02章 热力学第一定律及其应用
热工流体第二章 热力学第一定律

第二章 热力学第一定律第一节 第一定律的实质及热力学能和总能能量守恒与转换定律是自然界的基本规律之一,它指出:自然界中的一切物质都具有能量,能量不可能被创造,也不能被消灭;但能量可以从一种形态转变为另一种形态,且在能量的转化过程中能量总量不变。
热力学第一定律是能量守恒与转换定律在热现象中的应用。
它确定了热力过程中热力系统与外界进行能量交换时,各种形态能量数量上的守恒关系。
一、热力学能热力学能是与物质内部粒子的微观运动和粒子的空间位置有关的能量。
它包括分子移动、转动、粒子震动运动的内动能和分子间由于相互作用力的存在而具有的内位能,故又称内能。
内动能取决于分子热运动,是温度的函数,而内位能取决于分子间的距离,是比体积的函数,即u = f ( T, v )二、总能除热力学能外,工质的总能量还包括工质在参考坐标系中作为一个整体,因有宏观运动速度而具有动能、因有不同高度而具有位能。
前一种能量称之为内部储存能,后两种能量则称之为外部储存能。
我们把内部储存能和外部储存能的总和,即热力学能与宏观运动动能和位能的总和,叫做工质的总储存能,简称总能。
即p k E U E E =++ (2-1)E---总能; U---热力学能; E k ---宏观动能; E p ---宏观位能。
第二节 第一定律的基本能量方程及工质的焓一、焓在有关热力计算总时常有U+pV 出现,为了简化公式和计算,把它定义为焓,用符号H 表示,即H=U+pV (2-2)1kg工质的焓值称为比焓,用h表示,即h=u+pv (2-3)焓的单位是J,比焓的单位是J/kg。
焓是一个状态参数,在任一平衡状态下,u、p和v都有一定得值,因而焓h也有一定的值,而与达到这一状态的路径无关。
当1kg工质通过一定的界面流入热力系统时,储存于它内部的热力学能当然随着也进入到系统中,同时还把从外部功源获得的推动功pv带进了系统。
因此系统中因引进1kg工质而获得的总能量是热力学能与推动功之和(u+pv),即比焓。
02第二章 热一律2-1热力学第一定律的实质及表达式

吸热膨胀作功(参看图2-3c) 吸热膨胀作功 外界供给热量 –Q 膨胀功 –W 热力学能 –U2
排气过程中(参看图2-3d) 排气过程中 外界消耗排气功 外界获得推动功 排气后(参看图2-3a) 排气后 质量 m = 0 总能量 E2 = 0
开口系在一个工作周期中的能量进出情况
Q=Q ∆E = 0
1 2 2 w = ( p2 v2 − p1v1 ) + (c2 − c1 ) + g ( z 2 − z1 ) + wsh 2
(2-16)
总功(Wtot )、膨胀功(W )、技术功( W t )和轴功 (W sh )之间的区别和内在联系 膨胀功、技术功、轴功孰大孰小取决于 ( p 2 v2 − p1v1 ) 1 2 2 (c2 − c1 ) 、 g ( z 2 − z1 ) 的大小和正负。
二、热力学第一定律表达式
1、一般热力系能量方程
- 热力学第一定律基本表达式
热力系总能量(total stored energy of system)为E(图2-1a)。它是 热力学能(U)、宏观动能(EK)和重力位能(EP)的总和: 热力学能,内部储存能 热力学能,
E =U+Ek +Ep
宏观动能 总能 宏ቤተ መጻሕፍቲ ባይዱ位能 外部储存能
e =u+ek +ep
根据质量守恒定律可知:热力系质量的变化等于流进和流出 质量的差:
dm = δm1 − δm2
根据热力学第一定律可知:
热力系输出的能量的总和= 加入热力系的能量的总和 - 热力系输出的能量的总和=热力系总能量的增量
(δQ + e1δm1) (δW总 + e2δm2 ) = ( E + dE ) − E −
热力学第02章 第一定律

推动工质移动所作的功;或因工
质在开口系统中流动而传递的功。
pAx pV mpv
推动功作用在质量m上。m被推入系统内,所以推动功随质量 m一起进入系统。 推动功的意义:工质m流入系统所带入的功(外界对系统作功);
工质m流出系统所带出的功(系统对外界作功)。
2.推动功(flow work; flow energy): p,v ⊿x 如果工质在传递推动功的时候没有热力状态的变化,当然也不 会有能量形态的变化。此时工质所起的作用只是单纯的运输能 量,就像传送带一样,把这部分推动功传递到其他地方。 p
热力学第一定律:
进入系统的能量 —
离开系统的能量 = 系统内部能量的增量
第一定律定第一表达式 第一定律定第二表达式
Q dU W
Q dH Wt
上节课内容回顾
第一定律第一解析式 —— 热 功的基本表达式
Q U W q u w
1)对于可逆过程
δQ dU δW δq du δw
第二章 热力学第一定律
the first law of thermodynamics
§2-1 热力学第一定律的实质
实质:能量传递和形态转化以及总量的守恒。(在工程
热力学的研究范围内,主要考虑的是热能和机械能之间的 相互转化和守恒的规律) 热力学第一定律是实践经验的总结。第一类永动机迄今都 不存在,而且由第一定律所得出的一切推论都和实际经验 相符,可以充分说明它的正确性。 第一类永动机(不消耗能量而作功)是不可能造出来的。
出口2 假如工质从状态1到状态2做膨胀功是w。那么在不考虑工质宏 观动能和位能变化时,开口系和外界交换的功量是膨胀功与流 动功的差值: 注:如需要考虑工质的动能和位能变化,还应该计算动能差 和位能差
第2章热力学第一定律

功
定义:
种类:
除温差以外的其它不平衡势差所引起 的系统与外界传递的能量.
1.膨胀功W: 在力差作用下,通过系统容积变化与外界传递的能量。
膨胀功是热变功的源泉 单位:l J=l Nm 规定: 系统对外作功为正,外界对系统作功为负。
2 轴功W: 通过轴系统与外界传递的机械功 注意:
刚性闭口系统轴功不可能为正,轴功来源于能量转换
热量
定义:
在温差作用下,系统与外界通过界面传递的能量。
规定: 系统吸热热量为正,系统放热热量为负 单位: kJ 或 kcal 且l kcal=4.1868kJ 特点:
是传递过程中能量的一种形式,与热力过程有关
• 当热力系与外界之间温度不等而发生热接
触时,彼此将进行能量的交换。热力系与 外界之间依靠温差传递的能量称为热。 • 热和功是物系在与外界相互作用的过程中 传递的能量,传热和作功是热力系与外界 传递能量的两种方式。它们是过程量而不 是状态量,因此说“物体具有多热量”及 “物体具有多少功量”都是错误的。 • 在热力学中规定:热力系吸热时热量取正, 放热时取负号。在法定计量单位中,热量 的单位为焦耳,单位符号J。单位质量的物 体与外界交换的热量称为比热量。
准静态 pdv d ( pv) wt
wt pdv d ( pv) pdv ( pdv vdp) vdp
wt vdp
wt vdp
q du pdv 热一律解析式之一 准静态 q dh vdp 热一律解析式之二
技术功在示功图上的表示
少了推进功
Q
Q + min(u + c2/2 + gz)in - mout(u + c2/2 + gz)out - Wnet = dEcv
第二章 热力学第一定律

(二)热力学第一定律
热力学第一定律实质就是能量守恒和转换 定律在热现象上的应用。 表述1:热可以变为功,功也可以变为热;一 定量的热消灭,必产生一定量的功;消耗一 定量的功时,必出现与之相应数量的热。
表述2:第一类永动机是造不成的
First Law of Thermodynamics
In 1843, at the age of 25, James Prescott Joule did a series of careful experiments to prove the equivalence of heat and work.
A p V
dl
对推进功的说明
1、与宏观流动有关,流动停止,推进功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界(泵与风机)做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之
间所传递的一种机械功,表现为流动工质进 出系统使所携带和所传递的一种能量
4、物理意义:开口系中随工质流动而携带的、取决 于热力状态的能量。
三、稳定流动能量方程
Energy balance for steady-flow systems
稳定流动条件
(P22)
1、
•
•
•
mout min m
2、
•
Q Const
min
uin 1 2
c
2 in
gzin
3、
•
•
Wnet ConstWs
三、总能
热力系统的储存能: 储存于热力系统的能量。 (1)内部储存能———热力学能 (2)外部储存能———宏观动能,宏观位能。
物理化学第二章热力学第一定律主要公式及其适用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2.焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4.热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
热力学第一定律对理想气体的应用

热力学第一定律对理想气体的应用
热力学第一定律(也称为能量守恒定律)对理想气体的应用提供了重要的物理洞察和计算方法。
以下是热力学第一定律在理想气体中的一些应用:
1.内能变化计算:热力学第一定律表明,理想气体的内能变化等于吸收的热量减去对外界做的功。
根据该定律,我们可以计算理想气体的内能变化,即ΔU = Q - W,其中ΔU 表示内能变化,Q 表示吸收的热量,W 表示对外界做的功。
2.等容过程计算:等容过程是指理想气体在体积不变的条件下发生的过程。
根据热力学第一定律,对于等容过程,ΔU = Q,即内能变化等于吸收的热量。
这使得我们可以根据所吸收的热量计算内能的变化。
3.等压过程计算:等压过程是指理想气体在恒定压力下发生的过程。
根据热力学第一定律,对于等压过程,Q = ΔU + W,即吸收的热量等于内能变化加上对外界所做的功。
这使得我们可以根据所做的功和内能变化计算吸收的热量。
4.等温过程计算:等温过程是指理想气体在恒定温度下发生的过程。
根据热力学第一定律,对于等温过程,Q = W,即吸收的热量等于对外界所做的功。
这意味着在等温过程中,吸收的热量和所做的功相等。
物理化学-第二章-热力学第一定律及其应用精选全文

上一内容 下一内容 回主目录
返回
2024/8/13
状态与状态函数
状态函数的特性: 异途同归,值变相等;周而复始,数值还原。
状态函数的性质:
(1) 状态函数的值取决于状态,状态改变则状态函数必定改 变(但不一定每个状态函数都改变);任何一个状态函数 改变,系统的状态就会改变。
上一内容 下一内容 回主目录
即
ΔU=Q+W (封闭系统)
对于无限小过程,则有
dU=δQ+δW (封闭系统)
上一内容 下一内容 回主目录
返回
2024/8/13
3. 焦耳实验 盖.吕萨克—焦尔实验
实验结果:水温未变 dT=0 dV≠0
表明:Q =0
自由膨胀 W=0
上一内容 下一内容 回主目录
返回
2024/8/13
dU= Q+ W =0
1. 热(heat)
a) 定义:体系与环境之间因温差而传递的能量称为热,用 符号Q 表示。单位:KJ 或 J。 b) Q的取号:体系吸热,Q>0;体系放热,Q<0 。
c) 性质:热不是状态函数,是一个过程量;热的大小和具 体的途径有关。
上一内容 下一内容 回主目录
返回
2024/8/13
功和热
不能说在某个状态时系统有多少热量,只能说 在某个具体过程中体系和环境交换的热是多少。
热力学能是状态函数,用符号U表示,单位为J。它 的绝对值无法测定,只能求出它的变化值。
U= U2 –U1
上一内容 下一内容 回主目录
返回
2024/8/13
热力学能
纯物质单相系统
若n确定
U=U ( n,T,V ) U=U (T,V )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章热力学第一定律及其应用
1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度?
2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。
若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。
3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。
(1)求V1。
(2)若气体的量为2 mol ,试求体系的温度。
4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功?
(1)假定是理想气体。
(2)假定服从于范德华方程式。
已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol.
5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。
当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求
(1)蒸发过程中体系对环境所作的功。
(2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。
(3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。
(4)求(1)中变化的和。
(5)解释何故蒸发热大于体系所作的功?
6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。
已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。
7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功:
(1)在空气中(压力为101.325 kPa)体积胀大1 dm3。
(2)在空气中膨胀到气体压力也是101.325 kPa。
(3)等温可逆膨胀至气体的压力为101.325 kPa。
8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。
求过程中的W,ΔU ,ΔH 和Q。
假定气体是理想气体。
9.0.02kg乙醇在其沸点时蒸发为气体。
已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。
试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。
10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K,
压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。
(1)在373K,101.325 kPa压力下变成同温,同压的汽。
(2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。
(3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。
已知水的汽化热为2259 kJ/kg。
11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。
求:
(1)终态的体积和温度。
(2)ΔU 和ΔH 。
(3)所作的功。
12.设有压力为101.325 kPa,温度为293K的理想气体3 dm3,在等压下加热,直到最后的温度为353K为止。
计算过程中W,ΔU ,ΔH 和Q。
已知该气体的等压热容为C(p,m)=(27.28+3.26·
T) J/(K·mol)。
13. 在标准压力下,把一个极小的冰块投入0.1 kg,268 K(即-5 ℃)的水中,结果使体系的温度变为273 K,并有一定数量的水凝结成冰。
由于过程进行的很快,可以看作是绝热的。
已知冰的溶解热为333.5 kJ/kg,在268-273K之间水的比热为4.21 kJ/(K·kg)。
(1)写出体系物态的变化,并求出ΔH.
(2)求析出冰若干克。
14.一摩尔氢在298.2 K和压力101.325 kPa下经可逆绝热过程压缩到5 dm3,计算:
(1)氢气的最后温度。
(2)氢气的最后压力。
(3)需做多少功。
15.某一热机的低温热源为313 K,若高温热源分别为
(1) 373K,(在101.325 kPa下水的沸点)
(2) 538K,(是压力为50×101.325 kPa下水的沸点)。
试分别计算热机的理论换算系数。
16. 某电冰箱内的温度为273 K,室温为298K,今欲使1 kg 273 K的水变成冰,问最少需做多少功?已知273 K时冰的融化热为335kJ/kg 。
17. 0.500 g正庚烷放在弹形量热计中,燃烧后温度升高2.94 K。
若量热计本身及其附件的热容量为8.177kJ/K, 计算298K时正庚烷的燃烧热(量热计的平均温度为298 K)。
18. 在298.15K及101.325 kPa压力时设环丙烷,石墨及氢气的燃烧热()
分别为-2029,-393.8及-285.84 kJ/mol。
若已知丙烯(气)的=20.5 kJ/mol,试求:
(1)环丙烷的。
(2)环丙烷异构化变为丙烯的。
19. 某高压容器中含有未知气体,可能是氮或氩气。
今在298 K时,取出一些样品,从5 dm3绝热可逆膨胀到6 dm3,温度降低了21 K,试问能否判断出容器中是何种气体?
设振动的贡献可忽略不计。
20. 将H2O看作刚体非线性分子,用经典理论来估计其气体的C(p,m)值是多少?
如果升高温度,将所有振动项的贡献都考虑进去,这时C(p,m)值又是多少?。