02热力学第一定律

合集下载

02热力学第一定律

02热力学第一定律
H U pV H U ( pV ) U nRT (2731 2 8.314 54)J 3629J
压缩机工作时,速率很快,来不及进行热交换
Q0
W U 2731J
3. 摩尔恒压热容与摩尔恒容热容的关系
C p ,m CV ,m
H m T U m T
T2 T1
U QV n CV ,mdT
2.4.2
应用——计算单纯pVT 过程的U 恒容过程:
U QV n CV ,mdT
T2 T1
非恒容过程: U QV n

T2
T1
CV ,mdT
(理想气体)
nCV ,m (T2 T1 )
2. 摩尔定压热容
C p ,m
•自由膨胀过程
∵pamb=0 • 恒容过程 dV=0 W=0 ∴W=0
热力学能U:系统内部储存的能量,是广度量的状态函数。
分子平动能 动能 分子转动能 系统总能量 势能 分子振动能 热力学能 分子间作用能 电子运动能 核运动能
符号规定: 若热力学能增加+,若热力学能减小U 的绝对值无法求,但U可求
T,p 2HCl(aq)+Zn(s) ZnCl 2 (aq)+H2 (g)
这是什么体系?界面在什么位置?
如果上述反应是在恒容、绝热,不透光、不导 电的容器中进行,它又是什么体系?
作业:以电解水为例确定界面使系统分别为隔离系统、 封闭系统、敞开系统
2. 状态与状态函数 (1)状态与状态函数 系统的性质:决定系统状态的物理量(如p,V,T,Cp,m)
系统的状态:热力学用系统所有的性质来描述它所处 的状态,当系统所有性质都有确定值时,则系统处于一 定的状态

热力学第一定律与第二定律

热力学第一定律与第二定律

热力学第一定律与第二定律热力学是研究能量与热的转化和传递规律的科学,它是自然科学中重要的分支之一。

在热力学中,第一定律和第二定律是两个基本的定律,它们定义了能量守恒和能量转化的方向,对于理解热力学系统的行为和实际应用具有重要意义。

1. 热力学第一定律热力学第一定律,也称为能量守恒定律,表明能量在系统与环境之间的传递和转化后总量保持不变。

它可以通过下式表达:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。

根据热力学第一定律,一个封闭系统的能量是守恒的,能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。

热力学第一定律还可以用来推导出热机效率的表达式。

在一个热机中,根据热力学第一定律,系统吸收的热量等于系统对外界做的功加上系统内能的变化。

根据这个原理,我们可以得到热机效率的公式:η = 1 - Qc/Qh其中,η表示热机的效率,Qc表示热机向冷源放出的热量,Qh表示热机从热源吸收的热量。

这个公式表明,在一个热机中,不能把吸收的热量完全转化为功,一部分热量必须放出到冷源中,效率小于1。

2. 热力学第二定律热力学第二定律是热力学中最重要的定律之一,它表明热量不能自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。

热力学第二定律有多种等效的表述方式,其中最常见的是克劳修斯表述和开尔文表述。

克劳修斯表述中,热量不会自发地从冷热源传递到热热源,即不存在一个热机,它只从一个热源吸热,然后完全转化为功,再把一部分热量放到冷热源上,不对环境产生任何影响。

这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统对外界做的功等于输入的热量。

这个等效表述被称为克劳修斯表述。

开尔文表述中,不可能制造一个只从一个热源吸热,然后完全转化为功的热机,而不对环境产生任何影响。

这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统吸收的热量完全转化为功,不放出热量到冷热源。

02章热力学第一定律1

02章热力学第一定律1

而自由膨胀就是对真空膨胀,外压为零,故 W=0 即自由膨胀过程中,系统对环境不做功。
(2).等外压膨胀(pe保持不变)
在外压保持不变的情况下,系统的体积从V1膨 胀到V2, W=-PedV , 积分,有: W=-Pe(V2-V1)
(3)多次等外压膨胀
(a)克服外压pe‘从体积为V1膨胀到V‘,作功: W1= - Pe‘ (V‘ - V1) (b)克服外压Pe“从V‘膨胀到V“,作功: W2= -Pe“(V“ - V‘) (c)克服外压P2从V“膨胀到V2,作功: W3= -P2(V2 - V“) 在这个过程中系统作的总功是所作的功 等于3次作功的加和。 W=W1+W2+W3
状态函数的基本性质:
* 状态函数的特性可描述为:异途同归, 值变相等;周而复始,数值还原。 **状态函数在数学上具有全微分的性质。 即二阶偏微分的值与微分的先后顺序 无关。
(3)状态方程
系统状态函数之间的定量关系式称为状态方 程(state equation )。
对于一定量的单组分均匀系统,状态函数 T,p,V 之间有一定量的联系。经验证明,只有两 个是独立的,它们的函数关系可表示为:
环境(surroundings)
与系统密切相关、有相互作用或影响所能及的 部分。
系统分类
根据系统与环境之间 的关系,把系统分为 三类:
(1)敞开系统(open
system) 系统与环境之间既 有物质交换,又有能 量交换。
(2)封闭系统(closed system)
系统与环境之间无物质交换,但有能量交换。
焦耳(Joule)和迈耶(Mayer)自1840年起, 历经20多年,用各种实验求证热和功的转 换关系,得到的结果是一致的。

第02章 热力学第一定律 2011-02-24

第02章 热力学第一定律 2011-02-24

H2与N2以3:1的比例在绝热钢瓶中反应生成NH3,此过程:
(A) H = 0 (B) p = 0 (C) U = 0 (D) T = 0
3. 理想气体的热力学能和焓 焦耳实验(1845)图2.2.1
§2.4



δQV dU m
CV ,m

U m ( )V f (T ) T
热力学第一定律表述之一:
自然界一切物质都有能量,能量有各种不同形式并可互相转 化,在转化过程中总值不变(即能量守恒与转化定律)。
热力学第一定律表述之二:
第一类永动机是造不成的。
热力学第一定律的数学表述: 系统从状态 (1) 状态(2),与环境交换热Q,交换功W, 则有: U2 = U1 + Q + W, 或 U = Q +W dU = Q + W (封闭系统)
4. 过程与途径 系统的一切变化均称之为过程。 在相同的始终态间,可有不同的变化方式,称之为 途径 。状态函数的变化与途径无关!。 常见的过程有: 恒温过程:T2 = T1 = T (环) 恒压过程:p2 = p1 = p (环) 恒容过程:V = 0 绝热过程:无热交换,但可以有功的传递 循环过程:回到初始状态 5. 热力学平衡态(无环境影响下) (1) 热平衡 (2) 力平衡 (3) 相平衡 (4) 化学平衡 T (环)为环境温度 p (环)为环境压力
W 与途径有关,微小变化用W表示(不能用dW).
p(环)
p(环)
A
体积功的计算:
W = Fdl
= p(环) Adl
= p(环) dV
(能否用系统的压力p ?) dl
对于一有限过程:
若环境压力恒定, V1 = p(环)(V2 V1) = p(环)V (恒外压过程) 与恒压过程比较。 V2 V

02章 热力学第一定律

02章 热力学第一定律
We' ,4 > We' ,3 > We' ,2
We' ,2 = − ∫ p e dV = − p1 (V1 − V2 )
V1 V2
We' ,3 = − p" (V " −V2 ) − p' (V ' −V " ) − p1 (V1 − V ' ) We' ,4 = − ∫ ( p i + dp )dV ≈ − ∫ p i dp = − nRT ln
V2 V2 V1 V1
V1 = −We ,4 V2
We ,4 = We' ,4
ΔU = Q + W
(W = We, Wf = 0)
一、等容过程(isochoric process) ΔV = 0
适用条件:封闭体系平衡态,不做非体积功的等容过程。 二、等压过程(isobaric process) p1 = p2 = pe
热力学概论

Su
n
2.3
热力学的一些基本概念 P67
一.系统(体系 System)与环境(surroundings) (1)定义: (2)体系的分类:① 敞开体系(open system)② 封闭体系(closed system) ③ 孤立体系(isolated system) 二.体系的性质(状态性质、热力学性质、热力学变量) 分类 广度性质(extensive properties) : 其数值与体系的物质的量成正比, 具加和性, 是 n 的一次齐函数。 如体积、 又称为容量性质, 质量、熵等。 强度性质(intensive properties) : 其数值取决于体系自身的特点,不具加和性,是 n 的零次齐函数。如温度、压力等。

02第二章 热一律2-1热力学第一定律的实质及表达式

02第二章 热一律2-1热力学第一定律的实质及表达式

吸热膨胀作功(参看图2-3c) 吸热膨胀作功 外界供给热量 –Q 膨胀功 –W 热力学能 –U2
排气过程中(参看图2-3d) 排气过程中 外界消耗排气功 外界获得推动功 排气后(参看图2-3a) 排气后 质量 m = 0 总能量 E2 = 0
开口系在一个工作周期中的能量进出情况
Q=Q ∆E = 0
1 2 2 w = ( p2 v2 − p1v1 ) + (c2 − c1 ) + g ( z 2 − z1 ) + wsh 2
(2-16)
总功(Wtot )、膨胀功(W )、技术功( W t )和轴功 (W sh )之间的区别和内在联系 膨胀功、技术功、轴功孰大孰小取决于 ( p 2 v2 − p1v1 ) 1 2 2 (c2 − c1 ) 、 g ( z 2 − z1 ) 的大小和正负。
二、热力学第一定律表达式
1、一般热力系能量方程
- 热力学第一定律基本表达式
热力系总能量(total stored energy of system)为E(图2-1a)。它是 热力学能(U)、宏观动能(EK)和重力位能(EP)的总和: 热力学能,内部储存能 热力学能,
E =U+Ek +Ep
宏观动能 总能 宏ቤተ መጻሕፍቲ ባይዱ位能 外部储存能
e =u+ek +ep
根据质量守恒定律可知:热力系质量的变化等于流进和流出 质量的差:
dm = δm1 − δm2
根据热力学第一定律可知:
热力系输出的能量的总和= 加入热力系的能量的总和 - 热力系输出的能量的总和=热力系总能量的增量
(δQ + e1δm1) (δW总 + e2δm2 ) = ( E + dE ) − E −

物理化学(傅献彩著)02章 热力学第一定律

物理化学(傅献彩著)02章 热力学第一定律

状态函数(state function)
用以描述系统状态的函数称为状态函数 系统处于定态时,其性质仅取决于系统所处的 状态,而与系统的历史无关; 系统状态改变时,它的变化值仅取决于系统的 始态和终态,而与变化的途径无关。
异途同归,值变相等;周而复始,数值还原
状态函数在数学上具有全微分的性质。
Complete differential property
(1)等温过程 (isothermal process)
T1 T2 T环 p1 p2 p环
dV 0
(2)等压过程 (isobaric process)
(3)等容过程 (isochoric process)
(4)绝热过程 (adiabatic process)
(5)环状过程 (cyclic process)
1. 指出某一变化是否能发生 2. 估计变化的限度 3. 指明改进工作的方向
温度的概念
Et 1 mu 2 f (T ) 2
T 反映大量分子无规则运动的剧烈程度,具有统计概念, 与分子的平均平动能有函数关系。 平衡态(equilibrium state):一个不受外界影响的系统, 最终会达到一个稳定的状态,宏观上不再变化,并可用一 定的状态函数来描述它,这表明该系统达到了平衡态。
系统的性质
广度性质 广度性质(1) 强度性质 物质的量 广度性质(2)
m V
热力学平衡态 (thermodynamic equilibrium state)
当系统的诸性质不随时间而改变,则系统就处于 热力学平衡态。
热平衡(thermal equilibrium)
环境
系统
系统与环境
系统的分类
(1)敞开系统(open system) 系统与环境之间既有物质交换,又有能量交换

物理化学-02章_热力学第一定律

物理化学-02章_热力学第一定律
定律延伸:任一热力学均相体系,在平衡态各自存 在一个称之为温度的状态函数,对所有达到热平衡 的均相体系,其温度相同。
温标:a)摄氏温标,以水为基准物,规定水的凝 固为零点,水的沸点与冰点间距离的1/100为1℃。
热力学第零定律
b)理想气体温标 以低压气体为基准物质,规定水 的三相点为273.16 K,温度计中低压气体的压强为P ,则恒容时,任意其它压力时的温度为
§2.0 热力学概论
热力学方法特点和局限性
• 热力学方法是一种演绎的方法,结合经验所 得的基本定律进行演绎推理,指明宏观对象的 性质、变化方向和限度。
• 研究对象是大数量分子的集合体,研究宏 观性质,所得结论具有统计意义。
• 只考虑平衡问题,考虑变化前后的净结果, 但不考虑物质的微观结构和反应机理。
状态函数的特性可描述为: 异途同归,值变相等;
人的状态,变化,性质。
周而复始,数值还原。
状态函数在数学上具有全微分的性质。
状态函数的特性
(1)体系的状态确定,则状态函数也就确定了, 状态变化,状态函数也随着变化。
(2)状态函数的改变值只与始终态有关,与变 化途径无关。如果进行了一个微小的变化,可以 用数学的全微分表示状态函数的微小的变化:如 dp、dT。
(3)隔离体系(isolated system)
有时把体系和影响所及的环境一起作为孤立体
系来考虑。
大环境
无物质交换
孤立体系(2)
Siso Ssys Ssur
无能量交换
体系分类
若以体系中存在的物质种类或均匀的物质部分 数为分类依据,热力学体系还有:
单组分和多组分体系,如水和水溶液。
单相和复相体系/均相和多相体系, 体系中只 含一个均匀的物质部分称为单相体系,含有二个以 上均匀物质部分的体系称复相体系。如水和冰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
热力学第一定律
一、选择题
1. 理想气体向真空作绝热膨胀。

(A) 膨胀后,温度不变,压强减小;
(B) 膨胀后,温度降低,压强减小;
(C) 膨胀后,温度升高,压强减小;
(D) 膨胀后,温度不变,压强不变。

2. 氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使它们在体积不变情况下吸收相等的热量,则
(A) 它们的温度升高相同,压强增加相同;
(B) 它们的温度升高相同,压强增加不相同;
(C) 它们的温度升高不相同,压强增加不相同;
(D) 它们的温度升高不相同,压强增加相同。

3. 如图所示,一定量理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程;A →C 等温过程;A →D 绝热过程。

其中吸热最多的过程
(A) 是A →B ;
(B) 是A →C ;
(C) 是A →D ;
(D) 既是A →B ,也是A →C ,两过程吸热一样多。

4. 一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分。

两边分别装入质量相等、温度相同的H 2和O 2。

开始时绝热板P 固定,然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计)。

在达到新的平衡位
置后,若比较两边温度的高低,则结果是:
(A) H 2比O 2温度高; (B) O 2比H 2温度高;
(C) 两边温度相等, 且等于原来的温度;
(D) 两边温度相等, 但比原来的温度降低了。

5. 如图所示,一绝热密闭的容器,用隔板分成相等的两部分,
左边盛有一定量的理想气体,压强为0p ,右边为真空。

今将隔
板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是
0(A)p (B )2/0p 02(C)p γ (D) γ2/0p
(v p C
C /=γ) 6. 1 mol 的单原子分子理想气体从状态A 变为状态B ,如果不知是什么气体,变化过程也不知道,但A 、B 两态的压强、体积和温度都知道,则可求出:
(A) 气体所作的功;
(B) 气体内能的变化;
(C) 气体传给外界的热量; (D) 气体的质量。

二、填空题
1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是 ,而随时间不断变化的微观量是 。

2. 不规则地搅拌盛于良好绝热容器中的液体,液体温度在升高,若将液体看作系统,则:
(1) 外界传给系统的热量 零;
(2) 外界对系统作的功 零;
(3) 系统的内能的增量 零。

(填大于、等于、小于) 3. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡
p
2 态B ,将从外界吸收热量416 J ;若经准静态等压过程变到与平衡态B 有相同的温度的平衡态C ,将从外界吸收热量582 J 。

所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所作的功为 。

4. 常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i ),在等压过程中吸热为Q ,对外界作功为A ,内能增加为△E ,则Q A = ,Q
E ∆= 。

5. 刚性双原子分子的理想气体在等压下膨胀所作的功为A ,则传递给气体的热量为 。

6. 1 mol 的单原子理想气体,从状态),,(I 111T V p 变化至状态),,(I I 222T V p ,如图所示。

此过程气体对外界作功为 , 吸收热量为 。

三、计算题 1. 汽缸内有2 mol 氦气,初始温度为27℃,体积为20 L(升),
先将氦气等压膨胀,直至体积加倍,然后绝热膨涨,直至回复初温为止.把氦气视为理想气体.试求:
(1) 在p ―V 图上大致画出气体的状态变化过程. (2) 在这过程中氦气吸热多少?
(3) 氦气的内能变化多少?
(4) 氦气所作的总功是多少?
(普适气体常量R =8.31 1
1K mol J --⋅⋅)
2. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)
3. 一定量的理想气体在p ~V 图中的等温线与绝热线交点处两线的斜率之比为0.714,求其定容摩尔热容。

p 12。

相关文档
最新文档