重点高中自主招生考试数学试卷集大全集)

合集下载

重点高中自主招生考试数学试卷集(大全集)

重点高中自主招生考试数学试卷集(大全集)

6.如图,点A 在函数=y x6-)0(<x 的图象上,过点A 作AE 垂直x 轴,垂足为E ,过点A 作AF 垂直y 轴,垂足为F ,则矩形AEOF 的面积是……( A.2B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图 所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( ) A.22个 B.19个 C.16个 D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( )A.2cmB.3cmC.4cmD.6cm 9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个 10.已知a 为实数,则代数式221227a a +-的最小值为………………( ) A.0 B.3 C.33 D.9 14.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-; ②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.则使等式{}[]4 2=-x x 成立的整数..=x .(第6题图)(正视图)(俯视图)(第7题图)16.如图,E 、F ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于 点Q ,若S △APD 15=2cm ,S △BQC 25=2cm ,则阴影部分的面积为 2cm . .19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点,若1010sin =∠ABM ,求证:MBC NMB ∠=∠.22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.(第21题图)N(第22题图)23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点P 在右半圆上移动点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q 在射线BM 上移动(点M 在点B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 恰好在⊙O 上? 若存在,求出APC ∠的大小;若不存在,请说明理由; (2)连结AQ 交PC 于点F ,设PC PFk =,试问:k 的值是否随点P 的移动而变化?证明你的结论.1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/25 3、已知:2)3(3322=+-+x x xx ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( )A 、最小值12B 、最大值12C 、.最小值25D 、最大值25Q ABC EFPMO(第23题图).5、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A、3个球B、4个球C、5个球D、6个球5、9人分24张票,每人至少1张,则( )A、至少有3人票数相等B、至少有4人票数无异C、不会有5人票数一致D、不会有6人票数同样2、半径为10的圆0内有一点P,OP=8,过点P所有的弦中长是整数的弦有条。

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

二次根式—2024全国初中数学重点高中自招竞赛试题精选精编

二次根式—2024全国初中数学重点高中自招竞赛试题精选精编

二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷1.202420252024202363030301030×+=−×____________.2x +=的正数解为____________.3.等腰ABC △的底边AC 长为30,腰上的高为24,则ABC △的腰长为____________.4.已知实数m ,n 满足2202410m m ++=,224200n n ++=且1mn ≠,则601n mn=+____________. 5.若x 为全体实数,则函数223y x x =−+与2243y x x =−+的交点有____________个. 6.若0abc ≠,1a b c b c c a a b++=+++,则222a b c b c c a a b ++=+++____________. 7.K 为ABC △内一点,过点K 作三边的垂线KM ,KN ,KP ,若3AM =,5BM =,4BN =,2CN =,4CP =,则2AP =____________.8.记a ,b ,c 的最小值为{}min ,,a b c ,若{}()min 41,2,24fx x x x =++−+的最大值为M ,则6M =____________.9.已知正方形OBAC ,以OB 为半径作圆,过A 的直线交O 于M ,Q ,交BC 与P ,R 为PQ 中点,若18AP =,7PR =,则BC =____________.10.若a ,b ,c ,d ,e 为两两不同的整数,则22222()()()()()a b b c c d d e e f −+−+−+−+−的最小值为____________.11.PA ,PB 分别为1O 和2O 的切线,连接AB 交1O 于C 交2O 于D ,且AC BD =,已知1O 和2O 的半径分别为20和24,则2180PA PB = ____________.12.已知a ,b ,c 正整数,且只要1111a b c ++<,则111m a b c ++≤,设m 的最小值为r s (r s 为最简分数),则r s +=____________. 13.对于任意实数x ,y ,定义运算符号*,且*x y 有唯一解,满足()()()***a b c a c b c +=+,0*()(0*)(0*)a b a b +=+,则20*24=____________. 14.已知正整数A ,B ,C 且A C >,满足222879897ABC BCA CAB ++=,则ABC =____________.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为____________.2024深圳中学自招答案一、填空题.1.【解析】原式20242025220242023630306303018090054301030301020×+×++===−×−.2.x +=,x =, ∴218232x x x =−, ∵0x >,∴223218x −=,解得:5x =,∴该方程的正数解为5x =.3.【解析】①若ABC △为锐角三角形,如图所示:设ABC △的腰长为x ,在ACD △中,18AD =,在BCD △中,222(18)24x x −+=,解得:25x =,∴ABC △的腰长为25;②若ABC △为钝角三角形,如图所示:在BCD △中,222(18)24x x −+=,解得:25x =(舍), 综上所述:ABC △的腰长为25.4.【解析】由224200n n ++=得21120()2410n n+⋅+=,∵1m n ≠,∴m ,1n可以视为方程2202410x x ++=的两个实数根, ∴165m n +=−,∴60605011n mn m n ==++. 5.【解析】问题等价于方程2223243x x x x −+=−+的解的个数问题; ∴2240x x x +−=, 当0x ≥时,220x x −=,∴0x =或2x =;当0x <时,260x x −=,∴0x =或6x =(舍); 综上所述:函数223y x x =−+与2243y x x =−+的交点有2个. 6.【解析】222()()a b c a b c a b c a b c b c a c a b b c a c a b++++=+++++++++++, ∴222a b c a b c a b c b c a c a b++=++++++++, ∴2220a b c b c a c a b++=+++. 7.【解析】22222222()()KA KB KM AM KM BM AM BM −=−+=−, 同理可得:2222KB KC BN CN −=−,2222KC KA CP AP −=−,三式相加得:222222AM BN CP BM CN AP ++=++,∴222222.34452AP ++=++,解得212AP =.8.【解析】由题意作出以下图形:考虑24y x =−+与2y x =+的交点即可;联立242y x y x =−+ =+ ,解得2383x y = = ,∴83M =,∴616M =. 9.【解析】连接OP ,设AM x =,ACOC a ==, ∴18PM x =−,32QM x =−,由正方形的对称性:18OP AP ==,由圆幂定理:2AC AM AQ =⋅,22PM PQ OC OP ⋅=−,∴232a x =,2214(18)18x a −=−,∴214(18)3218x x −=−,解得:28823x =,∴BC ==.10.【解析】记1a b x −=,2b c x −=,3c d x −=,4d e x −=,5e a x −=,则1x 、2x 、3x 、4x 、5x 均为整数且不等于0,同时满足123450x x x x x ++++=,∴1x 、2x 、3x 、4x 、5x 中存在偶数个奇数,若存在2个1,2个1−,1个2,则对于1x 、2x 、3x 、4x 、5x 构成的数环而言必有一个1与1−相邻,这是不符合要求的,否则存在两数相等;所以至少存在两个数的绝对值为1,3个数的绝对值为2,∴222221234514x x x x x ++++≥,对于(,,,,)(1,3,5,4,2)a b c d e =而言可以取到14,故其最小值为14.11.【解析】过1O 、2O 、P 分别作AB 的垂线,垂足依次为E 、F 、G , ∴1190PAG O AE AO E ∠=°−∠=∠,2290PBG O BF BO F ∠=°−∠=∠,1122AE AG BD BF ===, ∴1APG O AE △∽△,2BPG O BF △∽△,∴1PA AO PG AE =,2PB BO PG BF =, ∴1122205246AO PA AO AE BO PB AO BF====,∴225180()180()1256PA PB =×=.12.【解析】不妨设a b c ≤≤,则2a ≥,当3a ≥时,1111111133412a b c ++≤++=; 当2a =时,11111112a b c b c ++=++<,∴1112b c +<,∴3b ≥, 当4b ≥时,1111111924520a b c ++≤++=, 当3b =时,1111114123742a b c ++≤++=, 即当(,,)(2,3,7)a b c =时,4142m =,83r s +=. 13.【解析】由(*)(*)(*)a b c a c b c +=+得*(*)(*)a b a c b c c =+−, ∴*(*)(*)*b a b c a c c a b =+−=,取0c =,则*(*0)(*0)(0*)(0*)0*()a b a b a b a b =+=+=+,对于0*()(0*)(0*)a b a b +=+,取0a b ==,得0*00=, 同时0*0(0*)(0*)0c c c =+−=,∴0*2c c =, ∴20*240*(2024)0*4422=+==.14.【解析】首先22228798971000ABC BCA CAB ++=<,∴A 、B 、C 均为一位数,且不为0,即从1到9,其次考虑末尾特点,222A B C ++的末尾为7,而完全平方数的末尾为014569,不考虑0,剩下14569,想要使得末尾为7,可以有1157++=或44917++=或56617++=或99927++=,由于A B C >>,故99927++=舍去(末尾为9的只有3、7两个),若满足1157++=,则对应的数为9、5、1,显然222951519195879897++>,舍去; 若满足56617++=,则对应的数为6、5、4,显然222654546465942057879897++=>,舍去; 若满足44917++=,则对应的数为8、3、2或8、7、2,计算222832328283879897++=符合题意;计算222872728287879897++>,舍去; 综上所述:832ABC =.15.【解析】设该等腰ABC △的腰为a ,底为b .由题意:112(2)2b a b ×+,∴48(2)b a b +,∴b 2322304(2)ab b a b −=+, ∴33223042304246082(48)(48)b b b b a b b b ++=−+−,∴3230446082(48)(48)(48)(48)b b b a b b b b b +==++−+−, 记4608(48)(48)b k b b =+−,k 为正整数,∴222248480kb b k −×−=,∴2∆==×为完全平方数,m =(m 为正整数),∴22248m k −=,即2()()48m k m k +−=, 由于2824823=×,有(81)(21)27++=个因子,应该存在(271)2114−÷+=组,考虑到()m k +与()m k −应该同奇偶,故存在14311−=组,列举如下: ∴(,)(1152,2)m k m k +−=或(576,4)或(384,6)或(288,8)或(192,12)或(144,16)或(128,18)或(96,24)或(72,32)或(64,36)或(48,48),∴(,)(577,575)m k =或)290,286(或)195,189(或)148,140(或(102,90)或(80,64)或(73,55)或(60,36)或(52,20)或(50,14)或(48,0), 根据求根公式,224824848(48)2m m b k k ×+×+=, 代入检验可得:当(,)(102,90)m k =或(80,64)或(60,36)或(52,20)或(50,14), 依次解得:80b =或96或144或240或336, ∵2a b k =+,∴2b k a +=,解得85a =或80或90或130或175, 综上所述:所有可能的等腰三角形的腰长之和为858090130175560++++=.。

省级重点高中自主招生数学真题8套(含答案)

省级重点高中自主招生数学真题8套(含答案)

省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。

以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。

)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。

2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。

3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。

高中自主招生数学试题及答案

高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。

A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。

7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。

8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。

9. 一个正方体的体积为27,它的边长是_________。

10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。

三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。

(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。

(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。

(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。

(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。

希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。

重点高中自主招生数学试题

重点高中自主招生数学试题

重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。

2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。

3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。

三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。

将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。

自主招生中考数学试卷真题

自主招生中考数学试卷真题

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列选项中,不属于实数的是()A. 3B. -2C. √2D. π2. 若方程 2x - 3 = 5 的解为 x = 4,则方程 3x + 2 = 7 的解为()A. x = 3B. x = 4C. x = 5D. x = 63. 已知 a + b = 5,ab = 6,则a² + b² 的值为()A. 19B. 23C. 29D. 314. 在直角坐标系中,点 P(2,3)关于直线 y = x 对称的点为()A. P(3,2)B. P(2,3)C. P(-3,-2)D. P(-2,-3)5. 若 sin A = 1/2,且 A 为锐角,则 cos A 的值为()A. √3/2B. √3/4C. 1/2D. 1/46. 下列函数中,在定义域内单调递增的是()A. f(x) = x²B. f(x) = 2x - 1C. f(x) = 1/xD. f(x) = √x7. 已知三角形 ABC 的内角 A、B、C 分别为30°、45°、105°,则 sin B 的值为()A. √2/2B. √2/4C. 1/2D. 1/48. 在等差数列 {an} 中,若 a1 = 3,公差 d = 2,则第 10 项 an 的值为()A. 21B. 23C. 25D. 279. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 相似三角形的面积比等于边长比C. 圆的直径是圆的最长弦D. 等腰三角形的底角相等10. 若复数 z = a + bi(a、b ∈ R),且 |z| = 1,则 z 的共轭复数为()A. a - biB. -a - biC. -a + biD. a + bi二、填空题(本大题共10小题,每小题3分,共30分)11. 若等差数列 {an} 的前 n 项和为 Sn,公差为 d,则 S5 = 20,d = 2,则 a1 = ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.如图,点A 在函数=y x 6-)0(<xA 作AE 垂直x 轴,垂足为E ,过点A 作轴,垂足为F ,则矩形AEOF A.2 B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( )A.22个B.19个C.16个D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( )A.2cmB.3cmC.4cmD.6cm9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个10.已知a 为实数,则代数式221227a a +-的最小值为………………( )A.0B.3C.33D.914.如图,正方形ABCD 的边长为4cm ,正方形AEFG的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.(第6题图)(正视图)(俯视图) (第7题图)则使等式{}[]4 2=-x x 成立的整数..=x .16.如图,E 、FABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD 15=2cm ,S △BQC 25=2cm , 则阴影部分的面积为 2cm ..19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点, 若1010sin =∠ABM ,求证:MBC NMB ∠=∠. 22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A . (1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标; (3)设点P 是x 轴上的任意一点,分别连结AC 、BC .试判断:PB PA +与BC AC +23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点(第21题图) N (第22题图)C D F (第16题图)点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q 在射线BM 上移动(点M 在点B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 恰好在⊙O 上? 若存在,求出APC ∠的大小;若不存在,请说明理由;(2)连结AQ 交PC 于点F ,设PC PF k =,试问:k 的值是否随点P 的移动而变化?证明你的结论. 1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/253、已知:2)3(3322=+-+x x x x ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( )A 、最小值12B 、最大值12C 、.最小值25D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样Q ABC E F P MO(第23题图) .2、半径为10的圆0内有一点P,OP=8,过点P所有的弦中长是整数的弦有条。

3、观察下列等式,你会发现什么规律1×3+1=22; 2×4+1=32; 3× 5+1=4 2;4 × 6+1=52;…请将你发现的规律用仅含字母n(n为正整数)的等式表示为。

4、设x-y-z=19,x2+y2+z2=19,则yz-zx-xy= 。

5、我国股市交易中每天买卖一次各需千分之七点五的各种费用,某股民以每般10元的价格买入深圳某股票2000股,当股票涨到11元时,全部卖出,该投资者实际盈利元6、如图,6个半径为1的圆围成的弧边六角形(阴影部分)的面积为。

三、解答题(共40分)1、(10分)四边形AB CD内接于圆O,BC为圆0的直径,E为DC边上一点,若AE ∥BC,AE=EC=7,AD=6。

(1)求AB的长;(2)求EG的长。

2.、(10分)“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某着名旅游景点游玩。

该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示。

根据图像提供的有关信息,解答下列问题:<j)小明全家在旅游景点游玩了多少小时?(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车可每行驶1千米耗油1/9升。

请你就“何时加油和加油量”给小明全家提出一个合理化的建议。

(加油所用时问忽略不计)3-(8分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼。

甲船以每小时152千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度东北方向前进。

甲船航行2小时到达C 处,此时甲船发现鱼具丢在乙船上,于是甲船快速(匀速)沿北偏东75°方向追赶,结果两船在B 处相遇。

(1)甲船从C 处追赶上乙船用了多少时间?(2)甲船追赶上乙船的速度是每小时多少千米?4、(1 2分)O C 在y 轴上,OA=10,OC=6。

(1)如图1,在OA 上选取一点G ,将△COG 沿CG 翻折,使点O 落在BC 边上;记为E ,求折痕C G 所在直线的解析式。

(2)如图2,在OC 上选取一点D ,将△AOD 沿AD 翻折,使点O 落在BC 边上,记为E',①求折痕AD 所在直线的解析式:②再作E ′F ∥AB ,交AD 于点F 。

若抛物线y=121x 2+h 过点F ,求此抛物线的解析式,并判断它与直线AD 的交点的个数。

(3)如图3,一般地,在OC 、OA 上取适当的点D ′、G ′,使纸片沿D ′G ′翻折后;点0落在BC 边上:记为E ″。

请你猜想:折痕D ′G ′所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想。

2.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是( ).(A)19.5 (B)20.5 (C)21.5 (D)25.53.若等腰△ABC 的三边长都是方程x 2-6x+8=0的根,则△ABC 的周长是( )(A)10或8 (B)1O (C)12或6 (D)6或10或124.A 、B 、C 、D 四人参加某一期的体育彩票兑奖活动,现已知:如果A 中奖,那么B 也中奖: 如果B 中奖,那么C 中奖或A 不中奖:如果D 不中奖,那么A 中奖,C 不中奖: 如果D 中奖,那么A 也中奖则这四个人中,中奖的人数是( ) (A)1 (B)2 (C)3 (D)45.已知三条抛物线y 1=x 2-x+m ,y 2=x 2+2mx+4,y 3=mx 2+mx+m-1中至少有一条与x 轴相交,则实数m 的取值范围是( )(A)4/3<m<2 (B)m ≤3/4且m ≠0 (C)m ≥2 (D)m ≤3/4且m ≠0或m ≥26.如图,在正ABC 中,D 为AC 上一点,E 为AB 上一点,BD 、CE 交于P ,若四边形ADPE 与△BPC 面积相等,则∠BPE 的度数为( )(A)60° (B)45° (C)7 5° (D)50°二、填空题(本题共6小题,每小题5分,共30分)7.在△ABC 中,∠C=90°,若∠B=2∠A ,则tanB= . 8.已知|x|=4,|y|=1/2,且xy<0,则x/y 的值等于 。

9.按照一定顺序排列的数列,一般用a 1,a 2,a 3,…,an 表示一个数列,可简记为{an},现有一数列{an}满足关系式:211n n n a a na +=-+(n=1,2,3,…,n),且a 1=2,试猜想an= (用含n 的代数式表示),10.如图,在△ABC 中AB=AC=5,BC=2,在BC 上有50个不同的点P 1,P 2,…,P 50,过这50个点分别作△ABC 的内接矩形P 1E 1F 1G 1,P 2E 2F 2G 2,……,P 50E 50F 50G 50,每个内接矩形的周长分别为L 1,L 2,…,L 50,则L 1+L 2+…+L 50= 。

11. 已知x 为实数,且2)(322=+-+x x xx ,则x 2+x 的值为 。

12.如图在梯形ABCD 中,∠A=90°,AB=7,AD=2,BC=3,如果直线AB 上的点P 使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似,那么这样的点P 有 个。

三、解答题(本题共4小题,第13、14小题各10分,第15小题8分,第16小题12分,共40分)13.(本题10分)如图,已知BE 是△ABC 的外接圆0的直径,CD 是△ABC 的高.(1)求证:AC ·BC=BE ·CD :(2)已知: CD=6,AD=3,BD=8,求⊙O 的直径BE 的长。

相关文档
最新文档