八年级数学复习知识点苏教版

合集下载

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)

苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。

全等三角形的形状和大小完全相等,与位置无关。

一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。

三角形全等不因位置发生变化而改变。

全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。

全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。

证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。

第二章:轴对称轴对称图形是指关于直线对称的两个图形。

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。

判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。

三角形三条边的垂直平分线的交点到三个顶点的距离相等。

角的角平分线的性质定理是角平分线上的点到角两边的距离相等。

判定定理是到角两个边距离相等的点在这个角的角平分线上。

三角形三个角的角平分线的交点到三条边的距离相等。

等腰三角形的性质定理是两个底角相等(等边对等角)。

和立方1、定义:开平方和立方是数学中常见的运算。

2、表示方法:开平方用符号√,立方用符号³表示。

3、性质:1)开平方和立方的结果都是实数。

2)开平方和立方运算具有可逆性,即可以进行反向运算。

三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。

2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。

苏教版八年级数学知识点汇总

苏教版八年级数学知识点汇总

苏教版八年级数学知识点汇总八年级数学知识点梳理提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3)将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.初二数学复习方法一、复习内容:第一章:勾股定理第二章:实数第三章:位置与坐标第四章:一次函数第五章:二元一次方程组第六章:数据的分析第七章:平行线的证明二、复习目标:八年级数学本学期知识点多,复习时间又比较短,只有三周的时间。

根据实际情况,应该完成如下目标:(一)、整理本学期学过的知识与方法:1.第一、七章是几何部分。

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结八年级数学是初中数学中的一项重要内容,对于学生的数学思维能力的培养和数学基础的奠定有着至关重要的作用。

而苏教版八年级数学则是较为常见并被广泛使用的一套教材。

本文将对苏教版八年级数学的知识点进行综述和总结。

一、代数代数是八年级数学的核心内容之一,主要包括:一元一次方程与等式,二元一次方程组,根式与分式,整式,一次函数及其应用等知识点。

1. 一元一次方程与等式一元一次方程指一个未知数为一次的方程,可以表示为ax+b=0 (a≠0),如2x+3=7。

对于一元一次方程,我们需要掌握基本的方程变形、用加减乘除消元、移项变号、去分母等方法来解方程。

同时,还需要理解为什么一元一次方程只有一个解或没有解。

在实际应用中,我们可以将问题转化为一元一次方程,进而解决问题。

比如有一道题目:“一堆苹果,分给a,b,c三人,分完后c 多得a,b两人分的各一半,若原来有21个苹果,则c得到多少个苹果?” 我们根据题意可以写出方程。

设a,b,c三人分别得到x,y,z个苹果,则有:x+y+z = 21;z = (x+y)/2;整理得:x + y - 2z = 0;插入第一个公式可得:x+y = 2z;代入第一个公式得:3z = 21,解得z=7。

所以c得到的苹果数是7个。

2. 二元一次方程组二元一次方程组由两个未知数的一次方程组成,一般写成:ax+by=c;dx+ey=f;我们需要掌握用消元法和代入法解二元一次方程组的基本方法和步骤。

同时还需要理解解出的解集的含义,如有唯一解、无解、无穷解等情况。

在实际应用中,二元一次方程组也有广泛的应用,如数学建模、物理力学等。

例如有一道题目:“使用8个10W和4个20W的灯泡,排成两排,第一排4个,第二排8个,第一排亮的灯泡功率大于等于第二排。

求每只灯有几瓦?” 我们根据题意可以写出方程组。

设第一排4个灯泡中有x个10W的和y个20W的,第二排8个灯泡中有m个10W的和n个20W的,则有:x+y = 4;m+n = 8;10x+20y >= 10m+20n;代入第三个方程可以得到: y>=n;n>=x;m>=y;插入第一个公式可得:n+m = 8-x;插入第二个公式可得:x+2y <= 4;整理可得:5y-2n >=2,解得y=2,n=1。

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结初二数学知识点相似、全等三角形1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理3三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理2相似三角形周长的比等于相似比9、性质定理3相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等等腰、直角三角形1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论3等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论1三个角都相等的三角形是等边三角形7、推论2有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半八年级数学知识点统计的初步认识1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

苏教版八年级上册数学知识点汇总

苏教版八年级上册数学知识点汇总

苏教版八年级上册数学知识点汇总第一章三角形的初步知识•三角形的概念与分类:理解三角形的定义,掌握按边和角对三角形进行分类(如等边三角形、等腰三角形、直角三角形等)。

•三角形的三边关系:理解并应用三角形的三边关系定理(任意两边之和大于第三边)进行边长判断。

•三角形的高、中线、角平分线、中位线:了解并掌握这些线段的概念、性质及画法,特别是中位线的性质(平行于第三边且等于第三边的一半)。

•三角形的稳定性:理解三角形在结构中的稳定性作用。

第二章全等三角形•全等三角形的概念与性质:理解全等三角形的定义,掌握全等三角形的对应边相等、对应角相等的性质。

•全等三角形的判定:掌握全等三角形的几种判定方法,包括SSS、SAS、ASA、AAS、HL(直角三角形专用)。

•全等三角形的应用:运用全等三角形的性质解决实际问题,如测量、作图等。

第三章轴对称与中心对称•轴对称图形与轴对称变换:理解轴对称图形的概念,掌握轴对称变换的性质,能识别并作出轴对称图形。

•中心对称图形与中心对称变换:了解中心对称图形的概念,掌握中心对称变换的性质,能识别并作出中心对称图形。

•设计轴对称或中心对称图案:通过实践活动,设计并制作轴对称或中心对称的图案。

第四章勾股定理•勾股定理的内容:理解并掌握勾股定理(直角三角形两直角边的平方和等于斜边的平方)及其逆定理。

•勾股定理的证明:了解勾股定理的多种证明方法,如赵爽弦图、欧几里得证明等。

•勾股定理的应用:运用勾股定理解决直角三角形中的边长计算问题,以及涉及勾股定理的实际问题。

第五章数据的收集、整理与描述•数据的收集:了解数据收集的方法(如调查、实验等),掌握数据收集过程中的注意事项。

•数据的整理:学习数据的分类、排序、分组等整理方法,掌握频数分布表、频数分布直方图的绘制方法。

•数据的描述:理解平均数、中位数、众数等统计量的概念、意义及计算方法,能选择合适的统计量描述数据特征。

•数据的波动:了解极差、方差等描述数据波动程度的统计量,掌握其计算方法及意义。

(完整版)苏教版八年级数学知识点总结

(完整版)苏教版八年级数学知识点总结

苏教版八年级数学知识点总结第一章全等三角形1.1 全等图形能够完全重合的图形叫做全等图形1.2 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等1.3 探索三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章轴对称图形2.1 轴对称与轴对称图形把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。

2.2 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分2.3 设计轴对称图形2.4 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上2.5 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于60º三个角都相等的三角形是等边三角形有一个角是60º的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理3.1 勾股定理直角三角形两条直角边的平方和等于斜边的平方3.2 勾股定理的逆定理如果三角形的三边长分别为a 、b 、c ,且222c b a =+,那么这个三角形是直角三角形3.3 勾股定理的简单运用第四章 实数4.1 平方根如果()02>=a a x ,那么x 叫做a 的平方根,也称为二次方根。

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结八年级数学是中学数学的重要阶段,主要内容包括代数、几何、函数等多个知识点。

下面为你详细总结苏教版八年级数学的知识点。

一、代数1.代数中的基本概念- 代数式:由数、字母和运算符号组成的式子。

- 方程:带有等号的代数式。

- 联立方程:两个或多个方程一起求解。

- 恒等式:恒等成立的方程。

-不等式:带有不等号的关系式。

2.一元一次方程与一元一次不等式- 一元一次方程:形如ax + b = c的方程。

- 一元一次不等式:形如ax + b < c或ax + b > c的不等式。

3.二元一次方程组与二元一次不等式组- 二元一次方程组:由两个二元一次方程组成的方程组。

- 二元一次不等式组:由两个二元一次不等式组成的不等式组。

4.图表法解方程与不等式- 利用图表法解方程:将方程转化为函数图像与直线的交点求解。

- 利用图表法解不等式:将不等式转化为函数图像与直线的位置关系进行求解。

5.平方根与实数- 平方根:一个数的平方根是使得平方后等于这个数的非负数。

- 实数:有理数和无理数的统称。

6.分式与分式方程- 分式:由多项式的比值构成的代数式。

- 分式方程:分式中含有未知数的方程。

二、几何1.平面图形- 三角形:三条边的关系、三角形的分类。

- 四边形:四边形的分类和性质。

- 多边形:多边形的分类和性质。

- 圆:圆的定义、圆的性质。

2.面积与体积- 三角形、四边形的面积计算。

- 平行四边形的面积计算。

- 圆的面积计算。

- 三棱柱、四棱柱、棱锥、棱台的体积计算。

3.相似与全等- 相似:形状相同但大小不同的图形。

- 全等:形状和大小都相同的图形。

- 判断两个三角形相似或全等的条件与方法。

4.三角形的性质- 三角形内角之和。

- 直角三角形、等腰三角形、等边三角形的性质。

5.立体图形- 直方体、正方体、长方体、棱柱、棱台、圆柱、圆锥、球体的定义和性质。

三、函数1.函数与方程- 函数:自变量和因变量之间的对应关系。

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结

苏教版八年级上册数学知识点归纳及总结本文档旨在对苏教版八年级上册数学课程的知识点进行归纳和总结,帮助学生更好地掌握和复相关内容。

一、代数与函数- 代数运算:四则运算,整式的加减乘除等。

- 一元一次方程:解一次方程的基本方法,应用题的解法。

- 一元一次不等式:求解不等式,应用题的解法。

- 函数概念:自变量和因变量,函数的图象。

- 一元一次函数:函数的定义,函数图象的性质,函数与方程的联系。

- 一元一次函数图象的绘制与应用:确定函数的部分特征,应用题的解法。

二、图形的认识与运用- 点和线:点的名称与判定,线的名称与判定。

- 图形的基本性质:图形的名称与判定,图形基本性质的应用。

- 直线与角:直线的性质,角的性质,角的名称与判定。

- 三角形:三角形的性质,三角形判定,三角形的分类。

- 四边形:四边形的性质,四边形的分类,四边形的判定。

- 一般平行四边形:平行四边形的性质,平行四边形的判定。

- 圆及其部分:圆的性质,圆的判定,圆内角的性质。

三、空间与形体- 空间中的位置与方向:空间中点的坐标,方向的判定与计算。

- 空间中直线、平面与图形:直线与平面的判定,平行与垂直的判定。

- 空间中三视图与展开图:图形的三视图,平面图形的展开图。

四、数据统计- 统计与统计分布:数据的统计指标,数据的统计分布。

- 直方图与折线图:直方图的绘制与解读,折线图的绘制与解读。

五、平面向量- 平面向量的表示与运算:平面向量的表示方法,向量的运算。

以上是苏教版八年级上册数学课程的主要知识点归纳和总结。

希望本文档对学生理解和掌握相关知识有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学复习知识点苏教版
书籍是最好的朋友。

当生活中遇到任何困难的时候,你都能够向它求助,它永远不会背弃你。

下面为您推荐八年级数学复习知识点苏教版。

知识点一第一章一元一次不等式和一元一次不等式组
一、一般地,用符号(或),(或)连接的式子叫做不等式.
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质
1、若ab,则a+cb+c;
2、若ab,c0 则acbc若c0,则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac
三、解不等式的步骤:
1、去分母;
2、去括号;
3、移项合并同类项;
4、系数化为1.
四、解不等式组的步骤:
1、解出不等式的解集
2、在同一数轴表示不等式的解集.
五、列一元一次不等式组解实际问题的一般步骤:
(1)审题
(2)设未知数,找(不等量)关系式;
(3)设元,(根据不等量)关系式列不等式(组)
(4)解不等式组;检验并作答.
六、常考题型:
1、求4x-6 7x-12的非负数解.
2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a 的范围.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.
第二章分解因式
一、公式:
1、ma+mb+mc=m(a+b+c)
2、a2-b2=(a+b)(a-b)
3、a22ab+b2=(ab)2
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
1、把几个整式的积化成一个多项式的形式,是乘法运算
.2、把一个多项式化成几个整式的积的形式,是因式分解.
3、ma+mb+mc m(a+b+c)
4、因式分解与整式乘法是相反方向的变形.
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:
(1)若各项系数是整系数,取系数的公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的.
(4)所有这些因式的乘积即为公因式.
四、分解因式的一般步骤为:
(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.
(3)每一个多项式都要分解到不能再分解为止.
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
分解因式的方法:
1、提公因式法.
2、运用公式法.
第三章分式
注:1对于任意一个分式,分母都不能为零.
2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.
3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识:
1、分式的意义,分式的化简.
2、分式的加减乘除运算.
3、分式方程的解法及其利用分式方程解应用题.
知识点二第四章相似图形
一、定义
表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项.
如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成= ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.
如果把表示成比值k,则=k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.
黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB 的黄金分割点,AC与AB的比叫做黄金比.其中0.618.
引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形
的三边与原三角形三边对应成比例.
相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形. 相似比:相似多边形对应边的比叫做相似比.
二、比例的基本性质:
1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.
2、合比性质:如果,那么 .
3、等比性质:如果== (b+d++n0),那么 .
4、更比性质:若那么 .
5、反比性质:若那么
三、求两条线段的比时要注意的问题:
(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;
(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;
(3)两条线段的长度都是正数,所以两条线段的比值总是正数.
四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判断方法有:
1.三边对应成比例的两个三角形相似;
2.两角对应相等的两个三角形相似;
3.两边对应成比例且夹角相等;
4.定义法: 对应角相等,对应边成比例的两个三角形相似.
5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 在特殊的三角形中,有的相似,有的不相似.
1、两个全等三角形一定相似.
2、两个等腰直角三角形一定相似.
3、两个等边三角形一定相似
.4、两个直角三角形和两个等腰三角形不一定相似.
七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.
八、常考知识点:
1、比例的基本性质,黄金分割比,位似图形的性质.
2、相似三角形的性质及判定.相似多边形的性质.
第五章数据的收集与处理
(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.
(2)总体:其中所要考察对象的全体称为总体.
(3)个体:组成总体的每个考察对象称为个体
(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调
查,这种调查称为抽样调查.
(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.
(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.
(7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.
数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.
刻画平均水平用:平均数,众数,中位数. 刻画离散程度用:极差,方差,标准差.
常考知识点:
1、作频数分布表,作频数分布直方图.
2、利用方差比较数据的稳定性
.3、平均数,中位数,众数,极差,方差,标准差的求法.。

相关文档
最新文档