第二章 热力学第一定律

合集下载

第二章 热力学第一定律

第二章 热力学第一定律

T (B, ,T)
£K r Hm (T)
标准摩尔燃烧焓[变]的定义 在温度 T 物质 B 完全氧化( T)表示 叫标准摩尔燃烧焓 g H2O(l)的 T)计算
£K r Hm £K cHm £K r Hm B
-
)成相同温度下指定产物时的标准摩尔焓[变] 用
£K cHm
(B
指定产物 CO2 由
£K c Hm
物理化学学习指导
第二章 热力学第一定律
第二章 热力学第一定律
一. 基本概念及公式
1 热力学基本概念
(1)系统和环境 系统——热力学研究的对象(是大量分子 外的周围部分存在边界 环境——与系统通过物理界面(或假想的界面)相隔开并与系统密切相关的周围部分 根据系统与环境之间发生物质的质量与能量的传递情况 系统分为三类: 原子 离子等物质微粒组成的宏观集合体) 系统与系统之
H = Qp 适用于真实气体 理想气体 液体
T2 T1
∆H = ∫ nC p ,m dT
T1
T2
固体定压过程 理想气体任意 p
V
T 变化过程
∆U = ∫ nCV ,m dT = nC v ,m (T2 − T1 ) ∆H = ∫ nC p ,m dT = nC p ,m (T2 − T1 )
T1 T2
体积功 功有多种形式 通常涉及的是体积功 它是系统发生体积变化时的功 定义为
δW = − p su dV
式中 psu 为环境的压力
W = ∑ δW = − ∫ p su dV
V2 V1
对恒外压过程
psu = 常数
W = − p su (V2 − V1 ) W = − ∫ pdV
V1 V2
对可逆过程 因 p =psu

第二章热力学第一定律

第二章热力学第一定律
敞开系统 系 统
所研究的 物质对象
系统与环境
物质进出 能量得失 √ √
封闭系统 隔离系统




状态及状态函数
系统有p, V, T, 组成, 内能等等宏观性质, 系统内的每个粒子 又有结构, 运动情况和粒子间相互作用等微观性质. 系统的宏观 性质有些是各粒子微观性质的某种平均作用, 如温度是分子热 运动的平均强度; 有些则是粒子微观性质的总体表现, 如压力是 分子运动碰撞容器壁面时对单位面积壁面的总垂直力.
状态及状态函数
系统的状态 是系统所有宏观性质的综合表现. 具有单值对应的函数关系 (a) 系统所有的性质一定, 状态就一定; (实际上当系统中物质量及组成, 温度, 压力(或体积) 一定时, 状态便可确定) (b) 状态一定, 系统所有的性质均一定. 因此, 宏观性质又称为状态函数 状态函数的基本性质——状态函数法的基础. • 其微小变化值可用数学上的全微分表示,如dT, dp, dV… • 其增量只与系统的始态和终态有关, 与具体变化途径无关
系统的宏观性质简称性质, 有的可以测量, 有的不可以测量. 性质可分为如下两大类:
系统的性质
{ 强度性质 无空间上的加和性: T,
T p T p
广延性质 有空间上的加和性: n, V ,U, H ,S ,G …
p ,Vm , Um …
nL VL UL SL nR VR UR SR
两者的关系:广延性质的 摩尔量是(准)强度性质, 如:摩尔体积 Vm 等.
{p
su
}
W
p始
一粒粒取走砂粒 (剩 余 砂 粒 相 当 前 述 一个重物)


V终
p始
V始

第2章热力学第一定律

第2章热力学第一定律

技术功:技术上可以利用的功
1 2 wt c gz wi 2
q u w
wt w pv w p2 v2 p1v1
可逆过程
wt pdv p1v1 p2v2 pdv d pv vdp
2 2 2 2 1 1 1 1
第二章 热力学第一定律
本章要求
理解热力学第一定律的实质—能量守恒定律 掌握流动功,轴功及技术功的概念 注意热力学能,焓的引入及定义
掌握热力学第一定律能量方程的基本表达式 及稳定流动能量方程
本章学习流程
热力学第一定律的提出
热力系能量的组成
能量之间的传递和转化 + 焓
闭口系能量方程 + 开口系能量方程 (第一定律数学表达式)
热力学能只取决于热力系内部的状态,且具有 可加性,是一个具有广延性质的状态参数

2
1
du u 2 u1
du 0
2u 2u Tv vT
u u du dT dv T v v T
二.外储存能
工质在参考坐标系中作为一个整体,因有宏观 速度而具有动能,因有高度差而具有位能
热力学能:是指储存于热力系内部的能量. 用U表示,单位是J或 kJ,单位质量工质的热力 学能称为比热力学能,用u表示,单位是J/kg或 kJ/Kg
热力学能是工质的状态参数,完全取决于工 质的初态和终态,与过程的途径无关
热力学能为两个独立状态参数的函数: u=f(T,v)或u=f(T,p)或u=f(p,v)
能量方程式的应用
确定研究对象—选好热力系统
写出所研究热力系对应的能量方程
针对具体问题,分析系统与外界的相互作用, 作出某些假设和简化,使方程简单明了 求解简化后的方程,解出未知量

工程热力学 第二章 热力学第一定律

工程热力学 第二章  热力学第一定律

wt

1 2
cf22
cf21
gz2
z1 ws
(2-11)
将轴功的表达式代入上式,即有:
2
1 d ( pv)
2
2
1 pdv 1 vdp
wt 12 pdv p2v2 p1v1 12 vdp (2-11a)
由上式可知,准静态过程的 技术功的大小可用过程线左边的 面积来表示。
准静态 pdv d( pv) wt
wt pdv d( pv) pdv ( pdv vdp) vdp
wt vdp wt vdp
准静态
q du pdv
q dh vdp
热一律解析式之一 热一律解析式之二
技术功在示功图上的表示
q12 (u2 u1) w12
Q dU pdV (2-4)
2
Q12
(U2
U1)
pdV
1
(2-4a)
q du pdv (2-4b)
2
q12
(u2 u1)
pdv
1
(2-4c)
2-3 开口系统能量方程 Energy balance for open system
式中各项的正负号规定为:系统吸热为正,放热为负; 系统对外作功为正,外界对系统作功为负。
上式既适用于准静态过程,也适用于非准静态过程。
对于无耗散的准静态过程, w pdv
因此上述诸式可写为:
Q dU W
Q12 (U2 U1) W12
对1kg工质,有:
q du w
所以有:
h1 h2

1 2

第二章热力学第一定律

第二章热力学第一定律

第二章 热力学第一定律主要内容1.热力学基本概念和术语(1)系统和环境:系统——热力学研究的对象。

系统与系统之外的周围部分存在边界。

环境——与系统密切相关、有相互作用或影响所能及的部分称为环境。

根据系统与环境之间发生物质的质量与能量的传递情况,系统分为三类: (Ⅰ)敞开系统——系统与环境之间通过界面既有物质的质量传递也有能量的传递。

(Ⅱ)封闭系统——系统与环境之间通过界面只有能量的传递,而无物质的质量传递。

(Ⅲ)隔离系统——系统与环境之间既无物质的质量传递亦无能量的传递。

(2)系统的宏观性质:热力学系统是大量分子、原子、离子等微观粒子组成的宏观集合体。

这个集合体所表现出来的集体行为,如G A S H U T V p ,,,,,,,等叫热力学系统的宏观性质(或简称热力学性质)。

宏观性质分为两类:(Ⅰ)强度性质——与系统中所含物质的量无关,无加和性(如T p ,等); (Ⅱ)广度性质——与系统中所含物质的量有关,有加和性(如H U V ,,等)。

而强度性质另一种广度性质一种广度性质= n V V =m 如,等V m =ρ(3)相的定义:相的定义是:系统中物理性质及化学性质完全相同的均匀的部分。

(4)系统的状态和状态函数:系统的状态是指系统所处的样子。

热力学中采用系统的宏观性质来描述系统的状态,所以系统的宏观性质也称为系统的状态函数。

(Ⅰ) 当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。

即系统变化时其状态函数的改变量=系统终态的函数值-系统始态的函数值。

(Ⅱ) 状态函数的微分为全微分,全微分的积分与积分途径无关。

即:2121X X X dX X X ∆==-⎰y yX x x X X x y d d d ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=(5)热力学平衡态:系统在一定环境条件下,经足够长的时间,其各部分可观测到的宏观性质都不随时间而变,此后将系统隔离,系统的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。

3第二章热力学第一定律

3第二章热力学第一定律
闭口系:能量传递只有传热 作功两种 对许多闭口系统而言, 传热和 两种; ●对闭口系:能量传递只有传热和作功两种;对许多闭口系统而言,动 均无变化,无流动功。 能 Ek 位能Ep均无变化,无流动功。 对开口系 传热、作功、流动功。 口系: ●对开口系:传热、作功、流动功。
●闭口热力系统总储存能的变化: △E=△U=U2-U1 闭口热力系统总储存能的变化:
热力学第一定律: 热力学第一定律: Q -W=△E=△U 或 Q =△U+ W
Q
W
一、闭口系统能量方程式
Q = U + W 一 δQ = dU + δW
般 式 q = u + w
Q
W
δq = du + δw δq = du + pdv
2
单位工质
适用条件: ) 适用条件:1)任何工质 2) 任何过程
●过程量
符号w ●符号
轴功
●定义 ●符号 ●实例
系统通过机械轴与外界传递的机械功 ws 规定系统输出轴功为正,输入为负 规定系统输出轴功为正, ws
…………… …………… …………… …………… ……………
ws
闭口系统
开口系统
2-4 焓enthalpy
流动工质传递的总能量 pV + U + 0.5mc2 + mgz h= u + pv 定义焓: 定义焓:H=U+ pV 单位: 单位: J(kJ) kJ) J/kg(kJ/kg) J/kg(kJ/kg) 对理想气体:h=u+pv=u+RT=f( ●H是状态参数 ,对理想气体:h=u+pv=u+RT=f(T) 是 H为广延参数 h为比参数 ● H为广延参数 H=U+pV= m(u+pv)= mh, h为比参数 物理意义: ●物理意义:

第二章 热力学第一定律

第二章 热力学第一定律
系统能量的增加: 系统能量的增加:∆ECV=0
进入系统的能量-离开系统的能量=系统能量的增加 (2-9) 进入系统的能量-离开系统的能量= - )
1 2 Q = m2 (u2 + cf 2 + gz2 ) + m2 p2 v2 2 1 2 − m1 (u1 + cf 1 + gz1 ) − m1 p1v1 + Wi 2
1 2 wt = (cf 2 − cf21 ) + g ( z 2 − z1 ) + wi 2
比较式(2-10b)和(2-16) 比较式( - 和 - )
(2 − 19)

q = ∆u + w q = ∆h + wt = ∆u + ∆( pv) + wt 1 2 w = ∆( pv) + wt = ∆( pv) + ∆cf + g∆z + wi 2
由于m 由于 1=m2=m, 整理上式得
1 2 Q = m(u2 + p2 v2 + cf 2 + gz2 ) 2 1 2 − m(u1 + p1v1 + cf 1 + gz1 ) + Wi 2 令 H = U + pV 代入上式得
1 Q = ∆H + m∆cf2 + mg∆z + Wi 2 1 2 δQ = dH + mdcf + mgdz + δWi 2
m1 = m2 = m
∆ECV = 0
稳定系统的能量分析: 稳定系统的能量分析: 进入系统的能量: 进入系统的能量:
1 2 Q + E1 + p1V1 = Q + m1 (u1 + cf 1 + gz1 ) + m1 p1v1 2 离开系统的能量: 离开系统的能量: 1 2 E2 + p2V2 + Wi = m2 (u 2 + cf 2 + gz 2 ) + m2 p2 v2 + Wi 2

第二章 热力学第一定律

第二章 热力学第一定律
W a¢ = - 3p 0 (V 0 - 3V 0 ) = 6p 0V 0 = 2R T
( )分两次将两堆细砂加上 : b¢
W b¢ = - 2p 0 (1.5V 0 - 3V 0 ) - 3p 0 (V 0 - 1.5V 0 ) = 4.5p 0V 0 = 1.5R T
( c¢)将细砂一粒粒加到活塞上直至加完
2. 可逆体积功的计算
Wr = -
òV
V2
1
V2
1
p dV
(1)理想气体的恒温可逆体积功
W T ,r = -
蝌 V
p dV = -
V2 V1
nR T dV V
V1 = nR T ln V2 p2 = nR T ln p1
例题2-2 不同途径功的计算
§2.5 恒容热、恒压热及焓 1. 恒容热(QV): 热是非状态函数---与途径有关
第二章
热力学第一定律
§2.1
概论
热力学是自然科学中建立最早的学科之一
1. 第一定律:能量守恒,解决过程的能量衡算
问题(功、热、热力学能等) 2. 第二定律:过程进行的方向判据 3. 第三定律:解决物质熵的计算
热力学基本定律是生产经验和科学实验的总结,它们
不能用其它理论方法加以证明,但其正确性毋庸置疑。
(2)状态函数的分类——广度量和强度量
按状态函数的数值是否与物质的数量有关,将其分为广 度量(或称广度性质)和强度量(或称强度性质)。
广度量:具有加和性(如V、m、U) 强度量:没有加和性(如p、T、 ) 注意:由任何两种广度性质之比得出的物理量则为强度 量,如摩尔体积 等
状态函数
(3)平衡态 当系统与环境间的联系被隔绝后,系统的热力学性质 不随时间而变化,就称系统处于热力学平衡态。 热力学研究的对象就是处于平衡态的系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章热力学第一定律思考题1设有一电炉丝浸于水中,接上电源,通过电流一段时间。

如果按下列几种情况作为系统,试问ΔU,Q,W为正为负还是为零(1)以电炉丝为系统;(2)以电炉丝和水为系统;(3)以电炉丝、水、电源及其它一切有影响的部分为系统。

2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,ΔU,Q,W为正为负还是为零(2)如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,ΔU,Q,W为正为负还是为零作业题1 (1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干[答案:(1) 吸收40J;(2) 16 570J] 2在一礼堂中有950人在开会,每个人平均每小时向周围散发出4.2xl05J的热量,如果以礼堂中的空气和椅子等为系统,则在开会时的开始20分钟内系统内能增加了多少如果以礼堂中的空气、人和其它所有的东西为系统,则其ΔU=[答案:×l08J;0]3 一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了1 265 000J,试求算此过程中蓄电池将吸收还是放出多少热[答案:放热401000J] 4 体积为的理想气体作定温膨胀,其压力从106Pa降低到105Pa,计算此过程所能作出的最大功为若干[答案:9441J]5 在25℃下,将50gN 2作定温可逆压缩,从105Pa 压级到2×106Pa ,试计算此过程的功。

如果被压缩了的气体反抗恒定外压105Pa 作定温膨胀到原来的状态,问此膨胀过程的功又为若干[答案:–×104J ;×103J]6 计算1mol 理想气体在下列四个过程中所作的体积功。

已知始态体积为25dm 3终态体积为100dm 3;始态及终态温度均为100℃。

(1)向真空膨胀;(2)在外压恒定为气体终态的压力下膨胀;(3)先在外压恒定为体积等于50dm 3时气体的平衡压力下膨胀,当膨胀到50dm 3(此时温度仍为100℃)以后,再在外压等于100 dm 3时气体的平衡压力下膨胀;(4)定温可逆膨胀。

试比较这四个过程的功。

比较的结果说明了什么问题[答案:0;2326J ;310l J ;4299J]习题10 试证明对遵守范德华方程的1mol 实际气体来说,其定温可逆膨胀所作的功可用下式求算。

(范德华方程为()V =m 2a p b RT V m ⎛⎫ ⎪+- ⎪⎝⎭) 11,2 =ln +a ,1,2,1V b m W RT V b V V m m m ⎛⎫- ⎪- ⎪-⎝⎭习题11 假设CO 2遵守范德华方程,试求算1mol CO 2在27℃时由10dm 3定温可逆压缩到1dm 3所作的功。

(所需范德华常数自己查表)。

[答案:—5 514J] 习题12 1mol 液体水在100℃和标准压力下蒸发,试计算此过程的体积功。

(1)已知在100℃和标准压力下,水蒸气的比体积(体积除以质量)为1 677cm 3·g -1,水的比体积为·g -1。

(2)假设水的体积比之蒸气的体积可略去不计,蒸气作为理想气体。

比较两者所得的结果,说明(2)的省略是否合理。

[答案:×103J ;×103J]习题13 已知在0℃和标准压力下,冰的密度为·cm -3,水的密度为·cm -3。

试计算在0℃及标准压力下,1mol 冰熔化成水所需之功。

(要注意本题所需之功比之上题的涉及有蒸气的相变化的功是很小的)[答案:]习题14 在373K 和标推压力下,水的蒸发热为×104J·mol -1,1mol 液态水体积为,蒸气则为30 200cm 3。

试计算在该条件下1mol 水蒸发成气的ΔU 和ΔH 。

[答案:×104J ;×104J]习题15 一理想气体在保持定压105Pa 下,从10dm 3膨胀到16dm 3,同时吸热1 255J ,计算此过程的ΔU 和ΔH 。

[答案:655J ;1 255J]习题16 假设N 2为理想气体。

在0℃和5×105Pa 下,用2dm 3N 2作定温膨胀到压力为105Pa 。

(1)如果是可逆膨胀;(2)如果膨胀是在外压恒定为105Pa 的条件下进行。

试计算此两过程的Q 、W 、ΔU 和ΔH 。

[答案:(1)1 609J ;0;(2)800 J ;0] 习题17 试由0U V T ∂⎛⎫= ⎪∂⎝⎭及0H V T ∂⎛⎫= ⎪∂⎝⎭证明理想气体的0U p T ⎛⎫∂= ⎪∂⎝⎭及0H p T ⎛⎫∂= ⎪∂⎝⎭。

习题18 有3mol 双原子分子理想气体由25℃加热列150℃,试计算此过程的△U 和△H 。

[答案:×103J ;×104J]习题19 有1mol 单原子分子理想气体在0℃,105Pa 时经一变化过程,体积增大一倍,△H =2 092J ,Q =1 674J 。

(1)试求算终态的温度、压力及此过程的△U 和W ;(2)如果该气体经定温和定容两步可逆过程到达上述终态,试计算Q 、W 、△U 和△H 。

[答案:(1),×104 Pa ,1255J ,419J , (2)2828 J ,1573J ,1255J,2092J]习题20 已知300K 时NH 3的m U V T ∂⎛⎫⎪∂⎝⎭=840 J ·m -3·mol -1, CV,m=·K -1·mol -1。

当1mol NH 3气经一压缩过程其体积减少10㎝3而温度上升2度时,试计算此过程的△U 。

[答案:]习题21 试证明对任何物质来说()()12U V C C p p V V T pT H p C C V p V p T V T ⎡⎤∂∂⎛⎫⎛⎫-=+⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫∂∂⎛⎫-=-⎢⎥ ⎪ ⎪∂∂⎝⎭⎝⎭⎢⎥⎣⎦习题22 计算1gN 2在常压下由600℃冷却到20℃时所放出的热,所需数据自己查找。

[答案:629J]习题23 试求算2mol100℃,4×104Pa 的水蒸气变成l00℃及标准压力的水时,此过程的△U 和△H 。

设水蒸气可视为理想气体,液体水的体积可忽略不计。

已知水的摩尔气化热为4 0670J ·mol -1。

[答案:—75 138J ;—81 340J] 习题24 已知任何物质的2C C TV p V αβ-= 其中α为膨胀系数,β为压缩系数。

现已查得25℃时液体水的定容热容C v ,m=·K -1·mol -1, α=×10-4K -1, β=×10-10Pa -1,而水的V m =18×10-6m 3·mol -1。

试计算液体水在25℃时的C p,m =[答案:·K -1·mol -1 ] 习题25 一物质在一定范围内的平均定压摩尔热容可定义为(),21Q p C p m n T T =-其中n 为物质的量。

已知NH 3的 2-1-13533.64 2.9310 2.1310J K mol ,2K K T T C p m ⎛⎫-- ⎪=+⨯+⨯ ⎪⎝⎭试求算NH 3在0~500℃之间的平均定压摩尔热容,C p m 。

[答案:·K -1·mol-1 ]习题26 已知N 2和O 2的定压摩尔热容与温度的关系式分别为 ()()()-13N 27.87 4.2710J mol 2,K 135-1-1O 36.1620.84510 4.31010J K mol ,22K /K T C p m T C p m T ⎛⎫-=+⨯ ⎪⎝⎭⎛⎫- ⎪=+⨯-⨯ ⎪⎝⎭试求空气的,p m C 与温度的关系式应为如何习题27 1molH 2在25℃、105 Pa 下,经绝热可逆过程压缩到体积为5dm 3,试求⑴终态温度T 2;⑵终态压力p 2;⑶过程的W ,△U 和△H 。

(H 2的C V ,m 可根据它是双原子的理想气体求算)[答案: 565K ;×105 Pa ;5550J ;5550J ;7769J]习题28 25℃的空气从106 Pa 绝热可逆膨胀到105 Pa ,如果做了×104J 的功,计算空气的物质的量。

(假设空气为理想气体,空气的热容数据可查表或作一近似计算)[答案:]习题29 某理想气体的C p,m=·K-1·mol-1,⑴当2mol此气体在25℃,×106Pa时,作绝热可逆膨胀到最后压力为5×105 Pa;⑵当此气体在外压恒定为5×105Pa时作绝热快速膨胀;试分别求算上述两过程终态的T和V及过程的W、△U和△H。

[答案:⑴231K;;-3697J;-3697J;-4811J;⑵252K; dm3;2538J;-2538J;-3303J]习题30 1mol某双原子分子理想气体发生可逆膨胀:(1)从2 dm3,106 Pa定温可逆膨胀到5×105Pa;⑵从2 dm3,106 Pa绝热膨胀到5×105 Pa。

⑴试求算过程⑴和⑵的W,Q,△U和△H;⑵大致画出过程⑴和⑵在p—V图上的形状;⑶在p—V图上画出第三个过程将上述两过程的终态相连,试问这第三个过程有何特点(是定容还是定压)[答案:⑴1386J;1386J;0;0;⑵919J;0;-919J;-1286J]习题31某高压容器所含的气体可能是N2或是Ar。

今在25℃时取出一些样品由5 dm3绝热可逆膨胀到6 dm3,发现温度下降了21℃,试判断容器中为何气体[答案:N2]在573K及0至6×10-6Pa的范围内,N2(气)的焦耳—汤姆逊系数可近似用下式表示μJ—T=[×10-7–×10-14(p/Pa)]K·Pa-1假设此式与温度无关。

N2(气)自6×10-6Pa作节流膨胀到2×10-6Pa,求温度变化。

[答案:ΔT=-]习题33 已知CO2的μJ—T=×10-5K·Pa-1,C p,m=·K-1·mol-1,试求算50gCO2在25℃下由105Pa定温压缩到106Pa时的ΔH。

如果实验气体是理想气体,则ΔH又应为何值[答案:-401J;0]习题34 假设He为理想气体。

1molHe由2×10-5Pa、0℃变为10-5Pa、50℃,可经两个不同的途径:(1)先定压加热,在定温可逆膨胀;(2)先定温可逆膨胀;再定压加热。

相关文档
最新文档