS
VGS
(
th )
)2
(1
VDS VA
)
unCoxW 2L
(VGS
VGS(th) )2 (1 VDS )
unCoxW 2L
予夹断曲线
40
四、主要参数:
1、夹断电压VP:
2、饱和漏极电流IDSS:
3、直流输入电阻RGS(DC):栅压除栅流
4、低频跨导gm:
gm viGDS|vDS常数
5、输出电阻rd: 6、最大漏极电流IDM:
rd viDDS|vGS常数
7、最大耗散功率PDM:
8、击穿电压:V(BR)DS、V(BR)GS
V GS
)2
( th )
0 . 25 (11 2 I D 5 ) 2
I
N
N
P
G
P型基底 SiO2绝缘层
S
导电沟道
N沟道增强型
3
SG D
P
P
N
D G
S
P 沟道增强型
4
2、MOS管的工作原理
UGS=0时
UGS UDS
S GD
ID=0
对应截止区
N
N
P
D-S 间总有一
个反接的PN
结
5
UGS>0时
UGS UDS
S GD
UGS足够大时 (UGS>VGS(Th)) 感应出足够多电
画电路的交流等效电路如右图,这里采用的是MOS管的简化模型,可得:
AVv vo i gm vvggsR s DgmRD
46
二、有源电阻
ID
unCoxW 2L
(VGS
VGS
(
th )
)2
(1
VDS VA
)
unCoxW 2L
(VGS
VGS(th) )2 (1 VDS )
unCoxW 2L
予夹断曲线
40
四、主要参数:
1、夹断电压VP:
2、饱和漏极电流IDSS:
3、直流输入电阻RGS(DC):栅压除栅流
4、低频跨导gm:
gm viGDS|vDS常数
5、输出电阻rd: 6、最大漏极电流IDM:
rd viDDS|vGS常数
7、最大耗散功率PDM:
8、击穿电压:V(BR)DS、V(BR)GS
V GS
)2
( th )
0 . 25 (11 2 I D 5 ) 2
I
MOSFET场效应管(MOS管)

MOSFET場效應管
MOS管基本知識
MOS管的定義與類型 MOS管結構圖及封裝 MOS管的基本參數 MOS管的作用 MOS管與三極管的區別 如何判斷MOS管好壞
MOS管的定義與類型
MOSFET(場效應管)是Metal Oxide Semiconductor Field Effect Transistor的首字母 缩写﹐簡稱MOS管。 它是只有一種載流子參與 導電的半導體器件﹐是用輸入電壓控制輸出電 流的半導體器件。
MOS管常用封裝
SOT-89
MOS管基本參數
參數符號 參數名稱
VGS(th)
BVDSS
閾值(開啟)電壓 擊穿電壓
RDS(on)
導通電阻
IDSS
漏電流
MOSห้องสมุดไป่ตู้的作用
開關﹕ NMOS的特性,Vgs大于一定的值就会导通,适合用于源极
接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性則剛好相反。
Vout
Vin
放大
MOS管與三極管的區別
結構 工作原理
作用
相同點
P/N結構成 小信號控制 開關﹑放大
不同點
MOS管控制端(G)是 絕緣的,三極管控制端 (B)是導通的。 MOS管受電壓控制﹐ 三極管受電流控制。
MOS管偏于開關作用 三極管偏于放大作用
如何判斷MOS管好壞
量測前﹐先把GS兩端短路放電﹐然后用歐姆表 量測DSG任意兩端電阻為M歐級﹐假若先量測GS, 再量測DS兩端電阻﹐其阻值會明顯變小或者通路。 這些都是一個正常的MOS管所具備的。
MOS管分為兩大類型﹕耗盡型(DMOS )和增強 型(EMOS )。每一類都有N溝道和P溝道兩種導 電類型。實際應用的是增強型的N溝道和P溝道 MOS管﹐即NMOS和PMOS。
MOS管基本知識
MOS管的定義與類型 MOS管結構圖及封裝 MOS管的基本參數 MOS管的作用 MOS管與三極管的區別 如何判斷MOS管好壞
MOS管的定義與類型
MOSFET(場效應管)是Metal Oxide Semiconductor Field Effect Transistor的首字母 缩写﹐簡稱MOS管。 它是只有一種載流子參與 導電的半導體器件﹐是用輸入電壓控制輸出電 流的半導體器件。
MOS管常用封裝
SOT-89
MOS管基本參數
參數符號 參數名稱
VGS(th)
BVDSS
閾值(開啟)電壓 擊穿電壓
RDS(on)
導通電阻
IDSS
漏電流
MOSห้องสมุดไป่ตู้的作用
開關﹕ NMOS的特性,Vgs大于一定的值就会导通,适合用于源极
接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性則剛好相反。
Vout
Vin
放大
MOS管與三極管的區別
結構 工作原理
作用
相同點
P/N結構成 小信號控制 開關﹑放大
不同點
MOS管控制端(G)是 絕緣的,三極管控制端 (B)是導通的。 MOS管受電壓控制﹐ 三極管受電流控制。
MOS管偏于開關作用 三極管偏于放大作用
如何判斷MOS管好壞
量測前﹐先把GS兩端短路放電﹐然后用歐姆表 量測DSG任意兩端電阻為M歐級﹐假若先量測GS, 再量測DS兩端電阻﹐其阻值會明顯變小或者通路。 這些都是一個正常的MOS管所具備的。
MOS管分為兩大類型﹕耗盡型(DMOS )和增強 型(EMOS )。每一類都有N溝道和P溝道兩種導 電類型。實際應用的是增強型的N溝道和P溝道 MOS管﹐即NMOS和PMOS。
5MOS场效应管的特性

是一个非线性电容,随电位差的增大而减小。
14
5MOS场效应管的特性
• 随着Vgs的增大,排斥掉更多的空穴,耗尽层厚度 Xp增大,耗尽层上的电压降就增大,因而耗尽层 电容CSi就减小。耗尽层上的电压降的增大,实际 上就意味着Si表面电位势垒的下降,意味着Si表面 能级的下降。
• 一旦Si表面能级下降到P型衬底的费米能级,Si表 面的半导体呈中性。这时,在Si表面,电子浓度 与空穴浓度相等,成为本征半导体。
击穿区
0
Vds
10
5MOS场效应管的特性
MOS电容是一个相当复杂的电容,有多层介质: 在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,最后
是衬底电极,同衬底之间是欧姆接触。 MOS电容与外加电压有关。
1)当Vgs<0时,栅极上的负电荷吸引了P型衬底中的多数载流 子—空穴,使它们聚集在Si表面上。这些正电荷在数量上 与栅极上的负电荷相等,于是在Si表面和栅极之间,形成 了平板电容器,其容量为,
9
5MOS场效应管的特性
• •
在非饱和区 饱和区
IdsVdsCa1Vgsb1
Idsa2V gs V T2
Idstoo xx W LVgsV TV ds1 2V ds2
Ids 1 2tooxxW LVgsVT 2
(Ids 与 Vds无关) . MOSFET是平方律器件!
Ids
饱和区
线性区
5
5MOS场效应管的特性
• 当栅极不加电压或加负电压时,栅极下面的区域保持P型导 电类型,漏和源之间等效于一对背靠背的二极管,当漏源电 极之间加上电压时,除了PN结的漏电流之外,不会有更多 电流形成。
• 当栅极上的正电压不断升高时,P型区内的空穴被不断地排 斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极 下的P型区域内就形成电子分布,建立起反型层,即N型层, 把同为N型的源、漏扩散区连成一体,形成从漏极到源极的 导电沟道。这时,栅极电压所感应的电荷Q为,
14
5MOS场效应管的特性
• 随着Vgs的增大,排斥掉更多的空穴,耗尽层厚度 Xp增大,耗尽层上的电压降就增大,因而耗尽层 电容CSi就减小。耗尽层上的电压降的增大,实际 上就意味着Si表面电位势垒的下降,意味着Si表面 能级的下降。
• 一旦Si表面能级下降到P型衬底的费米能级,Si表 面的半导体呈中性。这时,在Si表面,电子浓度 与空穴浓度相等,成为本征半导体。
击穿区
0
Vds
10
5MOS场效应管的特性
MOS电容是一个相当复杂的电容,有多层介质: 在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,最后
是衬底电极,同衬底之间是欧姆接触。 MOS电容与外加电压有关。
1)当Vgs<0时,栅极上的负电荷吸引了P型衬底中的多数载流 子—空穴,使它们聚集在Si表面上。这些正电荷在数量上 与栅极上的负电荷相等,于是在Si表面和栅极之间,形成 了平板电容器,其容量为,
9
5MOS场效应管的特性
• •
在非饱和区 饱和区
IdsVdsCa1Vgsb1
Idsa2V gs V T2
Idstoo xx W LVgsV TV ds1 2V ds2
Ids 1 2tooxxW LVgsVT 2
(Ids 与 Vds无关) . MOSFET是平方律器件!
Ids
饱和区
线性区
5
5MOS场效应管的特性
• 当栅极不加电压或加负电压时,栅极下面的区域保持P型导 电类型,漏和源之间等效于一对背靠背的二极管,当漏源电 极之间加上电压时,除了PN结的漏电流之外,不会有更多 电流形成。
• 当栅极上的正电压不断升高时,P型区内的空穴被不断地排 斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极 下的P型区域内就形成电子分布,建立起反型层,即N型层, 把同为N型的源、漏扩散区连成一体,形成从漏极到源极的 导电沟道。这时,栅极电压所感应的电荷Q为,
MOS场效应管特性曲线及主要参数

12
Lec 05
华中科技大学电信系 张林
MOSFET是如何实现信号放大的?
与BJT类似,FET也有器件参数,选用时必须以此为依据
二、交流参数
iD
1. 输出电阻rds
rds
vDS iD
VG S
rds=
1 斜率
Q VGSQ
由 iD Kn (vGS VT )2 (1 vDS )
得
vDS
rds
[ λKn (vGS
vDS=vGS-VT(或 vGD=vGS-vDS=VT)
可变电阻区
3V
2 (非饱和区)
① 截止区
1.5
当vGS<VT时,导电沟道 1
尚 未 形 成 , iD = 0 , 为 截
止工作状态。
0.5
饱和区 2.5V
2V vGS=1.5V
截止区
0 2.5 5 7.5 10
vDS/V
2
Lec 05
华中科技大学电信系 张林
MOSFET是如何实现信号放大的?
其它类型的MOSFET —— N沟道耗尽型MOSFET
二氧化硅绝缘层中掺有大量的正离子,已存在导电沟道
可以在正或负的栅源电压下工作,而且基本上无栅流
s
g 掺杂后具有正 d
离子的绝缘层 二氧化硅
d
++++++++++
N+
N+
耗尽层 N 型沟道 P
衬底 g
B
s
B 衬底引线
特性方程 iD Kn (vGS VT )2 (非线性, =0)
可变电阻区工作条件 vGS >VT , vDS <(vGS-VT)
特性方程 iD 2Kn (vGS VT ) vDS
第五章MOS场效应管的特性

饱和区 击穿区
0
2019/1/31
Vds
9
东南大学
射 频 与 光 电 集 成 电 路 研 究 所
5.1.2 MOSFET电容的组成
MOS电容是一个相当复杂的电容,有多层介质: 首先,在栅极电极下面有一层SiO2介质。SiO2下面是P型 衬底,衬底是比较厚的。最后,是一个衬底电极,它同 衬底之间必须是欧姆接触。 MOS电容还与外加电压有关。 1 )当 Vgs<0 时,栅极上的负电荷吸引了 P 型衬底中的多 数载流子—空穴,使它们聚集在Si表面上。这些正电 荷在数量上与栅极上的负电荷相等,于是在Si表面和 栅极之间,形成了平板电容器,其容量为, oxWL oxWL
它是耗尽层两侧电位差的函数,因此,耗尽层 电容为,
dQ 1 CSi WL 2 Si qNA dv 2
1 2
Si qNA WL 2
是一个非线性电容,随电位差的增大而减小。
2019/1/31
13
东南大学
射 频 与 光 电 集 成 电 路 研 究 所
' = 4.5, 0 = 0.88541851.10-11 C.V-1.m-1
Vge是栅级对衬底的有效控制电压 其值为栅级到衬底表面的电压减VT
ox W
1 with Vge Vgs VT Vds 2
2019/1/31
7
东南大学
射 频 与 光 电 集 成 电 路 研 究 所
Cox tox tox
通常, ox=3.98.85410-4 F/cm2;A 是面积,单位 是cm2;tox是厚度,单位是cm。
2019/1/31
电子电工学——模拟电子技术 第五章 场效应管放大电路

1. 最大漏极电流IDM
场效应管正常工作时漏极电流的上限值。
2. 最大耗散功率PDM
由场效应管允许的温升决定。
3. 最大漏源电压V(BR)DS 当漏极电流ID 急剧上升产生雪崩击穿时的vDS值。
4. 最大栅源电压V(BR)GS
是指栅源间反向电流开始急剧上升时的vGS值。
5.2 MOSFET放大电路
场效应管是电压控制器件,改变栅源电压vGS的大小,就可以控制漏极 电流iD,因此,场效应管和BJT一样能实现信号的控制用场效应管也 可以组成放大电路。
场效应管放大电路也有三种组态,即共源极、共栅极和共漏极电路。
由于场效应管具有输入阻抗高等特点,其电路的某些性能指标优于三极 管放大电路。最后我们可以通过比较来总结如何根据需要来选择BJT还
vGS<0沟道变窄,在vDS作用下,iD 减小。vGS=VP(夹断电压,截止电 压)时,iD=0 。
可以在正或负的栅源电压下工作,
基本无栅流。
2.特性曲线与特性方程
在可变电阻区 iD
Kn
2vGS
VP vDS
v
2 DS
在饱和区iD
I DSS 1
vGS VP
2
I DSS KnVP2称为饱和漏极电流
4. 直流输入电阻RGS
输入电阻很高。一般在107以上。
二、交流参数
1. 低频互导gm 用以描述栅源电压VGS对漏极电流ID的控制作用。
gm
iD vGS
VDS 常数
2. 输出电阻 rds 说明VDS对ID的影响。
rds
vDS iD
VGS 常数
3. 极间电容
极间电容愈小,则管子的高频性能愈好。
三、极限参数
D iD = 0
场效应管正常工作时漏极电流的上限值。
2. 最大耗散功率PDM
由场效应管允许的温升决定。
3. 最大漏源电压V(BR)DS 当漏极电流ID 急剧上升产生雪崩击穿时的vDS值。
4. 最大栅源电压V(BR)GS
是指栅源间反向电流开始急剧上升时的vGS值。
5.2 MOSFET放大电路
场效应管是电压控制器件,改变栅源电压vGS的大小,就可以控制漏极 电流iD,因此,场效应管和BJT一样能实现信号的控制用场效应管也 可以组成放大电路。
场效应管放大电路也有三种组态,即共源极、共栅极和共漏极电路。
由于场效应管具有输入阻抗高等特点,其电路的某些性能指标优于三极 管放大电路。最后我们可以通过比较来总结如何根据需要来选择BJT还
vGS<0沟道变窄,在vDS作用下,iD 减小。vGS=VP(夹断电压,截止电 压)时,iD=0 。
可以在正或负的栅源电压下工作,
基本无栅流。
2.特性曲线与特性方程
在可变电阻区 iD
Kn
2vGS
VP vDS
v
2 DS
在饱和区iD
I DSS 1
vGS VP
2
I DSS KnVP2称为饱和漏极电流
4. 直流输入电阻RGS
输入电阻很高。一般在107以上。
二、交流参数
1. 低频互导gm 用以描述栅源电压VGS对漏极电流ID的控制作用。
gm
iD vGS
VDS 常数
2. 输出电阻 rds 说明VDS对ID的影响。
rds
vDS iD
VGS 常数
3. 极间电容
极间电容愈小,则管子的高频性能愈好。
三、极限参数
D iD = 0
MOS管(新)分析

27
例.如图,设VT=1V, Kn=500μA/V2 , VDD=5V, -VSS=-5V, Rd=10K,
R=0.5K, Id=0.5mA 。若流过Rg1, Rg2的电流是ID的1/10,试确定
Rg1, Rg2的值。
VDD
解.作出直流通路,并设MOS工作在饱和 区,则由:
2
Rg 2 200
IDSS mA
<0.35
<1.2 6~11 0.35~1.2 0.3~1
VRDS V
>20 >20 >20 >12
VRGS V
>20 >20 >20 >25 -25
VP
gm
V mA/ V
-4
≥2
-4
≥3
-5.5 ≥8
-4
≥2
fM MHz 300
90
1000
5.2 MOSFET放大电路
5.2.1 MOSFET放大电路
工作于可变电阻区的ID: ID 2Kn (VGS VT )vDS
25
5.2 MOSFET放大电路 5.2.2 带源极电阻的NMOS共源极放大电路 (1) 直流通路
VGS VG VS
Rg1
Rg 2
Rg1 Rg 2
(VDD
VSS
)
VSS
(IDR
VSS
由V-I特性估算 gm
gm
diD dvGS
vDS
[Kn (vGS VT )2 ]
vGS
vDS
2Kn (vGS
VT )
因为 iD Kn (vGS VT )2
mos场效应管工作原理

mos场效应管工作原理
MOS场效应管(MOSFET)是一种常用的三端可控硅器件,
其工作原理基于金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构。
MOS场效应管的结构包括三层:金属层、绝缘层(通常是二
氧化硅)和半导体层(通常是硅)。
绝缘层将金属层与半导体层隔离开来,形成了一个被控制的电介质层。
MOS场效应管有两种常见的工作模式:增强型(enhancement mode)和耗尽型(depletion mode)。
在增强型MOS场效应管中,当控制端加有正电压时,电子注
入到半导体中,形成一个导电层,从而增强了导电特性。
这时,可以在控制端和源端之间输出一个较大电流。
在耗尽型MOS场效应管中,当控制端加有负电压时,导电特
性被减弱。
这时,控制端和源端之间的电流较小。
MOS场效应管的主要工作原理是通过控制栅电压来改变栅和
源之间的电场,从而控制了栅氧化物与半导体之间的电荷分布。
这种电场效应可以调节通道中的载流子浓度,进而影响了器件的导电特性。
总之,MOS场效应管是通过调节控制栅电压来改变器件导电
特性的三端可控硅器件,其工作原理基于金属-氧化物-半导体
结构和电场效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.6 MOSFET尺寸按比例缩小
5.7 MOS器件的二阶效应
Science and Technology of Electronic Information
MOS管特性
5.1.1 MOS管伏安特性的推导
两个PN结:
1)N型漏极与P型衬底; 2)N型源极与P型衬底。
同双极型晶体管中的PN 结
一样,在结周围产生了耗尽层。
在耗尽层中束缚电荷的总量为
2 Si Q qNA X pWL qN AWL WL 2 Si qNA q NA
G G + + + + + + tox 沟道 耗尽层 P型衬底 Vss Vss
MOS管的电容
Co 沟道 Cdep
d
MOS电容
1 )当 Vgs<0 时,在 Si 表面和栅极之间, 形成了平板电容器,其容量为:
Cox
oxWL
tox
oxWL
tox
通 常 , ox=3.98.85410-4 F/cm2 ; W 为栅宽, L 为栅极长, 单位是 cm2 ; tox 是厚度,单位是cm。
这时,栅极电压所感应的电荷Q为,
Q=CVge 式中Vge是栅极有效控制电压。
MOS管特性
电荷在沟道中的渡越时间
非饱和时(沟道夹断),在漏源电压Vds作用 下,这些电荷Q将在时间内通过沟道,因此有
L L2 Eds Vds L
为载流子速度,Eds= Vds/L为漏到源方向电场强度,Vds为漏 到源电压。 为载流子迁移率: n n µ n = 650 cm2/(V.s) 电子迁移率(NMOS) µ p = 240 cm2/(V.s) 空穴迁移率(PMOS)
集成电路设计基础
Basic of Integrated Circuit Design
电子信息工程系 武 斌
Science and Technology of Electronic Information
MOS管特性
第五章
MOS 场效应管的特性
5.1 MOS场效应管
5.2 MOS管的阈值电压 5.3 体效应 5.4 MOSFET的温度特性 5.5 MOSFET的噪声
一个电容器结构
栅极与栅极下面区域形成一个电容器,
是MOS管的核心。
MOS管特性
MOSFET的三个基本几何参数
poly-Si G D W S diffusion L t ox
p+/n+ p+/n+
栅长:L; 栅宽: W; 氧化层厚度: tox Lmin: MOS工艺的特征尺寸(feature size) L影响MOSFET的速度, W决定电路驱动能力和功耗 L和W由设计者选定,通常选取L= Lmin,
1 1 C C C Si ox
1
+
N+ N+ N+
G N+ N+
以SiO2为介质的电容器—Cox 以耗尽层为介质的电容器—CSi
MOS管的电容
MOS电容—束缚电荷层厚度
耗尽层电容的计算方法同 PN 结的耗尽层电容的计算 方法相同,利用泊松方程
2
1
Si
MOS管的电容
SiO2和耗尽层介质电容
2 ) 当 Vgs>0 时, MOS 电容器可以看成两个电容器 的串联。 栅极上的正电荷排斥了Si中的空穴,在栅极下
面的Si表面上,形成了一个耗尽区。耗尽区中空穴被赶走 后剩下的固定的负电荷,分布在厚度为Xp的整个耗尽区内; 而栅极上的正电荷则集中在栅极表面,基底接负极。
MOSFET饱和特性
当Vgs-VT=Vds时,满足: Ids达到最大值Idsmax,其值为 Vgs-VT=Vds,意味着: Vge=Vgs-VT-Vds=Vgs-Vds-VT =0 沟道夹断,电流不会再增大, 因而,这个 Idsmax 就是饱和电流。
dIds 0 dVds
I dsmax 1 ox W 2 Vgs VT 2 tox L
(Ids与Vds无关, 与 Vgs有关)
I ds a2 V Idsgs VT
线性区
2
饱和区 击穿区
0
MOS管特性
Vds
5.1.2 MOSFET电容的组成
MOS 电容是一个相当复杂的电容,具有多层介 质,在栅极电极下面有一层 SiO2 介质, SiO2 下面是 P 型衬底,最后是衬底电极,同衬底之间是欧姆接触。
′ = 4.5,
1 2 Vgs VT Vds Vds 2
1 Vge Vgs VT Vds 2
= '.0 栅极-沟道间氧化层介电常数,
0 = 0.88541851.10-11 C.V-1.m-1
Vge:栅级对衬底的有效控制电压
MOS管特性
MOS管特性
MOSFET特性曲线
• 在非饱和区 呈线性电阻 • 饱和区
I ds
ox W
tox
ds C
1 2 V V V Vds gs T ds L 2
I ds V
a1Vgs b1
2 1 ox W I ds Vgs VT 2 tox L
1
Si
qNA
式中NA是P型衬底中的掺杂浓度,ρ为空间电荷密度, 为电势,
将上式积分得耗尽区上的电位差 : 1 qN A 2 ' qN A dxdx Xp Si Si 从而得出束缚电荷层厚度
Xp 2 Si q NA
MOS管的电容
MOS电容 —耗尽层电容
MOS管特性
MOSFET的伏安特性方程
CVge oxWL MOS管漏源间的电流 ox W Q 1I 非饱和情况下,通过 I ds 2 2 VgeVds (Vgs VT V ds ds )Vds L tox L tox L 2 为: Vds
ox W tox L
由此,设计者只需选取W
MOS管特性
n(p)
MOSFET的伏安特性:电容结构
当VGS<=0,
当漏源电极之间加上电压时,除了PN结的漏电流之外,不 会有更多电流形成。
当VGS>0时 P 型区内的空穴被不断地排斥到衬底方向,少子电子在栅 极下的P型区域内就形成电子分布,建立起反型层,即N型 层,当VGS>=VT时形成从漏极到源极的导电沟道。