讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

合集下载

02-ppt - 简支钢桁梁桥组成、构造及设计概要

02-ppt - 简支钢桁梁桥组成、构造及设计概要

桥梁工程Bridge Engineering主讲人:冀伟副教授一、简支桁架桥各组成部分及其作用第三节简支钢桁梁桥组成主桁桥面系/桥面板桥面联结系支座一、简支桁架桥各组成部分及其作用主桁—由上弦杆、下弦杆、腹杆(斜杆,竖杆)及节点组成一、简支桁架桥各组成部分及其作用一、简支桁架桥各组成部分及其作用节点—大节点(有斜杆交汇的节点,受力及构造比较复杂,节点板尺寸也较大)—小节点(仅有竖杆和弦杆交汇的节点,受力及构造较简单,节点板尺寸也较小)一、简支桁架桥各组成部分及其作用一、简支桁架桥各组成部分及其作用纵向和横向联结系—水平纵向联结系(简称平纵联,分上平纵联,下平纵联)一、简支桁架桥各组成部分及其作用纵向和横向联结系—联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向荷载横向联结系—分为桥门架和中横联—主要作用为是增加钢桁梁的抗扭刚度。

适当调节两片主桁或两片纵联的受力不均一、简支桁架桥各组成部分及其作用桥面联结系—由纵梁、横梁及纵梁之间的联结系—传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主桁架节点一、简支桁架桥各组成部分及其作用桥面板—供车辆和行人行走的部分。

根据桥面联结系形式不同,桥面板的形式也有所不同 一、简支桁架桥各组成部分及其作用 铁路钢桥 桥面 明桥面道碴桥面一、简支桁架桥各组成部分及其作用桥枕正轨护轨护木钩螺栓人行道 明桥面钩螺栓一、简支桁架桥各组成部分及其作用钢支座—传统的钢桁梁桥,Array多采用铸钢支座主桁架—是钢桁梁桥的主要组成部分,它的图示选择是否合理,对桁梁桥的设计质量起着重要作用 二、主桁的几何图式 三角形斜杆形K 形桁架二、主桁的几何图式三角形桁架—构造简单、适应定型化设计,便于制造和安装—弦杆的规格和有斜杆交汇的大节点的个数较少二、主桁的几何图式斜杆形桁架—相邻斜杆互相平行的桁架,又称为N 形桁架。

—在构造及用钢量方面都不及三角形桁架优越,目前在梁桥中已很少采用,而在钢桁梁斜拉桥中常采用。

第九章 下承式简支钢桁梁-01pdf

第九章 下承式简支钢桁梁-01pdf

第九章 下承式简支桁架桥
桥梁工程
三角形腹杆体系
第九章 下承式简支桁架桥
桥梁工程
上弦为折线腹杆体系
三角再分形腹杆体系
第九章 下承式简支桁架桥
桥梁工程
米型腹杆体系
第九章 下承式简支桁架桥
桥梁工程
N型腹杆体系
第九章 下承式简支桁架桥
桥梁工程
现在钢梁制造上已经摆脱机器样板的约束,采用程序 控制钻孔,随着计算理论和计算方法的不断提高,钢桁梁 的几何图示也会更加的丰富。
第九章 下承式简支桁架桥
桥梁工程
③斜杆倾度 与桁高、节间长度有关,斜杆轴线与竖直线的交角以在 30°~50°范围内为宜。 ④两主桁的中心矩 下承式简支桁架桥两主桁的中心矩考虑: a.横向刚度:两主桁的中心矩与跨度之比; b.桥上净空要求(4.88m单线;8.88m双线) 列车提速后,为了增加桥梁的横向刚度,减少横向振幅, 新的标准设计,两主梁的中心距,单线6.4m;双线10.0m。
桥梁工程
p2
明桥面(包括双侧人行道): 当木步行板时,单线=8KN/m,双线=15KN/m; 当为钢筋混凝土或钢步行板时,单线=10KN/m, 双线 =17KN/m。 当采用有砟桥面,桥面重量需进行道砟板、道砟、轨枕和 钢轨等的计算,规范中没有规定。 c.每片主桁计算恒载强度
p = ( p1 + p 2 ) 2
d.节点刚性连接引起的主桁杆件附加应力(次应 力),设计时,主桁杆件截面高度与其长度之比在连续桁 梁中大于1/15时,简支桁梁中大于1/10时,应计算由于节 点刚性所产生的次应力。
第九章 下承式简支桁架桥
桥梁工程
2、作用在主桁杆件的力
使主桁杆件产生内力有:主力和附加力 主力:包括恒载、列车竖向活载、列车横向摇摆力、 弯道桥的离心力。 附加力:包括风力、制动力或牵引力。 《铁桥规》规定:桥梁设计时仅考虑主力与一个方向 的附加力相结合。

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁3

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁3

在交叉形的纵向联结系中,应计算由于主桁弦杆变形
或横梁变形所引起的联结系杆件的内力。
由于主桁弦杆变形或横梁变形所引起的联结系杆件的
内力,可按下列公式计算:
交叉形斜杆因弦杆变形而生的内力:
Nd
=
N A
× 1+ 2
Ad
Ad cos2 α sin 3 α + Ad
cos3 α
Ap
A
交叉形,当横梁兼作撑杆:
Nd
交叉形的腹杆体系
桥梁工程
交叉形上平纵联
桥梁工程
交叉形的腹杆体系
2、平纵联的计算 简支桁架桥的平纵联的计算图式是水平放置的简支铰
接桁架,其计算跨度或等于主桁跨度,或等于主桁上弦端 节点之间的距离。
平纵联所受的荷载包括:横向风力,列车横向摇摆 力,离心力(若是弯道桥),由于弦杆变形所引起的力。
桥梁工程
纵梁跨中弯矩和梁端剪力影响线见下图 跨中恒载弯矩:
M p = p × Ω1
梁端恒载剪力:
Qp = p×Ω2
跨中活载弯矩:
M k = η(1 + μ)K1 × Ω1
梁端活载剪力:
Qk = η(1 + μ)K 2 × Ω2
(2)纵梁的应力计算 包括:弯曲应力、疲劳强度、剪应力
桥梁工程
桥梁工程
二、纵梁和横梁的计算
鱼形板应力计算和疲劳强度的验算如下:
σ = N0 ≤ [σ ]
A0
γ dγ n (σ max − σ min ) ≤ γ t [σ 0 ]
式中 A0 —鱼形板的净截面面积; [σ ] —鱼形板的容许应力;
[σ 0 ] —疲劳容许应力幅。
桥梁工程
每块鱼形板与纵梁翼缘连接所需的螺栓数:

第九章 下承式简支钢桁梁-02

第九章 下承式简支钢桁梁-02

第九章 下承式简支桁架桥
桥梁工程
王形和箱形杆件
第九章 下承式简支桁架桥
桥梁工程
(2)H形(王形)截面特点及适用 由两块竖板(或称翼板)和一块水平板(或称腹板) 焊接而成。 优点:构造简单,易于采用自动电焊机施焊,焊接变 形易控制和修整,工地安装方便。 缺点:截面对两主轴的回转半径相差较大,扩充截面 需考虑的问题较多。(腹板为间接拼接不宜过厚,若加大 翼板高度又受到局部稳定的限制,而加厚翼板尺寸。) 适用范围:内力不很大的杆件和长度不太大的压杆。
N2 和
N 3 按下列公式换算成
′ N3 N3 = [σ ] 1.2[σ ]
′ N 2和 N 3′ ,
N1 作比较,取其大者作为计算内力。
′ N2 N2 = [σ ] 1.25[σ ]
第九章 下承式简支桁架桥
桥梁工程
8 主桁杆件截面选取原则
(1)主桁杆件主要截面形式 H形截面 王形截面 箱形截面
H形杆件
第九章 下承式简支桁架桥
桥梁工程
③端斜杆和下弦杆的内力计算 见上图,取反弯点以上部分为隔离体,在水平力作用下, 两竖杆的反弯点处将产生水平反力(各等于 H w / 2 )和数值相 等而方向相反的竖直反力 V 。对任一反弯点取矩,可将 V 值求出,即
H w (l l 0 ) V= B
当端斜杆产生这一附加轴向力时, 相应地在下弦端节点将产生两个力和 它相平衡,一是由支座承受的竖直力, ′′ 一是由下弦杆承受的纵向水平力 N w ′′ ,其值为 N w = V cos θ
V
′′ Nw
第九章 下承式简支桁架桥
桥梁工程
N ′′ 在桁架桥背风侧的主桁端斜杆, V 是压力, w 是拉 力,在计算端斜杆和下弦杆的附加轴向力时应分别计入。 由于水平力的作用,使端斜杆承受附加弯矩,其值见 图所示。

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

桥梁工程
特别说明 活载发展系数是用在使设计的桥梁各部件在强度检算 时,能承受的活载均匀,对疲劳损伤没关系。所以在疲劳 内力组合中,不考虑活载发展系数。
′ = η (1 + μ )kΩ N k = η (1 + μ )N k
′ = (1 + μ f ) kΩ N k = (1 + μ f )N k
桥梁工程
桥梁工程
⑤当由于将实际结构转化为各个平面计算模型产生的误 差较大时,需要进行必要的校正: a.由于主桁弦杆变形所引起的平纵联杆件的内力。 b.桥面系的纵、横梁和主桁弦杆的共同作用产生的内力 c.由横梁、主桁竖杆和横向联结系的眉杆所构成的横向 框架
桥梁工程
d.节点刚性连接引起的主桁杆件附加应力(次应 力),设计时,主桁杆件截面高度与其长度之比在连续桁 梁中大于1/15时,简支桁梁中大于1/10时,应计算由于节 点刚性所产生的次应力。
桥梁工程 b.桥面重量
p2
明桥面(包括双侧人行道): 当木步行板时,单线=8KN/m,双线=15KN/m; 当为钢筋混凝土或钢步行板时,单线=10KN/m, 双线 =17KN/m。 当采用有砟桥面,桥面重量需进行道砟板、道砟、轨枕和 钢轨等的计算,规范中没有规定。 c.每片主桁计算恒载强度
p = ( p1 + p 2 ) 2
Ω=
2H
1 (n − m − 1) d Ω′ = − 2 n −1 sin θ
2
斜杆:
1 m2d 1 Ω= 2 n − 1 sin θ
竖杆: 支座反力:
Ω=d
l Ω= 2
桥梁工程 (3)恒载作用下主桁杆件内力计算
N p = p∑ Ω
p 其中 ——均布恒载强度(每片主桁的); ∑ Ω ——杆件内力影响线面积的代数和。

下承式简支钢桁梁1

下承式简支钢桁梁1

47
桥梁工程
王形和箱形杆件
48
桥梁工程
箱形杆件的构造
49
桥梁工程
箱形杆件
50
桥梁工程
箱形杆件
51
桥梁工程
第二节 主桁杆件内力计算 主讲内容:
(1)桁架桥杆件内力计算的基本原理 (2) 主力作用下主桁杆件内力计算;
(3)横向附加力作用下的主桁杆件内力计算;
(4)制动力作用下的主桁杆件内力计算; (5)主桁杆件计算内力的确定。
52
桥梁工程
1. 桁架桥杆件内力计算的基本原理
桁架空间结构
53
第九章 下承式简支桁架桥
桥梁工程
①将桥跨的空间桁架结构分成若干个平面桁架结构:主
桁、纵梁、横梁、平纵联、横向联结系和桥门架。
桁架分解成的平面结构
54
桥梁工程
②将平面桁架结构中各杆件的轴线所形成的图形作为计 算图式。
25
桥梁工程
桥面
26
桥梁工程 3.下承式栓焊简支钢桁梁荷载传递途径 ①竖向荷载:主要是列车竖向荷载,包括列车的动力荷载。
桥面
竖向荷载
纵梁
横梁
主桁节点
主桁杆件
支座
墩台。
②横向水平荷载:包括风力、列车横向摇摆力、曲线桥的离 心力。
横向水平荷载由平纵联承受,作用在上平纵联上的横向
水平力先传给桥门架,再由桥门架传到支座和墩台上去,下 平纵联直接通过支座传给墩台。
等。
30
桥梁工程
三角形腹杆体系
31
桥梁工程
上弦为折线腹杆体系
三角再分形腹杆体系
32
桥梁工程
米型腹杆体系
33
桥梁工程
N型腹杆体系

120m下承式简支钢桁架桥设计分析

120m下承式简支钢桁架桥设计分析

第17卷第6期2020年12月现代交通技术Modern Transportation TechnologyVol.17No.6Dec.2020 120m下承式简支钢桁架桥设计分析曹骏驹(江苏省交通工程建设局,南京210004)摘要:以新安京杭运河大桥主桥120m下承式简支钢桁架桥施工设计为例,设计中对主桥构造尺寸拟定(包含桁架高度、节间长度、斜杆倾角、主桁间距、各杆件及节点板厚度等),通过midas Civil软件进行结构验算,发现原设计中部分杆件强度应力储备不足,通过深度分析,优化了构造尺寸。

结果表明:钢桁架各构件强度、整体稳定性、杆件稳定性、刚度和疲劳验算均满足规范要求,结构设计经济、耐久、安全可靠。

关键词:简支钢桁架;结构分析;疲劳验算;结构安全中图分类号:U442.5文献标识码:A文章编号:16729889(2020)06005704Design and Analysis of120m Through Simply Supported Steel Truss BridgeCAO Junju(Jiangsu Provincial Transportation Engineering Construction Bureau,Nanjing210004,China)Abstract:Taking the construction drawing design of120m through simply supported steel truss of the main bridge of Xin'an Beijing-Hangzhou Grand Canal Bridge as an example.In the design,the structural dimensions of the main bridge are deter­mined(truss height,section length,inclined bar inclination,main truss spacing,the thickness of each member and gusset plate,etc.).Through midas Civil structural checking calculation,it is found that the strength stress reserve of some members in the original design is insufficient.Through depth analysis,the structural size is optimized.The results show that the strength,stability,overall stability,stiffness and fatigue of each member of the steel truss meet the requirements of the code, and the structural design is economical,durable,safe and reliable.Key words:simply supported steel truss;structural analysis;fatigue checking calculation;structural safety下承式简支钢桁架桥是常见的铁路桥梁之一,它具有自重轻、跨越能力强、建筑高度低、建设速度快等特点,可运用在工程抢险、航道整治等工程中。

下承式栓焊简支钢桁梁桥设计计算书解剖

下承式栓焊简支钢桁梁桥设计计算书解剖

仁爱学院下承式栓焊简支钢桁梁桥课程设计姓名:学号:班级:设计时间:目录第一章设计资料………………………………………………………………第一节基本资料…………………………………………………………第二节设计内容…………………………………………………………第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………第一节主力作用下主桁杆件内力计算…………………………………第二节横向风力作用下的主桁杆件附加内力计算……………………第三节制动力作用下的主桁杆件附加内力计算………………………第四节疲劳内力计算……………………………………………………第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………第一节下弦杆截面设计…………………………………………………第二节上弦杆截面设计…………………………………………………第三节端斜杆截面设计…………………………………………………第四节中间斜杆截面设计………………………………………………第五节吊杆截面设计……………………………………………………第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………第一节E2节点弦杆拼接计算……………………………………………第二节E0节点弦杆拼接计算……………………………………………第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。

2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁工程
下平纵联
桥梁工程
下平纵联与主桁节点的连接
桥梁工程
中间横联
桥梁工程
桥面
桥梁工程 3.下承式栓焊简支钢桁梁荷载传递途径 ①竖向荷载:主要是列车竖向荷载,包括列车的动力荷载。
桥面
竖向荷载 支座 心力。
纵梁
横梁
主桁节点
主桁杆件
墩台。
②横向水平荷载:包括风力、列车横向摇摆力、曲线桥的离 横向水平荷载由平纵联承受,作用在上平纵联上的横向 水平力先传给桥门架,再由桥门架传到支座和墩台上去,下 平纵联直接通过支座传给墩台。
②桥面系是指纵梁、横梁及纵梁之间的联结系 ①主桁是钢桁梁的主要承重结构,它由上弦杆、下弦 ③联结系是指上平纵联、下平纵联、桥门架、中间横联 杆、腹杆及节点组成。倾斜的腹杆称为斜杆,竖直的腹杆 称为竖杆,杆件交汇的地方称为节点。
桥梁工程
④铁路明桥面主要由正轨、护轨、桥枕、护木、钩螺栓 及人行道组成。 ⑤支座是连接上部钢梁与下部基础并传递荷载的构造。
桥梁工程 ③纵向荷载:桥上列车变速引起的制动力或牵引力。 制动力 Oˊ点 座。 四根附加的短斜杆(制动撑杆) 平纵联斜杆 主桁节点 O及
主桁固定支
桥梁工程 4.主桁几何图示 ①选择主桁几何图示时应考虑的因素 a.应满足桥上运输及桥下净空的要求; b.节约钢材; c.便于制造、运输、安装和养护; d.美观。 总之,具体问题(地形、地质、水文、气象、运输条件 等)具体分析。
下承式简支桁架桥
桥梁工程
下承式简支栓焊桁架桥
桥梁工程
主讲内容:
(1) (2) (3) (4) (5) (6) (7) 概述(应用、组成、主要尺寸、分析原理) 主桁杆件的内力计算及相关计算 主桁节点的连接和拼接 桥面系和连接系 桁架桥挠度、上拱度设置 支座 相关算例说明
桥梁工程
第一节 概述
1. 下承式简支桁架桥应用 桁架桥同混凝土桥梁相比自重轻,跨越能力大,结构形 式合理,实用性强。 下承式栓焊简支钢桁梁在铁路桥梁中应用较多,特别是 在32m~80m的中等跨度的桥梁应用最为广泛,基本上在铁 路桥梁中中等跨度的桥梁中占有绝对地位。
桥梁工程
②节间长度 是指水平弦杆两个节点间的长度。 主桁的节间长度影响到桥面系重量和弦杆拼接数量,与 桁高和斜杆的倾角也有直接的关系。 一般规定:下承式桁梁节间长度为5.5~12m或为桁高的 0.8~1.2倍。 标准设计中采用8m,非标准设计常采用4m、6m、 12m。
桥梁工程
③斜杆倾度 与桁高、节间长度有关,斜杆轴线与竖直线的交角以在 30°~50°范围内为宜。 ④两主桁的中心矩 下承式简支桁架桥两主桁的中心矩考虑: a.横向刚度:两主桁的中心矩与跨度之比; b.桥上净空要求(4.88m单线;8.88m双线) 列车提速后,为了增加桥梁的横向刚度,减少横向振幅, 新的标准设计,两主梁的中心距,单线6.4m;双线10.0m。
桥梁工程 ⑤主桁杆件的截面形式 主桁杆件的截面形式有H形、王形和箱形; 我国钢桥设计中,H形杆件:b有460、600、720mm几 种;h有260、440、600、760、920、1100mm。
h
b
桥梁工程
H形杆件
桥梁工程
H形杆件
桥梁工程
盖板
腹板 纵肋
王字形杆件
桥梁工程
箱形杆件
桥梁工程
王形和箱形杆件
桥梁工程
无竖杆三角形腹杆体系
桥梁工程
5 主桁主要尺寸 ①主桁高度 上下弦杆中心距。 考虑因素:刚度要求,桥上净空,经济 一般规定:约为跨长的1/5~1/10(经济高度)。 标准设计中,三角形腹杆体系桁架桥采用的11m(单 线铁路);米字形腹杆体系桁架桥采用16m(双线)。
桥梁工程
标准设计桁架桥主桁高度
桥梁工程
箱形杆件的构造
桥梁工程
箱形杆件
桥梁工程
箱形杆件
桥梁工程
第二节 主桁杆件内力计算 主讲内容:
(1)桁架桥杆件内力计算的基本原理 (2) 主力作用下主桁杆件内力计算; (3)横向附加力作用下的主桁杆件内力计算; (4)制动力作用下的主桁杆件内力计算; (5)主桁杆件计算内力的确定。
桥梁工程
桥梁工程
三角形腹杆体系
桥梁工程
上弦为折线腹杆体系
三角再分形腹杆体系
桥梁工程
米型腹杆体系
桥梁工程
N型腹杆体系
桥梁工程
现在钢梁制造上已经摆脱机器样板的约束,采用程序 控制钻孔,随着计算理论和计算方法的不断提高,钢桁梁 的几何图示也会更加的丰富。
桥梁工程
无竖杆三角形腹杆体系
桥梁工程
无竖杆三角形腹杆体系
1. 桁架桥杆件内力计算的基本原理
桁架空间结构
第九章 下承式简支桁架桥
桥梁工程
①将桥跨的空间桁架结构分成若干个平面桁架结构:主 桁、纵梁、横梁、平纵联、横向联结系和桥门架。
桁架分解成的平面结构
桥梁工程
②将平面桁架结构中各杆件的轴线所形成的图形作为计 算图式。 ③将节点(刚性连接)视为铰接。 ④当同一杆件是几个平面结构所共有时,需先将它在各 个平面桁架内的内力求出,然后求代数和,作为其计算内 力。
桥梁工程
②几何图式的选用 主桁的几何图示与腹板形式有关,考虑节约钢材、制造 安装美观等因素,我国过去制造上采用机械样板钻孔,工地 连接,因此选取的主桁几何图示,是按机械样板的要求选择 的。 对铁路下承式栓焊桁架桥的标准设计中,48m、64m、 80m跨度的钢桁梁采用平弦三角形腹杆体系桁架;80m、 96m、112m、 128m采用上弦且为折线和三角再分形的桁架 图示。 当然,也有其他结构的腹杆体系,如“N”型、“米” 型 等。
桥梁工程 2.下承式简支桁架桥各组成部分及其作用 下承式栓焊简支钢桁梁由五个部分组成:主桁、桥面、 桥面系、联结系和支座。
桥梁工程
下承式钢桁梁桥
桥梁工程
下承式简支钢桁梁桥
桥梁工程
下承式 半穿钢 桁梁桥
桥梁工程
下承式 半穿钢 桁梁桥
桥梁工程
下特别说明:
对于上承式钢桁梁的桥面系设在主桁上弦,主桁 上、下弦长度相等。其构造同下承式钢桁梁
桥梁工程
主桁结构
桥梁工程
主桁结构
桥梁工程
主桁节点
桥梁工程
桥面系
桥梁工程
桥面系
桥梁工程
桥面系
桥梁工程
纵梁与横梁的连接
桥梁工程
纵梁与横联的连接
桥梁工程
上平纵联
桥梁工程
上平纵联
桥梁工程
上平纵联、横联、桥门架
相关文档
最新文档