电力电子课程设计matlab仿真实验
Matlab仿真技术在电力电子课程教学中的应用

Matlab仿真技术在电力电子课程教学中的应用【摘要】本文主要介绍了Matlab仿真技术在电力电子课程教学中的应用。
引言部分包括研究背景、研究意义和研究目的。
正文部分分别从Matlab仿真技术的基本概念、在电力电子课程中的应用介绍、具体应用案例、优势和挑战以及未来发展进行详细阐述。
结论部分强调了Matlab仿真技术在电力电子课程教学中的重要性,并展望了未来研究方向。
通过本文的阐述,读者可以了解Matlab仿真技术在电力电子课程教学中的实际运用,以及其在未来的发展趋势和挑战,为相关研究和教学提供参考和指导。
【关键词】Matlab仿真技术、电力电子、课程教学、应用案例、优势、挑战、未来发展、重要性、研究方向、总结、引言、正文、结论。
1. 引言1.1 研究背景电力电子技术是现代电气工程领域中的重要分支之一,广泛应用于电力系统、电力驱动、新能源等领域。
随着电力电子设备的发展和应用越来越广泛,对电力电子技术的研究和教育也提出了更高的要求。
在电力电子课程的教学过程中,如何进行有效的实践和仿真已成为当前教育领域中的热点问题。
通过深入研究Matlab仿真技术在电力电子课程中的应用,可以推动电力电子课程的教学模式改革,提高教学质量和学生的实践能力。
对电力电子领域的研究与创新也将受益于Matlab仿真技术的应用。
本研究将重点探讨Matlab仿真技术在电力电子课程教学中的应用,为推动电力电子学科的教育和研究提供新的思路和方法。
1.2 研究意义电力电子作为现代电力系统中非常重要的一部分,其在能源转换、逆变器设计、节能控制等方面发挥着至关重要的作用。
而在电力电子课程的教学中,为了更好地理解和掌握相关知识,学生通常需要进行大量的实验和仿真。
而传统实验受制于设备成本高昂、操作复杂等问题,因此Matlab仿真技术的应用变得尤为重要。
研究Matlab仿真技术在电力电子课程教学中的应用具有重要的意义。
不仅可以提升学生的实验能力和创新意识,还可以加强学生对电力电子知识的理解和掌握,为其未来的职业发展奠定坚实的基础。
电力电子技术与MATLAB仿真课程设计

电力电子技术与MATLAB仿真课程设计课程设计概述本次课程设计的主要任务是对电力电子技术进行深入了解,并通过MATLAB仿真进行实践操作,从而全面掌握电力电子技术的应用。
本次课程设计以掌握电力电子技术基本原理、掌握MATLAB仿真软件的使用和掌握电力电子技术的应用为主要目标,结合实际应用案例和仿真实验,学生们能够更加深入地理解电力电子技术的应用,并且掌握MATLAB仿真的使用方法。
任务一:电力电子技术基础知识任务目标通过学习电力电子技术基础知识,掌握电力电子技术的相关概念和原理。
学习内容本次课程设计的学习内容主要包括以下几点:1.电力电子技术概述2.半导体器件3.电路模型4.控制方法学习方法学生们应该认真学习课程中涉及到的各种电力电子技术相关知识和概念,并在查阅相关文献进行加深理解。
同时,针对课程中的一些重点难点内容,可以与同学共同研究、讨论,并结合实际案例进行学习。
任务二:MATLAB仿真操作技能任务目标通过本次课程设计,学生们应该掌握MATLAB仿真工具的基本操作技能,能够独立完成电力电子技术的相关仿真实例,并且掌握MATLAB仿真结果的分析和处理方法。
学习内容本次课程设计的学习内容主要包括以下几点:1.MATLAB基础操作2.电力电子技术常用仿真分析方法3.仿真模型搭建学习方法学生们应该认真学习课程中涉及到的MATLAB仿真工具的相关知识和概念,并进行实践操作。
在实践操作过程中,可结合文献资料进行研究和调整,并与同学一起共同探讨仿真结果与理论分析的关系。
任务三:综合应用任务目标通过独立完成应用案例的设计和模拟仿真,学生们能够深入理解电力电子技术的实际应用,并且掌握MATLAB仿真工具在电力电子技术应用方面的操作方法。
学习内容本次课程设计的学习内容主要包括以下几点:1.开关电源的设计及仿真2.三相变频器的设计及仿真3.太阳能逆变器的设计及仿真学习方法学生们应该针对给出的应用案例进行仿真模拟,并负责完成实验数据表格整理及会议汇报材料的整理,以提高课程设计实际应用能力。
电力电子的matlab仿真设计 精品

第1章前言1.1 设计目的1. 要求对电力电子技术有较全面和深刻的理解。
2. 通过此次课程设计,使所学的电力电子技术进行全面的复习和总结,巩固所学的理论知识。
3. 通过理论与实践相结合,提高分析问题和解决问题的能力。
4. 学会使用规范、标准及有关设计资料。
5. 初步掌握设计步骤和基本内容,掌握编写设计说明书的基本方法。
6. 在绘制MATLAB仿真图得到了初步锻炼。
1.2 设计的主要内容1.建立单相半波可控整流电路仿真模型。
2.建立单相全控桥式整流电路仿真模型。
3.建立三相全控桥式整流电路仿真模型。
1.3 电力电子技术简介电力电子技术是一种电能处理技术(Electrical Energy Processing),即采用功率半导体器件(电力电子器件)和线路对电能进行转换(conversion)、控制(control)和高效利用(efficient use)的一门技术。
广泛应用于各种电源系统、电气传动自动化系统及电力系统等工业生产和民用部门。
主要研究内容(Power Electronics contents):电力电子器件、电力电子电路、电力电子装置。
1.4 MATLAB在电力电子中的应用MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
在本次电力电子技术仿真设计中,我们主要应用到matlab里的simulink工具库里的一些小工具模块,还有simulink power工具库。
通过MATLAB,树立模型仿真,让我们清楚的了解电力电子技术的各种技巧。
电力电子matlab课程设计

电力电子matlab课程设计一、课程目标知识目标:1. 理解电力电子技术的基本原理,掌握MATLAB在电力电子仿真中的应用;2. 学会使用MATLAB软件进行电力电子器件的建模与仿真;3. 掌握MATLAB中电力电子电路的搭建、参数设置及仿真分析。
技能目标:1. 能够运用MATLAB软件进行简单电力电子电路的设计与仿真;2. 学会分析仿真结果,优化电路设计,提高电路性能;3. 培养动手实践能力,提高解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学生主动学习的热情;2. 培养学生的团队合作意识,提高沟通协作能力;3. 增强学生对我国电力电子技术发展的认识,培养科技创新意识。
课程性质:本课程为实践性较强的课程,注重理论知识与实际操作的结合。
学生特点:学生具备一定的电力电子技术基础,对MATLAB软件有一定了解,但实践操作能力有待提高。
教学要求:结合课程性质、学生特点,将课程目标分解为具体的学习成果,通过课堂讲解、案例分析、上机实践等多种教学方式,使学生能够掌握电力电子MATLAB课程设计的方法与技巧。
同时,注重培养学生的动手实践能力和团队协作能力,提高学生的综合素质。
二、教学内容1. 电力电子技术基本原理回顾:包括电力电子器件的工作原理、特性及其在电路中的应用。
相关教材章节:第一章 电力电子器件及其特性。
2. MATLAB软件在电力电子仿真中的应用:介绍MATLAB软件的功能特点,以及在电力电子仿真中的应用。
相关教材章节:第二章 MATLAB在电力电子仿真中的应用。
3. 电力电子器件的建模与仿真:学习使用MATLAB软件对电力电子器件进行建模,并进行仿真分析。
相关教材章节:第三章 电力电子器件的建模与仿真。
4. 电力电子电路的搭建与仿真:学习使用MATLAB软件搭建电力电子电路,并进行参数设置、仿真分析。
相关教材章节:第四章 电力电子电路的MATLAB仿真。
5. 电路设计与性能优化:通过实际案例分析,学习如何分析仿真结果,优化电路设计,提高电路性能。
电力电子技术matlab课程设计

电力电子技术 matlab课程设计一、课程目标知识目标:1. 理解电力电子技术的基本原理,掌握相关术语及概念;2. 学会使用MATLAB软件进行电力电子电路的仿真与设计;3. 掌握常见电力电子器件的工作原理及其在电路中的应用。
技能目标:1. 能够运用MATLAB软件构建电力电子电路模型,进行基本仿真分析;2. 能够对电力电子电路进行参数优化,提高电路性能;3. 能够运用所学知识解决实际问题,具备一定的电力电子技术实际应用能力。
情感态度价值观目标:1. 培养学生对电力电子技术及MATLAB软件的兴趣,提高学习积极性;2. 培养学生具备团队协作精神,善于与他人沟通交流,共同解决问题;3. 增强学生的创新意识,鼓励学生勇于探索新知识,提高实践能力。
课程性质:本课程为电力电子技术领域的实践课程,以MATLAB软件为工具,结合理论知识,培养学生的实际操作能力。
学生特点:学生已具备一定的电力电子技术理论基础,但对于MATLAB软件的使用相对陌生,需要从基础开始教学。
教学要求:教师需结合课本内容,由浅入深地引导学生学习MATLAB软件在电力电子技术中的应用,注重培养学生的实际操作能力和创新精神。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过课程学习,使学生能够将所学知识应用于实际电路设计与分析中,提高综合素养。
二、教学内容1. 电力电子技术基本原理回顾:包括电力电子器件的工作原理、特性及分类,重点掌握二极管、晶闸管、MOSFET和IGBT等器件。
2. MATLAB软件入门:介绍MATLAB软件的基本操作,如命令窗口、脚本编写、函数调用等,为后续仿真打下基础。
3. 电力电子电路建模与仿真:结合课本内容,选用典型电力电子电路进行建模与仿真,包括整流电路、逆变电路、斩波电路等。
- 教学大纲安排:按照课本章节进行,逐个分析各类电路的工作原理及仿真方法。
4. 参数优化与性能分析:教授学生如何运用MATLAB软件对电力电子电路进行参数优化,提高电路性能。
电力电子matlab课程设计

电力电子matlab课程设计一、教学目标本课程旨在通过电力电子Matlab仿真技术的学习,让学生掌握电力电子器件的工作原理和仿真方法,学会使用Matlab软件进行电力电子电路的仿真分析。
具体目标如下:1.理解电力电子器件的基本工作原理和特性。
2.熟悉电力电子电路的基本拓扑结构和性能。
3.掌握Matlab在电力电子仿真中的应用方法。
4.能够运用Matlab进行电力电子电路的建模和仿真。
5.能够分析电力电子电路的稳态和瞬态性能。
6.能够针对特定的电力电子电路,选择合适的仿真参数和方法。
情感态度价值观目标:1.培养学生的创新意识和实践能力。
2.增强学生对电力电子技术的兴趣和热情。
3.培养学生团队合作和自主学习的精神。
二、教学内容本课程的教学内容主要包括三个部分:电力电子器件、电力电子电路和Matlab 仿真技术。
电力电子器件部分,我们将介绍晶闸管、GTO、IGBT等常用电力电子器件的工作原理和特性。
电力电子电路部分,我们将学习常用的电力电子电路拓扑结构,如整流电路、逆变电路、变频电路等,并分析它们的性能。
Matlab仿真技术部分,我们将学习如何使用Matlab进行电力电子电路的建模和仿真,掌握Matlab在电力电子领域中的应用方法。
三、教学方法为了提高学生的学习兴趣和主动性,我们将采用多种教学方法相结合的方式进行教学。
讲授法:用于讲解电力电子器件的基本原理和特性,电力电子电路的基本拓扑结构和性能。
讨论法:通过小组讨论,让学生深入理解电力电子技术的应用和发展。
案例分析法:通过分析具体的电力电子电路案例,让学生学会运用Matlab进行电路仿真。
实验法:安排实验室实践环节,让学生亲自操作电力电子电路,增强实践能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:教材:《电力电子Matlab仿真技术》。
参考书:电力电子技术相关书籍。
多媒体资料:电力电子器件和电路的图片、视频等。
实验设备:电力电子实验装置,Matlab软件。
电力电子技术matlab仿真实验报告

上海电机学院卢昌钰 BG0801 10号1.单相半波可控整流电路(1)电阻性负载(R=1欧姆,U2=220V,α=30°)接线图电阻性负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线输入电压与输出电压波形(2)阻感负载(R=1欧姆,L=0.05H,U2=220V,α=30°)接线图阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线输入电压与输出电压波形(3)阻感负载+续流二极管(R=1欧姆,L=0.05H,U2=220V,α=30°)有问题接线图阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线输入与输出电压波形2.单相桥式全控整流电路(1)电阻性负载(R=1欧姆,U2=220V,α=60°)电阻性负载电路图搭建电阻负载输入电压和输出电压对比电阻负载直流电压和电流波形电阻负载时晶闸管T1的波形电流i2的曲线(2)电感性负载(R=1欧姆,L=0.05H,α=60°,U2=220V,)阻感负载电路图搭建阻感负载电压输入与输出波形阻感负载输出电流id阻感负载输出电压ud阻感负载交变时的电流i2阻感负载交变时的电压u2阻感负载VT1的电压波形(3)电感性负载+续流二极管(R=1欧姆,L=0.05H,α=60°,U2=220V,)电感性负载+续流二极管接线图输入和输出电压波形负载电流负载电压二次侧电流晶闸管两端电压3.单相桥式半空整流电路(1)电阻负载(R=1欧姆,α=60°,U2=220V,)接线图二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二极管电流波形图(2)阻感负载(R=1欧姆,L=0.05H,α=60°,U2=220V,)接线图二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二极管电流波形图(3)阻感负载+续流二极管(R=1欧姆,L=0.05H,α=60°,U2=220V,)接线图二次侧电压,负载电压,二次侧电流,负载电流,晶闸管VT1电压,二极管VD4电压,二极管VD4电流波形图4.三相半波可控整流电路电阻负载接线图(0°)三相输入电压输出电流和电压晶闸管1的电流电压输出波形(电阻0°)三相输入电压输出电流和电压晶闸管1的电流电压输出波形(电阻30°)阻感负载接线图(30°)三相输入电压输出电流和电压晶闸管1的电流电压输出波形(阻感30°)阻感负载+续流二极管接线图(30°)三相输入电压输出电流和电压晶闸管1的电流电压输出波形(阻感+续流二极管30°)5.三相全控整流电路电阻负载接线图(30°导通角)三相输入输出电压对比,晶闸管1电压,输出电流电压图形(30°)阻感负载接线图(30°导通角)三相输入输出电压对比,晶闸管1电压,输出电流电压图形(30°)阻感负载+续流二极管接线图(30°导通角)三相输入输出电压对比,晶闸管1电压,输出电流电压图形(30°)6 降压BUCK电路降压斩波电路(电流连续)接线图BUCK变换器电感电流连续时仿真波形BUCK变换器电感电流断续时仿真波形7 升压Boost电路升压Boost变换器仿真接线图升压Boost变换器连续工作升压Boost变换器断续工作8 单相全桥方波逆变电路单相全桥方波电阻负载逆变电路接线图电阻负载逆变器直流侧电流,输出交流电压电流方波波形单相全桥方波阻感负载逆变电路接线图阻感负载逆变器直流侧电流,输出交流电压电流方波波形9 三相方波逆变电路三相方波逆变电路接线图三相方波逆变电路仿真波形(感性无功=100Var)三相方波逆变电路仿真波形(感性无功=1000Var)10单极性的PWM方式下的单相全桥逆变电路单极性的PWM方式下的单相全桥逆变电路接线图在下:输出电压,电流和直流侧电流波形。
电力电子的 MATLAB 仿真

电力电子的 MATLAB 仿真计算机控制技术课程设计资料2010年 4月电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用形很强的课程。
由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。
仿真技术为电力电子电路的分析提供了崭新的方法。
我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。
掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。
实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。
而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。
仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。
第一章 MATLAB基础⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1.1 MATLAB介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 1.2 MATLAB的安装与启动⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 1.3 MATLAB环境⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 第二章 MATLAB/Simulink/Power System工具箱简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 2.1 Simulink工具箱简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 2.2 Power System 工具箱简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 2.3 Simulink/Power System的模型窗口⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 2.4 Simulink/Power System模块的基本操作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 第三章电力电子电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 实训一单相半波可控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 实训二单相桥式半控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29 实训三单相桥式全控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35 实训四单相桥式全控有源逆变电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42 实训五单相交流调压电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45 实训六降压斩波电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯48 实训七升压斩波电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯51 实训八升降压斩波电路实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯54 实训九三相半波不可控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯57 实训十三相半波可控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯59 实训十一三相桥式全控整流电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯67 实训十二三相半波可控整流电路有源逆变电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72 实训十三三相桥式有源逆变电路仿真实训⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯75第 1章 MATLAB基础1.1 MATLAB介绍MATLAB是一种科学计算软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.课程设计目的
(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。
通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;
(2)掌握焊接的技能,对照原理图,了解工作原理;
(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;
二.课程设计内容
第一部分:simulink电力电子仿真/版本matlab7.0
(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)
仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。
仿真时间0.3s,仿真算法为ode23tb。
图1-1
占空比为40%的,降压后为12.12V。
触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。
图1-2
占空比为60%的,升压后为28.25V。
触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。
图1-3
•
图1-4
升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。
它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源
工作原理:
①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。
②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L
经D向C和RL反向放电,使输出电压的极性与输入电压
在ton期间电感电流的增加量等于toff期间的减少量,得:
由的关系,求出输出电压的平均值为:
上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。
占空比D=40%时,理论值U0=13.33V,实际值输出电压U0为12.11V,这是由于二极管导通压降为0.7V,MOSFET也有一定的压降。
使实际的输出电压小于理论的输出电压。
(2)DC-AC电路仿真(SPWM逆变电路)
仿真电路参数:直流电压源模块(电压为530V)、“Universab Bridgem”模块(选择桥臂为3,反并联二极管IGBT)、负载为三相星型负载(额定电压为413V,频率为50Hz,有功为1KW,感性无功为500Var,容性无功为0)、控制信号为Discrete PWM Generator 模块(选择三桥六臂,输出基波频率为50Hz,载波频率为1500Hz,调制深度为0.6)、采样时间为5e-7。
仿真时间为0.06s,仿真算法为ode23tb。
图2-1
直流线电压Uan、a相相电流、线电压Uab、直流电流Id波形
图2-2
图2-3
图2-4
三相PWM逆变器图2-5
图2-6
三相SPWM原理与单相SPWM类似,电路图为(图2-4)载波信号Uc为对称的三角波,幅值为Ucm,频率为fc,调制信号为三相正弦波Uar,Ubr,Ucr,幅值为Usm,频率为fs,当Usa<Uc时,T4导通T1关断,当Usa>Uc时,T4关断T1导通,b相和c相类似。
上图的载波比为3。
图(2-6)
由于各相上下桥臂功率器件以互补方式轮流导通,故各相相对N点的电压为双极性SSPWM 波形,该波形与各相上桥臂器件驱动信号同步变化。
输出的线电压可由相应两相相对N点的电压相减得出,线电压在Ud,-Ud和0之间变动(图2-3),总体呈现单极性形状。
星型连接负载的相电压波形较为负载。
可能的电平为0,-1/3Ud,1/3Ud,-2/3Ud和+2/3Ud。
(图2-4),相电流呈正弦波形变化。
(3)AC-DC电路仿真(三相桥式全控整流电路)
仿真电路参数:三相交流电压源(线电压为380V、50Hz,内阻为0.001欧)、三相晶闸管桥式电路选用“Universal Bridge”模块、六路触发脉冲选用“Synchronized 6 Pulse Generator”模块(频率50Hz、脉冲宽度为0.1)、负载为阻感负载(电阻为1欧,电感为1mH)。
仿真时间为2s,仿真算法为ode23tb。
图3-1
触发角a=60°。
三相电压Uab,Ubc,Uca、晶闸管T1、输出电流、输出电压波形
图3-2
触发角a=90°。
三相电压Uab,Ubc,Uca、晶闸管T1、输出电流(断流)、输出电压波形
图3-3
三相桥式全控整流电路图3-4
三相桥式全控整流电路任意时刻都有两个晶闸管同时导通从而形成回路,其中共阴极组和共阳极组各1个导通,且不能为同一器件。
触发脉冲顺序为T1→T2→T3→T4→T5→T6。
相位相差60°。
同一相的上下两个桥臂脉冲相差180°。
直流电压在一个周期脉动6次,每次脉动的波形都一样。
触发角a从自然换相点开始。
如果负载是阻感负载的话,当a<=60°,输出的直流电压和直流电流都是连续(图3-2);当a>60°,输出的直流电压和直流电流断续(图3-3,a=90°)。
第二部分:USB充电器的制作
对照原理图,把元器件焊接上去,注意电阻的参数,电容的正负极,看清是整流管IN4007还是IN4148,还有元器件不能焊接太久。
经过测试输出电压为5.2V左右,误差+4%,额定电压为+5V。
三.课程设计心得体会
心得:先从书本buck电路开始,了解一些常用的器件设置方法,示波器多通道的使用,电压,电流的测量,总线信号的分离;然后在修改参数,查看波形的变化,是否达到预期效果;最后自己总结分析电路的工作过程。
体会:通过这一周对课程设计所作的努力,完成了对电力电子技术中的升降压(Buck-Boost)变换器、SPWM逆变电路、三相桥式全控整流电路的仿真。
仿真过程也遇到到一些问题,比如一些波形与实际不同,然后自己修改参数,了解整个电路的工作原理,为什么改变其中的一些参数变化会很大,通过网上查找资料和自己的分析来判断,反复验证结果是否准确。
MATLAB/SIMUINK工具箱在电力电子仿真应用广泛。
通过学习,我较熟练的掌握了simpowersystem的使用方法。
由于现实器件的限制,模拟仿真就给我们提供了一个准确理解学习理论的良好途径。
但仿真毕竟只是仿真,实际做出来还需要不断去改进。
总之,这次电力电子课程设计进一步提高了我的自学能力,以及自己分析和解决问题的能力。
四.参考文献
1.王兆安、刘进军.电力电子技术(第5版).北京:机械工业出版社,2009.
2.林飞、杜欣.电力电子应用技术的MATLAB仿真.北京:中国电力出版社2009.
3.忠霖、黄京.电力电子技术的MATLAB实践.北京:国防工业出版社2009.。