圆锥曲线基础练习及答案
2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油!圆锥曲线一. 选择题:1.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为BA.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1)C. (1,2)D. (1,-2)3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是BA. ①③B. ②③C. ①④D. ②④4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1(0,]2C.(0,2 D.,1)26.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) AB .3 CD .927.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( B )A. B. C .(25), D.(28.(山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为ABCD-26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x9.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( B )ABC D10.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( B )(A)4 (B)8 (C)16 (D)3211.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为B(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 12.(浙江卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是D(A )3 (B )5 (C )3 (D )5 13.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是B(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线14.(重庆卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e 5k ,则双曲线方程为C(A )22x a -224y a =1(B)222215x y a a -= (C)222214x y b b-=(D)222215x y b b-=二. 填空题:1.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F 。
圆锥曲线-高一升高二新编-js

2013高中数学 第九章 圆锥曲线第1课 椭圆A【基础练习】1.已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 2.椭圆1422=+y x 的离心率为233.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是221164x y += 4. 已知椭圆19822=++y k x 的离心率21=e ,则k 的值为544k k ==-或 【范例导析】 例1.(1)求经过点35(,)22-,且229445x y +=与椭圆有共同焦点的椭圆方程。
(2)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点P (3,0)在该椭圆上,求椭圆的方程。
【分析】由所给条件求椭圆的标准方程的基本步骤是:①定位,即确定椭圆的焦点在哪轴上;②定量,即根据条件列出基本量a 、b 、c 的方程组,解方程组求得a 、b 的值;③写出方程.解:(1)∵椭圆焦点在y 轴上,故设椭圆的标准方程为22221y x a b+=(0a b >>),由椭圆的定义知,2a ===,∴10a =,又∵2c =,∴2221046b a c =-=-=,所以,椭圆的标准方程为221106y x +=。
(2)方法一:①若焦点在x 轴上,设方程为()222210x y a b a b+=>>,∵点P (3,0)在该椭圆上∴291a =即29a =又3a b =,∴21b =∴椭圆的方程为2219x y +=. ②若焦点在y 轴上,设方程为()222210y x a b a b+=>>,∵点P (3,0)在该椭圆上∴291b=即29b =又3a b =,∴281a =∴椭圆的方程为221819y x += 方法二:设椭圆方程为()2210,0,Ax By A B A B +=>>≠.∵点P (3,0)在该椭圆上∴9A=1,即19A =,又3a b =∴1181B =或,281a =∴椭圆的方程为2219x y +=或221819y x +=. 【点拨】求椭圆标准方程通常采用待定系数法,若焦点在x 轴上,设方程为()222210x y a b a b +=>>,若焦点在y 轴上,设方程为()222210y x a b a b +=>>,有时为了运算方便,也可设为221Ax By +=,其中0,0,A B A B >>≠.例2.点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。
专题9-1 圆锥曲线(选填)(解析版)2023年高考数学二轮专题全套热点题型

【答案】1 【详解】 抛物线 y2 8x ,
抛物线的准线为 x 2 ,焦点 F 2,0 ,
过点 P 作直线 l 的垂线交于点 C ,如图所示:
由抛物线的定义可知,| PF || PB || PA | p , 2
则| PA || PF | p | PF | 2 , 2
d | x0 || PC | | PF | 2, 当 F , P , C 三点共线时, | PC | | PF |取得最小值,即 d | x0 | 取得最小值, F (2, 0),
专题 9-1 圆锥曲线(选填)
目录 专题 9-1 圆锥曲线(选填) ................................................................................................................... 1
B. x2 y2 1
32 36
C. x2 y2 1 95
【答案】C 【详解】根据题意,作图如下:
D. x2 y2 1 59
易知 NM NQ ,则 NP NM 6 ,即 NP NQ 6 PQ 4 ,
故点 N 的轨迹是以 P,Q 为焦点且长轴长为 6 的椭圆,
设其方程为 x2 a2
③抛物线的定义:平面内与一个定点 F 和一条定直线 l (其中定点 F 不在定直线 l 上)的距 离相等的点({M || MF | d} )的轨迹叫做抛物线,定点 F 叫做抛物线的焦点,定直线 l 叫做
抛物线的准线.
【变式演练】
1.(2022·四川·成都外国语学校高二期中(理))已知双曲线
x2 9
y2 16
整理得 x2 2ax 2b2 0 ,
由于点 M 在第一象限, x a a2 2b2 ,
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
圆锥曲线基础练习题

圆锥曲线基础练习题一、选择题1. 椭圆15322=+y x 的焦距是( ) .A 22 .B 24 .C 2 .D 22. 抛物线y x =2的准线方程是( )(A )014=+x(B )014=+y (C )012=+x (D )012=+y3.椭圆5522=+ky x 的一个焦点是(0,2),那么k 等于 ( ) .A 1- .B 5 .C 1 .D 5-4.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为( )A .2B .2C D .5 5. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2 (B) 3 (C) 4 (D) 56.双曲线122=+y mx 的虚轴长是实轴长的2倍,则m 等于 ( ) .A 41- .B 4- .C 4 .D 41 7. 双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A .163B .83C .316D .388. 抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) ( A )1617 ( B ) 1615 ( C ) 87 ( D ) 0 二.填空9.抛物线)0(22>=p px y 上一点M 到焦点的距离为a ,则点M 到准线的距离是10.过点)2,3(-A 的抛物线的标准方程是11.在抛物线)0(22>=p px y 上,横坐标为4的点到焦点的距离为5,则p 的值是12.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是 13.已知双曲线2222-=-y x ,则渐近线方程是 准线方程是14.双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x 轴的距离为15.方程x 224–k + y 216 + k= 1 表示椭圆,则k 的取值范围是 . 16.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是 .17.椭圆122=+by ax 与直线x y -=1交于A 、B 两点,过原点与线段AB 中点的直线的斜率为23,则b a的值为____________。
高二数学圆锥曲线基础练习题(一)(最新整理)

14. 2
15.2. 由抛物线 y ax2 1 的焦点坐标为 (0, 1 1) 为坐标原点得, a 1 ,则 y 1 x2 1 与坐标轴的交点为
4a
4
4
(0, 1), (2, 0), (2, 0) ,则以这三点围成的三角形的面积为 1 41 2 . 2
3
16.0<m2+n2<3, 2. ∵直线 mx+ny-3=0 与圆 x2+y2=3 没有公共点,∴
求出 m 的值;若不存在,请说明理由.
18.如图,椭圆
x2 a2
y2 b
=1(a>b>0)与过点
A(2,0)B(0,1)的直线有且只有一个公共点 T,且椭圆的离心率 e
3
.
2
(I)求椭圆方程;
(II)设 F 1 、F 2 分别为椭圆的左、右焦点,
求证: |
AT
|2
=1 2
|
AF1
||
AF2
|
.
19.已知菱形 ABCD 的顶点 A,C 在椭圆 x2 3y2 4 上,对角线 BD 所在直线的斜率为 1. (Ⅰ)当直线 BD 过点 (0,1) 时,求直线 AC 的方程; (Ⅱ)当 ABC 60 时,求菱形 ABCD 面积的最大值.
(Ⅱ)是否存在实数 k 使 NA NB 0 ,若存在,求 k 的值;若不存在,说明理由.
参考答案
一、选择题
2
1.B.
0
0
2.A.双曲线 mx2
y2
1 的虚轴长是实轴长的 2 倍,∴
m<0,且双曲线方程为 x2 4
8y 2
1
1,∴
m= 1 4
.
3.C.
1
对口升学数学复习《圆锥曲线》练习题

《圆锥曲线》练习题练习1——椭圆1 (一)选择题:1.椭圆的两个焦点分别为F 1 (-4,0), F 2 (4,0),且椭圆上一点到两焦点的距离之和为12,则椭圆的方程为 ( )(A )1362022=+y x (B )112814422=+y x (C )1203622=+y x (D )181222=+y x 2. P 为椭圆192522=+y x 上一点,则△P F 1F 2的周长为 ( ) (A )16 (B )18 (C )20 (D )不能确定3.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的取值是( ) (A )-16<m<25 (B )29<m<25 (C )-16<m<29 (D )m>29 4.若方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围( ) (A )(0,+∞) (B )(0,2) (C )(1,+∞) (D )(0,1)5.椭圆11692522=+y x 的焦点坐标是 ( ) (A )(±5,0) (B )(0,±5) (C )(0,±12) (D )(±12,0)6.已知椭圆的方程为22218x y m+=,焦点在x 轴上,则其焦距为 ( ) (A )228m - (B )2m -22 (C )282-m (D )222-m7.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈( ) (A )(0,4π] (B )(4π,2π) (C )(0,4π) (D )[4π,)2π8.椭圆2255x ky +=的一个焦点是(0,2),那么k 等于 ( )(A )-1(B )1(C )5(D )9.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为 ( )(A )32 (B )16 (C )8 (D )410.已椭圆焦点F 1(-1,0)、F 2(1,0),P 是椭圆上的一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆的方程为 ( )(A )221169x y += (B )2211612x y += (C )22143x y += (D )22134x y += (二)填空题:1.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 。
高中数学圆锥曲线系统讲解第33讲《极点与极线》练习及答案

第33讲 极点与极线知识与方法极点极线是射影几何中的重要内容,在中学教材中并未提及,但纵观历年高考的解析几何大题,可以发现诸多试题都有极点极线的背景,所以了解极点极线,可以让我们站在更高处来看待问题.这一小节我们先介绍极点极线的几何定义、代数定义和一些常用的性质,再辅以若干典型的高考真题的极点极线观点,来加深大家的理解.1.极点极线的几何定义:以椭圆为例,如图1所示,设P 为椭圆外一点,过P 作椭圆的两条割线分别与椭圆相交于A 、B 和C 、D 四点,AC 与BD 交于点M ,AD 与BC 交于点N ,则称点P 为直线MN 关于椭圆的极点,直线MN 为点P 关于椭圆的极线.另一方面,图1也可以这么来看,从椭圆外的点N 作椭圆的两条割线分别交椭圆于A 、D 和B 、C 四点,AC 与BD 交于点M ,AB 与CD 交于点P ,所以点N 和直线PM 也是一对极点极线,事实上,点M 和直线PN 也是一对极点极线,因此在PMN 中,以其中一个顶点作为极点,那么该顶点的对边所在的直线就是对应的极线,从而我们将PMN 称为“自极三角形”,为了加以区分,图中画成了虚线.这个图形有两种特殊情况:(1)如图2所示,当四边形ABCD 有一组对边平行时,如AD BC ∥,此时我们看成AD 和BC 的交点N 在无穷远处,那么以M 为极点,对应的极线是图2中的2PN ,其中2PN BC ∥;以P 为极点,那么极线是1MN ,其中1MN BC ∥;(2)如图3所示,当其中一条割线变成切线时,此时D 、M 、N 几个点就都与切点C 重合,从而点C 和切线PC 是一对极点极线.2.极点极线的代数定义:在平面直角坐标系xOy 中,设有圆锥曲线C (圆、椭圆、双曲线、抛物线均可)和不与C 的对称中心重合的点()00,P x y ,在圆锥曲线C 的方程中,用0x x 替换2x ,0y y 替换2y ,02x x +替换x ,02y y+替换y ,得到的方程即为以P 作为极点的极线l 的方程.例如,设椭圆C 的方程为2212x y +=,极点为()2,4P ,则与P 对应的极线为2412x y +=,即410x y +−=;又如,设抛物线C 的方程为22y x =,极点为()2,4P ,则与P 对应的极线为2422xy +=⋅,即420x y −+=.可以看到,极点与极线是一个成对的概念,且若给定极点,求极线的规则是统一的,与圆锥曲线的类型无关,与极点P 的位置无关,下面以椭圆为例,说明极点P 在不同位置时,极线l 的情形:(1)当点P 在椭圆C 上时,极线l 为椭圆C 在P 处的切线,如图4所示;(2)当点P 在椭圆C 外部时,极线l 为点P 对椭圆C 的切点弦所在直线,如图5所示;(3)当点P 在椭圆C 内部时,过点P 任作椭圆C 的一条割线交C 于A 、B 两点,椭圆C 在A 、B 两点处的切线交于点Q ,则当割线AB 绕着点P 旋转时,点Q 的轨迹就是极线l ,如图6所示.3.极点极线的常用性质:(下面以椭圆为例)(1)如图7所示,O 为椭圆中心,点P 在椭圆内,延长OP 交椭圆于点Q ,交椭圆与点P 对应的极线l 于点M ,则OP 、OQ 、OM 成等比数列;当P 恰好为弦AB 的中点时,直线AB 的方程为2200002222x x y y x y a b a b+=+,且极线l 和椭圆在点Q 处的切线均与AB 平行.(2)调和分割性:如图8所示,设极点P 的极线是直线l ,过P 作椭圆的一条割线交椭圆于A 、B 两点,交极线l 于点Q ,则P 、A 、Q 、B 成调和点列,即PA QA PBQB=(或写成211PQ PA PB=+) (3)配极原理:若点P 关于椭圆的极线过点Q ,则点Q 关于椭圆的极线也过点P .由此出发,我们可以得出共线点的极线必然共点,共点极线的极点必然共线,如图9所示,极点1P 、2P 、3P 的极线分别为1l 、2l 、3l ,则1P 、2P 、3P 共线⇔1l 、2l 、3l 共点.提醒:极点极线的分析方法只能让我们在看到问题时能够迅速“窥得天机”,不能作为正式的作答,我们在学习时,仍然应该以基本方法为主,技巧偏方为辅,不能本末倒置.典型例题【例1】(2021·新高考Ⅱ卷·多选)已知直线2:0l ax by r +−=与圆222:C x y r +=,点(),A a b 则下列说法正确的是( )A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切【解析】解法1:A项,若点A在圆C上,则222a b r+=,圆心C到直线l的距离d r=,所以直线l与圆C相切,故A项正确;B项,若点A在圆C内,则222a b r+<,圆心C到直线l的距离2d r==>,所以直线l与圆C相离,故B项正确;C项,若点A在圆C外,则222a b r+>,圆心C到直线l的距离2d r==<,所以直线l与圆C相交,故C项错误;D项,若点A在直线l上,则2220a b r+−=,即222a b r+=,圆心C到直线l的距离d r==,所以直线l与圆C相切,故D项正确.解法2:显然对于圆C,以(),A a b作为极点,那么极线就是2:0l ax by r+−=A项,若极点A在圆C上,则极线l是圆C的切线,故A项正确;B项,若极点A在圆C内,则极线l与圆C相离,故B项正确;C项,若极点A在圆C外,则极线l是圆C的切点弦,应与圆C相交,故C项错误;D项,若极点A在直线l上,这是极线恰好为切线,极点为切点的情形,故D项正确.【答案】ABD【例2】(2011·四川)椭圆有两个顶点()1,0A−,()1,0B,过其焦点()0,1F的直线l与椭圆交于C、D两点,并与x轴交于点P,直线AC与BD交于点Q.(1)当CD=时,求直线l的方程;(2)当P点异于A、B两点时,证明:OP OQ⋅为定值.【解析】(1)由题意,椭圆的短半轴长1b=,半焦距1c=,所以长半轴长a =,故椭圆的方程为2212y x +=,当2CD =时,易得直线l 与x 轴垂直,故可设l 的方程为1y kx =+()0,1k k ≠≠±, 设()11,C x y ,()22,D x y ,联立22112y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得:()222210k x kx ++−=, 判别式()2810k ∆=+>,由韦达定理,1221222212k x x k x x k ⎧+=−⎪⎪+⎨⎪=−⎪+⎩①②,所以12CD x x =−==k =所以直线l 的方程为1y =+.(2)极点极线看问题:设(),0P m ,以P 为极点,则对应的极线为1mx =,即1x m=, 显然点Q 在极线上,所以1Q x m =,不难发现101Q OP OQ m y m⋅=⋅+⋅=. 注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写.解法1:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−, 而()()()()()()212112211212121211111111y x kx x kx x kx x y x kx x kx x kx x ++++++==−+−−+−,所以122112121111Q Q x kx x kx x x kx x kx x ++++=−−+−,由①知12222kx x k =−−+, 故()()()()()()222222222222122111122212121111222Q Q k k k kkx x k x x k k k k k k k k x k k x x k x k k k −−−+−−++−+−+++===−+−+⎛⎫−−−−+−++ ⎪+++⎝⎭,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.解法2:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−⑤ 所以()()()()()()()()()()()()222222121211212222212121212122111111111111211Q Q x x x y x x x x x x x x x x x x x x y x x x −+⎛⎫+++++++==== ⎪ ⎪−−−−++−−−⎝⎭ 22222121122121122kk k k k k k k −−+−⎛⎫++= ⎪+⎝⎭−++++, 因为1x ,()21,1x ∈−,所以12101x x +<−,结合⑤可得11Q Q x x +−与21y y 异号, 又()()()()()222212121212222221122211112222k k k k k y y kx kx k x x k x x k k k k +−−=++=+++=−−+==++++()2221121k k k k +−=−⋅++, 所以12y y 与11k k −+异号,即21y y 与11k k −+异号,从而11Q Q x x +−与11k k −+同号,所以1111Q Q x k x k +−=−+,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.【例3】(2020·新课标Ⅰ卷)已知A 、B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意,(),0A a −,(),0B a ,()0,1G ,故(),1AG a =,(),1GB a =−, 所以218AG GB a ⋅=−=,解得:3a =或3−(舍去),故E 的方程为2219x y +=.(2)极点极线看问题:如图1,设AB 和CD 交于点Q ,AD 和CB 交于点M ,则PQM 为自极三角形,所以点Q 和直线PM 是一对极点极线,设(),0Q m ,则极线PM 的方程为19mx=,即9x m =,又点P 在直线6x =上,所以96m =,从而32m =,故3,02Q ⎛⎫⎪⎝⎭,这样就得到了直线CD 过定点3,02⎛⎫⎪⎝⎭.注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写. 解法1:由(1)知()3,0A −,()3,0B ,设()6,P t ,()11,C x y ,()22,D x y ,当0t ≠时,直线PA 的方程为93x y t =−,代入2219x y +=消去x 化简得:22815490y y t t ⎛⎫+−= ⎪⎝⎭, 解得:0y =或269t t +,所以269C ty t =+,故22927339C C t x y t t −=−=+,从而2222736,99t t C t t ⎛⎫− ⎪++⎝⎭,直线PB 的方程为33x y t =+,代入2219x y +=消去x 化简得:2291890y y t t ⎛⎫++= ⎪⎝⎭,解得:0y =或221t t −+,所以221D t y t =−+,从而2233331D D t x y t t −=+=+,故222332,11t t D t t ⎛⎫−− ⎪++⎝⎭,设3,02T ⎛⎫ ⎪⎝⎭,则()2222796,929t t TC t t ⎛⎫− ⎪= ⎪++⎝⎭,()222392,121t t TD t t ⎛⎫− ⎪=− ⎪++⎝⎭,即()22319t TC TD t +=−+,故TC TD ∥,所以T 、C 、D 三点共线,从而直线CD 过定点3,02T ⎛⎫⎪⎝⎭,当0t =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,显然直线CD 也过点T ,综上所述,直线CD 过定点3,02T ⎛⎫⎪⎝⎭解法2:由(1)知()3,0A −,()3,0B ,设()11,C x y ,()22,D x y ,()06,P y当00y ≠时,由图2可知点C 不与点B 重合,因为221119x y +=,所以()2211199y x =−,故CA 、CB 的斜率之积为2111211113399CA CB y y y k k x x x ⋅=⋅==−+−−① 又PA 的斜率09PA CA y k k ==,PB 的斜率03PB BD y k k ==,所以13CA BD k k =, 代入式①化简得:BC 、BD 的斜率之积13BC BD k k ⋅=−,显然CD 不与y 轴垂直,否则AC 与BD 的交点在y 轴上,故可直线CD 的方程为x my t =+,联立2219x ty x my ⎧⎪⎨+==+⎪⎩消去x 整理得:()2229290m y mty t +++−=, 判别式()()222244990m t m t ∆=−+−>,所以2290m t +−>, 由韦达定理,12229mt y y m +=−+,212299t y y m −=+,所以()121221829t x x m y y t m +=++=+,()22221212122999t m x x m y y mt y y t m −=+++=+,()1212121212133393BC BD y y y y k k x x x x x x ⋅=⋅==−−−−++,故()121212339y y x x x x −=−++,即22222299918339999t t m t m m m −−−⋅=−⋅++++,整理得:22990t t −+=,解得:32t =或3,若3t =,则C 、D 中有一个点与B 重合,不合题意,所以32t =,满足0∆>,即直线CD 过定点3,02⎛⎫⎪⎝⎭,当00y =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,也过点3,02⎛⎫ ⎪⎝⎭,综上所述,直线CD 过定点3,02⎛⎫ ⎪⎝⎭【例4】(2018·新课标Ⅰ卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由题意,()1,0F ,当l 与x 轴垂直时,其方程为1x =, 由22112x x y =⎧⎪⎨+=⎪⎩解得:y =,即点A的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭, 当点A的坐标为2⎛ ⎝⎭时,直线AM的方程为2y x =, 当点A的坐标为1,⎛ ⎝⎭时,直线AM的方程为y =−. (2)极点极线看问题:如图,设A '、B '分别为A 、B 关于x 轴的对称点, 则显然四边形AA BB ''构成等腰梯形,其对角线的交点为F ,以()1,0F 为极点, 则对应的极线为1012xy ⋅+⋅=,即2x =,而BA '和B A '的交点应该在极线上, 从而()2,0M 就是BA '和B A '的交点, 由图形的对称性不难发现OMA OMB ∠=∠. 且这一结论还可以推广,若F 不是焦点, 而是椭圆内x 轴正半轴上的一个一般的点, 比如可设为(),0t ,那么它的极线为012txy +⋅=,即2x t =,所以点2,0M t ⎛⎫⎪⎝⎭必定也能使OMA OMB ∠=∠注意:上面的过程不能作为正式的作答,卷面上可以按下面的解法来写. 解:当l y ⊥轴时,易得0OMA OMB ∠=∠=︒当l 不与y 轴垂直时,可设其方程为1x my =+,设()11,A x y ,()22,B x y , 联立22112x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()222210m y my ++−=,易得判别式0∆>, 由韦达定理,12222m y y m +=−+,12212y y m =−+, ()()()()()()()122112211212121212222222222AM BM y x y x x y x y y y y yk k x x x x x x −+−+−++=+==−−−−−− 而()1221122x y x y y y +−+()()()()12211212121122my y my y y y my y y y =+++−+=−+ 22122022m m m m ⎛⎫⎛⎫=⋅−−−= ⎪ ⎪++⎝⎭⎝⎭,所以0AM BM k k +=,从而OMA OMB ∠=∠, 综上所述,OMA OMB ∠=∠.【例5】(2008·安徽)设椭圆()2222:10x y C a b a b+=>>过点)M,且左焦点为()1F .(1)求椭圆C 的方程;(2)当过点()4,1P 的动直线l 与椭圆C 相交于两个不同的点A 、B 时,在线段AB上取点Q ,满足AP QB AQ PB ⋅=⋅,求证:点Q 在某定直线上.【解析】(1)由题意,22222211a b ab ⎧−=⎪⎨+=⎪⎩,解得:24a =,22b =,所以椭圆C 的方程为22142x y +=. (2)极点极线看问题:因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,故P 、A 、Q 、B 是一组调和点列,从而点Q 必定在点P 的极线上,因为点P 的坐标为()4,1,所以它的极线为41142x y⋅+=,化简得:220x y +−=,从而点O 在定直线220x y +−=上. 注意:上面的过程不能作为正式的作答,卷面上可以按下面的定比点差法来写. 解:设(),Q x y ,()11,A x y ,()22,B x y 因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,设AP AQ PBQBλ==()0,1λλ>≠,则PA PB λ=,AQ QB λ=,而()114,1PA x y =−−,()224,1PB x y =−−,()11,AQ x x y y =−−,()22,QB x x y y =−−所以()()12124411x x y y λλ⎧−=−⎪⎨−=−⎪⎩,且()()1212x x x x y y y y λλ⎧−=−⎪⎨−=−⎪⎩,从而12124111x x y y λλλλ−⎧=⎪⎪−⎨−⎪=⎪−⎩①②,且121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩③④,①×③得:22212241x x x λλ−=−,②×④得:2221221y y y λλ−=−,所以22222212122224211x x y y x yλλλλ−−+⋅=+−−,即()222221122222421x y x y x y λλ+−+=+−⑤ 又A 、B 在椭圆C 上,所以22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 从而221122222424x y x y ⎧+=⎪⎨+=⎪⎩,代入⑤的:2244421x y λλ−=+−, 化简得:220x y +−=,即点Q 始终在直线220x y +−=上.强化训练1.(★★★)对于抛物线2:2C y x =,设点()00,P x y 满足2002y x <,则直线00:l y y x x =+与抛物线C ( ) A.恰有1个交点B.恰有2个交点C.没有交点D.有1个或2个交点【解析】显然直线l 是点P 对应的极线,因为2002y x <,所以点P 在抛物线内部,从而直线l 与抛物线C 没有交点. 【答案】C2.(★★★)已知椭圆22:12x C y +=的右焦点为F ,过点()2,2A 的直线与椭圆C 在x 轴上方相切于点B ,则直线BF 的方程为______.【解析】由题意,()1,0F ,以F 为极点,则极线为12x=,即2x =,所以点A 在极线上,根据配极原理,以A 为极点的极线过点F ,所以该极线就是BF ,其方程为2212xy +=,即21x y +=【答案】21x y +=3.(★★★)过点()2,1P 的直线l 与椭圆2214x y +=相交于点A 和B ,且AP PB λ=,点Q 满足AQ QB λ=−,若O 为原点,则OQ 的最小值为________.【解析】由题意,PA QA PBQAλ==所以点Q 是对应极点P 的极线与直线l 的交点,如图,易求得极线l 的方程为214xy +=,即220x y +−=,所以点Q在该极线上,从而min 5OQ ==.【答案】54.(★★★★)设椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 、B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆C的离心率e =,短轴长为2. (1)求椭圆C 的方程; (2)如下图所示,直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,证明:直线MN 过定点,并求出该定点.【解析】(1)由题意,22b =,所以1b =,椭圆C的离心率e =,所以2a =,故椭圆C 的方程为2214x y +=.(2)极点极线看问题:如图,连接AP 、BD 交于点Q ,显然点Q 的极线是直线MN , 当P 在椭圆上运动的过程中,点Q 会在直线BD 上运动,根据共线极点的极线必然共点不难发现直线MN 是过定点的直线,易求得直线BD 的方程为22x y +=,所以可设()22,Q t t −,那么极线MN 的方程为()2214t xty −+=,整理得:()220x t x y −−−=,所以直线MN 过的定点是()2,1.下面给出规范的作答过程.解:由(1)可得()0,1D ,()2,0B ,()2,0A −,可设直线BP 的方程为2x my =+()0,2m m ≠≠±, 联立22214x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()22440m y my ++=,解得:0y =或244m m −+,所以244p m y m =−+,从而228224p p m x my m −=+=+,故222824,44m m P m m ⎛⎫−− ⎪++⎝⎭,从而直线DP 的斜率为()222224144248282224DP mm m m m k m m m m −−−−−++===−−−+故直线DP 的方程为()2122m y x m +=+−,联立()02122y m y x m =⎧⎪+⎨=+⎪−⎩解得:()222m x m −=+,所以()22,02m N m −⎛⎫ ⎪+⎝⎭, 直线AD 的方程为121x y +=−,即220x y −+=,联立2202x y x my −+=⎧⎨=+⎩,解得:24242m x m y m +⎧=−⎪⎪−⎨⎪=−⎪−⎩,所以点M 的坐标为244,22m m m +⎛⎫−− ⎪−−⎝⎭,设()2,1G , 则42,22mm GM m m +⎛⎫=−− ⎪−−⎝⎭,4,12m GN m ⎛⎫=−− ⎪+⎝⎭, 从而22m GM GN m +=−,故G 、M 、N 三点共线, 即直线MN 过定点()2,1G .【反思】求解这道题时,可以先在草稿纸上用极点极线的知识去找到定点()2,1G ,那么在严格求解时,心中就有答案了,可以通过证明GM 与GN 共线,从而得出直线MN 过定点G . 5.(★★★★)如下图所示,椭圆22:143x y E +=的左、右顶点分别为A 、B ,左焦点为F ,过F 的直线与椭圆E 交于不与A 、B 重合的C 、D 两点,记直线AC 和BD 的斜率分别1k ,2k ,证明:12k k 为定值.【解析】极点极线看问题:由题意,()1,0F −,椭圆E 的极点F 对应的极线为10143x y−⋅⋅+=,即4x =−,如图,AC 与BD 的交点P 应在极线上,所以可设()04,P y −,显然()2,0A −,()2,0B ,所以直线AC 的斜率012PA y k k ==−,直线BD 的斜率026PB yk k ==−, 从而123k k =.下面给出严格求解过程. 解:由题意,()1,0F −,直线CD 不与y 轴垂直,可设其方程为1x my =−,设()11,C x y ,()22,D x y ,联立221431x y x my =+=−⎧⎪⎨⎪⎩消去x 整理得:()2234690m y my +−−=, 易得判别式0∆>, 由韦达定理,122634m y y m +=+,122934y y m =−+, 所以()121232my y y y =−+ 显然()2,0A −,()2,0B ,所以直线AC 的斜率1112y k x =+, 直线BD 的斜率2222y k x =−, 从而()()()()()()121121212112121212122122123933233222333121222y y y y y y x y my k my y y k x y my y my y y y y y y y −+−−−−−−======+++−++−−.6.(★★★★)已知椭圆()2222:10x y C a b a b +=>>的上、下顶点分别为A 和B ,左焦点为F , 原点O 到直线FA的距离为2. (1)求椭圆C 的离心率; (2)设2b =,直线4:l y kx =+与椭圆C 交于不同的两点M 、N ,证明:直线BM 与直线AN 的交点G 在定直线上.【解析】(1)由题意,原点O 到直线FA的距离OA OF bc d AFa ⋅===, 所以椭圆C的离心率2c e a ==. (2)极点极线看问题:由题意,直线l 与y 轴交于定点()0,4P ,显然点G 在点P 对应的极线上,当2b =时,易求得椭圆C 的方程为22184x y +=,从而该极线的方程为04184x y ⋅+=,即1y =,所以点G 在定直线1y =上.下面给出严格求解过程.解:由题意,()0,2A ,()0,2B −,设()11,M x y ,()22,N x y , 联立224184y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得:()221216240k x kx +++=,判别式()()2216412240k k ∆=−+⨯>所以2k <或2k >,由韦达定理,12212216122412k x x k x x k ⎧+=−⎪⎪+⎨⎪=⎪+⎩①②直线BM 的方程为1122y y x x ++=,直线AN 的方程为2222y y x x −−=,联立11222222y y x x y y xx +⎧+=⎪⎪⎨−⎪−=⎪⎩消去x 可得:()()12212222y x y y y x ++=−−,从而()()()()1212122212112126262222G G y x kx x y kx x x y y x kx x kx x x ++++===−−++③, 接下来给出以下两种计算非对称结构12212162kx x x kx x x ++的方法:法1:由①②知()121232kx x x x =−+, 代入式③得:()()122121221211211233966222331322222x x x x x kx x x kx x x x x x x x −++−++===−+−++−, 从而232G G y y +=−,解得:1G y =,所以点G 在定直线1y =上. 法2:由①知1221612kx x k =−−+代入式③得:22221221212222224246661212382416222121212k kx x kx x x k k k k k kx x x x x k k k +++++===−+⎛⎫−−+−− ⎪+++⎝⎭从而232G G y y +=−−,解得:1G y =,所以点G 在定直线1y =上.。