物理化学讲义02 热力学第一定律

合集下载

物理化学 第二章 热力学第一定律.ppt

物理化学 第二章 热力学第一定律.ppt
第二章 热力学第一定律 (The first law of
thermodynamics)
◆“化学热力学”概念 一、热力学研究的内容
1、 化学反应的能量转化规律(热一律); 2、 化学反应的可能性和限度(热二律); 二、特点
1、 研究物质的宏观性质; 2、 只考虑变化的始终态; 3、 解决最大产率,没有时间的概念; 三、局限性
系统分三类: 1)封闭系统; 2)敞开系统; 3)隔离系统;
2、系统的宏观性质:
广延性质:数量与物质的量有关,具有加和性。
如:m、V、U、H等。
强度性质:数量与物质的量无关,不具有加和
性。如:T、P、d等。
3、状态、状态性质和状态函数
状态:系统中物理、化学性质的综合表现。当
这些性质具有确定的值时,系统就处于某一状态 。
3.3 过程热的计算 恒容变温过程的热:
δQ v=n CV,M dT
恒压变温过程的热:
δQ P=n CP,M dT
组成不变的均相系统等压(等容)变
T2

T1
T2

温过程热的计算
T1
Qp

H

n
T2 T1
C
p,m
dT
QV
U
n
T2 T1
CV
,mdT
例题:试计算常压下1molCO2温度从25℃升到200℃时 所需吸收的热。
∴ ΔV≈Vg
既 W= - P饱Vg= -nRT

三、化学过程的体积功 T、P一定时,
可逆反应 aA + bB € gG + hH
气相化学反应 W=-P外∫dV =- PΔV = -Δn(g)RT
复相化学反应 W= -Δn(g)RT (固体、液体的体积

物理化学第2章 热力学第一定律

物理化学第2章 热力学第一定律

注意:物系变化后,那些不影响的部分不能 叫做环境。
6
(3) 物系分类
根据体系与环境间是否有能量、物质交 换,将物系分成三类: a、敞开物系:物系与环境间既有物质交换, 又有能量交换; b、封闭物系:物系与环境间没有物质交换, 但有能量交换; c、隔离物系:物系与环境间没有物质交换, 又没有能量交换;
第二章 热力学第一定律
热力学是建立在大量科学实验基础上的 宏观理论,是研究各种形式的能量相互转化 的规律,由此而得出各种自动变化、自动进 行的方向、限度以及外界条件变化时对它们 的影响等。
1
§2.1 热力学基本概念
一、热力学概述 热力学:是应用热力学的基本定律研究化 学变化及其有关的物理变化的科学。 1、 研究对象: 热力学研究的对象是大量微观粒子 的宏观性质,(粒子数大体上不低于1023 数量级。)热力学不研究少数粒子所构成 的物质和个别粒子的行为。
(b) 广度性质是系统所含物质量的一次齐函 数,强度性质是零次齐函数。 (c) 两个广度性质相除,所得为强度性质 如:m / V =ρ V / n = Vm
13
** 3、状态与状态函数
(1)状态:当体系的所有性质都有确定值时,就 称体系处于某一状态。因此体系的状态是体系 性质的综合表现。 (2)独立变量(状态变量、状态参数、状态参 变量): 当体系处于一定状态时,其强度性质和容 量性质都有一定的数值,但体系的这些性质是 相互关联的,只有几个是独立的,因而可用几 个独立性质来描述体系的状态。
2、物系的性质
物系的性质:物系处于某种条件下(状态或 热力学状态)的物理量,这些性质或物理量又称热 力学变量。如T、P、V、N、、U、H、G、CP、S 等。仔细分析这些性质就会发现,它们有的值与物 质量有关,具有加和性,有的无加和性。

物理化学(第二章)

物理化学(第二章)
=(U2 + p2V ) −(U + pV ) 2 1 1 1
系统在恒 且非体积功为零的过程中与环境交换的热量 的过程中与环境交换的热量。 系统在恒压,且非体积功为零的过程中与环境交换的热量。
Q= ∆U −W ∆U =Q+W
W = −p环(V −V ) 2 1
= − p 系 (V 2 − V1 )
= − ( p 2V 2 − p1V1 )
U2
Q+W
dU =δQ+δW
第一类永动机 是不可能造成的。 是不可能造成的。 永远在做功,却不消耗能量。 永远在做功,却不消耗能量。
∆U =Q+W = 0
若 <0 则 >0. W , Q
W < 0,
Q= 0
∆ = Q+W U
推论: 、 推论: 1、隔离系统 内能守恒
W = 0 Q= 0
∆ =0 U
4、热和功的分类 、 显热 热 相变热(潜热) 相变热(潜热) 化学反应热 功 非体积功( ) 非体积功(W’) 体积功
5、体积功的计算 、
dV = Asdl
截面 As
环 境
δW = Fd l
热 源
系统
Q F = p环 As
V=As l l dl
p环
∴δW = p环 Asdl
= p环d( Asl ) = p环dV
x = f ( y, z)
∂x dy+ ∂x dz dx = ∂y ∂z y z
(2)广度性质 ) 摩尔热力学能: 摩尔热力学能: (3)绝对值未知 ) 始态
U Um = n
∆ U
强度性质
末态
U1
U2

物理化学 学习资料2 热力学第一定律

物理化学 学习资料2 热力学第一定律
物理化学
学习资料2 热力学第一
定律
《 物理化学 学习资料2 热力学第一定律 》 - 1/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 2/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 3/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 4/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 5/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 56/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 57/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 58/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 59/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 60/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 11/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 12/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 13/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 14/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 15/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 61/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 62/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 63/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 64/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 65/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 6/74页 -

物理化学热力学第一定律总结

物理化学热力学第一定律总结

物理化学热力学第一定律总结热力学第一定律是热力学中最基本的定律之一,并且与能量守恒原理密切相关。

它陈述了一个闭合系统内部的能量转换过程。

根据热力学第一定律,能量是不能从真空中产生的,也不能消失,它只能在系统内部进行转化。

该定律可以用以下公式表达:ΔU=Q-W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外界做的功。

这个公式说明了能量的守恒,即系统吸收的热量和对外界做的功之和等于系统内部能量的变化。

当系统从外界吸收热量时,其内部能量会增加,而当系统对外界做功时,其内部能量会减少。

这种能量的转化是一个相互依存的过程,可以通过热力学第一定律进行描述。

热力学第一定律的应用十分广泛,并且在实际问题中具有重要的意义。

以下是热力学第一定律在不同领域的应用:1.在化学反应中,热力学第一定律可以用来计算反应的焓变。

通过测量反应前后系统吸收或释放的热量,可以计算出反应的焓变,从而了解反应的能量转化和方向。

2.在工程领域,热力学第一定律常用于能量转换设备的设计和优化中。

例如,蒸汽轮机、内燃机和制冷机等能量转换系统的效率可以通过热力学第一定律进行评估和计算。

3.在生物学领域,热力学第一定律可以用于研究生物体内的能量转化过程。

例如,通过测量生物体吸收的热量和对外界做的功,可以计算出生物代谢的能量转换效率。

热力学第一定律的重要性在于揭示了能量守恒的基本原理,为能量转化和能量利用提供了基础理论支持。

它对于研究和解决实际问题具有重要指导意义。

热力学第一定律的应用可以帮助我们评估能量转换过程的效率,优化能量利用方式,并促进可持续发展。

总之,物理化学热力学第一定律表述了能量守恒的原则,描述了能量转化和能量守恒的过程。

它在化学、工程、生物等领域具有广泛的应用,并对能量转换和利用提供了理论支持。

热力学第一定律的理解和应用可以帮助我们更好地理解能量转换过程,优化能量利用方式,并实现可持续发展的目标。

物理化学(傅献彩著)02章 热力学第一定律

物理化学(傅献彩著)02章 热力学第一定律

状态函数(state function)
用以描述系统状态的函数称为状态函数 系统处于定态时,其性质仅取决于系统所处的 状态,而与系统的历史无关; 系统状态改变时,它的变化值仅取决于系统的 始态和终态,而与变化的途径无关。
异途同归,值变相等;周而复始,数值还原
状态函数在数学上具有全微分的性质。
Complete differential property
(1)等温过程 (isothermal process)
T1 T2 T环 p1 p2 p环
dV 0
(2)等压过程 (isobaric process)
(3)等容过程 (isochoric process)
(4)绝热过程 (adiabatic process)
(5)环状过程 (cyclic process)
1. 指出某一变化是否能发生 2. 估计变化的限度 3. 指明改进工作的方向
温度的概念
Et 1 mu 2 f (T ) 2
T 反映大量分子无规则运动的剧烈程度,具有统计概念, 与分子的平均平动能有函数关系。 平衡态(equilibrium state):一个不受外界影响的系统, 最终会达到一个稳定的状态,宏观上不再变化,并可用一 定的状态函数来描述它,这表明该系统达到了平衡态。
系统的性质
广度性质 广度性质(1) 强度性质 物质的量 广度性质(2)
m V
热力学平衡态 (thermodynamic equilibrium state)
当系统的诸性质不随时间而改变,则系统就处于 热力学平衡态。
热平衡(thermal equilibrium)
环境
系统
系统与环境
系统的分类
(1)敞开系统(open system) 系统与环境之间既有物质交换,又有能量交换

物理化学-02章_热力学第一定律

物理化学-02章_热力学第一定律
定律延伸:任一热力学均相体系,在平衡态各自存 在一个称之为温度的状态函数,对所有达到热平衡 的均相体系,其温度相同。
温标:a)摄氏温标,以水为基准物,规定水的凝 固为零点,水的沸点与冰点间距离的1/100为1℃。
热力学第零定律
b)理想气体温标 以低压气体为基准物质,规定水 的三相点为273.16 K,温度计中低压气体的压强为P ,则恒容时,任意其它压力时的温度为
§2.0 热力学概论
热力学方法特点和局限性
• 热力学方法是一种演绎的方法,结合经验所 得的基本定律进行演绎推理,指明宏观对象的 性质、变化方向和限度。
• 研究对象是大数量分子的集合体,研究宏 观性质,所得结论具有统计意义。
• 只考虑平衡问题,考虑变化前后的净结果, 但不考虑物质的微观结构和反应机理。
状态函数的特性可描述为: 异途同归,值变相等;
人的状态,变化,性质。
周而复始,数值还原。
状态函数在数学上具有全微分的性质。
状态函数的特性
(1)体系的状态确定,则状态函数也就确定了, 状态变化,状态函数也随着变化。
(2)状态函数的改变值只与始终态有关,与变 化途径无关。如果进行了一个微小的变化,可以 用数学的全微分表示状态函数的微小的变化:如 dp、dT。
(3)隔离体系(isolated system)
有时把体系和影响所及的环境一起作为孤立体
系来考虑。
大环境
无物质交换
孤立体系(2)
Siso Ssys Ssur
无能量交换
体系分类
若以体系中存在的物质种类或均匀的物质部分 数为分类依据,热力学体系还有:
单组分和多组分体系,如水和水溶液。
单相和复相体系/均相和多相体系, 体系中只 含一个均匀的物质部分称为单相体系,含有二个以 上均匀物质部分的体系称复相体系。如水和冰。

物理化学第二章热力学第一定律主要公式及其适用条件

物理化学第二章热力学第一定律主要公式及其适用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压力,W ’为非体积功。

上式适用于封闭体系的一切过程。

2.焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4.热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。

(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。

(4) ,m ,m p V C C R -=此式只适用于理想气体。

(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。

(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。

2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的和的值。

3.了解为什么要定义焓,记住公式的适用条件。

4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,的计算。

5.掌握等压热与等容热之间的关系,掌握使用标准摩尔生成焓和标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握与之间的关系。

6.了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。

二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。

热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。

这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。

例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。

功和热的计算一定要与变化的过程联系在一起。

譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。

在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。

功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。

在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。

传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。

同样,在环境内部传递的能量,也是不能称为功(或热)的。

例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以。

这个变化只是在系统内部,热力学能从一种形式变为另一种形式,而其总值保持不变。

也可以通过教材中的例题,选定不同的对象作系统,则功和热的正、负号也会随之而不同。

功和热的取号也是初学物理化学时容易搞糊涂的问题。

目前热力学第一定律的数学表达式仍有两种形式,即:,虽然已逐渐统一到用加号的形式,但还有一个滞后过程。

为了避免可能引起的混淆,最好从功和热对热力学能的贡献的角度去决定功和热的取号,即:是使热力学能增加的,还是使热力学能减少的,这样就容易掌握功和热的取号问题。

焓是被定义的函数,事实上焓是不存在的,仅是几个状态函数的组合。

这就要求理解为什么要定义焓?定义了焓有什么用处?在什么条件下,焓的变化值才具有一定的物理意义,即。

务必要记住这两个公式的使用限制条件。

凭空要记住公式的限制条件,既无必要,又可能记不住,最好从热力学第一定律的数学表达式和焓的定义式上理解。

例如,根据热力学第一定律,要使或,必须使,这就是该公式的限制条件。

同理:根据焓的定义式,将上面的表达式代入,得要使或,必须在等压条件下,,系统与环境的压力相等,和,这就是该公式的限制条件。

以后在热力学第二定律中的一些公式的使用限制条件,也可以用相似的方法去理解。

状态函数的概念是十分重要的,必须用实例来加深这种概念。

例如:多看几个不同的循环过程来求和,得到,,这样可以加深状态函数的“周而复始,数值还原”的概念。

例如和可以通过燃烧、爆鸣、热爆炸和可逆电池等多种途径生成水,只要保持始态和终态相同,则得到的和的值也都相同,这样可以加深“异途同归,值变相等”的概念。

化学反应进度的概念是很重要的,必须牢牢掌握。

以后只要涉及化学反应,都要用到反应进度的概念。

例如,在化学反应摩尔焓变的求算中,今后在化学平衡中,利用反应的Gibbs自由能随反应进度的变化曲线来判断化学变化的方向与限度,在化学动力学中利用反应进度来定义反应的速率,以及在电化学中,利用电化学的实验数据来计算反应进度为1 mol时的热力学函数的变化值等,都要用到反应进度的概念,所以必须掌握化学反应进度的概念。

用标准摩尔生成焓和标准摩尔燃烧焓来计算化学反应的摩尔焓变时,相减的次序是不一样的,必须要理解为什么不一样,这样在做习题时就不会搞错了。

要学会查阅热力学数据表,这在今后的学习和工作中都是十分有用的。

三.思考题参考答案1.判断下列说法是否正确,并简述判断的依据。

(1)状态给定后,状态函数就有定值;状态函数固定后,状态也就固定了。

(2)状态改变后,状态函数一定都改变。

(3)因为,所以是特定条件下的状态函数。

(4)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。

(5)在等压下,用机械搅拌某绝热容器中的液体,使液体的温度上升,这时。

(6)某一化学反应在烧杯中进行,热效应为,焓变为。

若将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态都相同,这时热效应为,焓变为,则。

答:(1)对。

因为状态函数是状态的单值函数,状态固定后,所有的状态函数都有定值。

反之,状态函数都有定值,状态也就被固定了。

(2)不对。

虽然状态改变后,状态函数会改变,但不一定都改变。

例如,系统发生了一个等温过程,体积、压力等状态函数发生了改变,系统的状态已与原来的不同,但是温度这个状态函数没有改变。

(3)不对。

热力学能U和焓H是状态函数,而U,H 仅是状态函数的变量。

和仅在特定条件下与状态函数的变量相等,所以和不可能是状态函数。

(4)不对。

系统可以降低自身的热力学能来对外做功,如系统发生绝热膨胀过程。

但是,对外做功后,系统自身的温度会下降。

(5)不对。

因为环境对系统进行机械搅拌,做了机械功,这时,所以不符合的使用条件。

使用这个公式,等压和,这两个条件一个也不能少。

(6)对。

因为焓H是状态函数,只要反应的始态和终态都相同,则焓变的数值也相同,与反应具体进行的途径无关,这就是状态函数的性质,“异途同归,值变相等”。

但是,两个过程的热效应是不等的,即。

2.回答下列问题,并简单说明原因。

(1)可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快?(2)与盐酸发生反应,分别在敞口和密闭的容器中进行,哪一种情况放的热更多一些?(3)在一个用导热材料制成的圆筒中,装有压缩空气,圆筒中的温度与环境达成平衡。

如果突然打开筒盖,使气体冲出,当压力与外界相等时,立即盖上筒盖。

过一会儿,筒中气体的压力有何变化?(4)在装有催化剂的合成氨反应室中,与的物质的量之比为,反应方程式为。

分别在温度为和的条件下,实验测定放出的热量对应为和。

但是用Kirchhoff定律计算时计算结果与实验值不符,试解释原因。

答:(1)可逆热机的效率虽高,但是可逆过程是一个无限缓慢的过程,每一步都接近于平衡态。

所以,用可逆热机去牵引火车,在有限的时间内是看不到火车移动的。

所以,可逆功是无用功,可逆热机的效率仅是理论上所能达到的最高效率,使实际不可逆热机的效率尽可能向这个目标靠拢,实际使用的热机都是不可逆的。

(2)当然在密闭的容器中进行时,放的热更多一些。

因为在发生反应的物质的量相同时,其化学能是一个定值。

在密闭容器中进行时,化学能全部变为热能,放出的热能就多。

而在敞口容器中进行时,一部分化学能用来克服大气的压力做功,余下的一部分变为热能放出,放出的热能就少。

(3)筒中气体的压力会变大。

因为压缩空气冲出容器时,筒内的气体对冲出的气体做功。

由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。

当盖上筒盖又过了一会儿,筒内气体通过导热壁,从环境吸收热量使温度上升,与环境达成平衡,这时筒内的压力会增加。

(4)用Kirchhoff公式计算的是反应进度等于1 mol时的等压热效应,即摩尔反应焓变。

用实验测定的是反应达平衡时的等压热效应,由于合成氨反应的平衡转化率比较低,只有25%左右,所以实验测定值会比理论计算的结果小。

如果将反应物过量,使生成产物的数量与化学计量方程的相同,那实验值与计算值应该是等同的。

3.理想气体的绝热可逆和绝热不可逆过程的功,都可用公式计算,那两种过程所做的功是否一样?答:当然不一样,因为从同一个始态出发,绝热可逆与绝热不可逆两个过程不可能到达同一个终态,两个终态温度不可能相同,即T不可能相同,所以做的功也不同。

通常绝热可逆过程做的功(绝对值)总是大于不可逆过程做的功。

4.指出如下所列3个公式的适用条件:(1)(2)(3)答:(1)式,适用于不做非膨胀功()的等压过程()。

(2)式,适用于不做非膨胀功()的等容过程()。

(3)式,适用于理想气体不做非膨胀功()的等温可逆过程。

5.用热力学的基本概念,判断下列过程中,,,和的符号,是,,还是。

第一定律的数学表示式为。

(1)理想气体的自由膨胀(2) van der Waals气体的等容、升温过程(3)反应在非绝热、等压条件下进行(4)反应在绝热钢瓶中进行(5)在273.15 K,101.325kPa下,水结成冰答:(1)W = 0 因为是自由膨胀,外压为零。

Q = 0 理想气体分子之间的相互引力小到可以忽略不计,体积增大,分子间的势能并没有变化,能保持温度不变,所以不必从环境吸热。

U = 0 因为温度不变,理想气体的热力学能仅是温度的函数。

或因为W = 0,Q = 0,所以U = 0。

H = 0 因为温度不变,理想气体的焓也仅是温度的函数。

或因为,U = 0,所以H = 0。

(2)W = 0 因为是等容过程,膨胀功为零。

Q 0 温度升高,系统吸热。

U 0 系统从环境吸热,使系统的热力学能增加。

H 0 根据焓的定义式,。

(3)W 0 反应会放出氢气,要保持系统的压力不变,放出的氢气推动活塞,克服外压对环境做功。

Q 0 反应是放热反应。

U 0 系统既放热又对外做功,使热力学能下降。

H 0 因为这是不做非膨胀功的等压反应,H = Q p。

(4)W = 0 在刚性容器中,进行的是恒容反应,不做膨胀功。

Q = 0 因为用的是绝热钢瓶U = 0 根据热力学第一定律,能量守恒,热力学能不变。

以后,在不考虑非膨胀功的情况下,只要是在绝热刚性容器中发生的任何变化,,和都等于零,绝热刚性容器相当于是一个孤立系统。

H 0 因为是在绝热钢瓶中发生的放热反应,气体分子数没有变化,钢瓶内的温度会升高,导致压力也增高,根据焓的定义式,可以判断焓值是增加的。

或(5)W 0 在凝固点温度下水结成冰,体积变大,系统克服外压,对环境做功。

Q 0 水结成冰是放热过程。

U 0 系统既放热又对外做功,热力学能下降。

相关文档
最新文档