第一章热力学第一定律

合集下载

第一章.热力学第一定律

第一章.热力学第一定律

1.4-2 可逆过程
一次(两次)压缩过程 环境对系统作的功 大于
一次(两次)膨胀过程 系统对环境作的功 原因:多作的功变成热传给了环境 对于准静态膨胀过程的逆过程:压缩可使系统 复原时,环境也同时恢复到原状。这种: 能通过原来过程的反方向而使系统和环境都同 时复原,不留下任何痕迹的过程称为可逆过程
z 可逆过程是一种理想过程,是对真实世 界的科学抽象 一些重要的热力学函数只有通过可逆过 程才能求得
热力学第二定律
开尔文(Lord Kelvin, 1824-1907,英) 1848 克劳修斯(Clausius,1822-1888 ,德)1850
z 构成了热力学的基础
z 人类经验总结,物理化学中最基本定律
z 有着极其牢固的实验基础,其结论具有 高度普遍性和可靠性
z 20世纪初建立了热力学第三定律
一些过程的设计与求算: 1. 理想气体等温过程
∆U =0 ∆H =0 Q=W (可由功求热)
z 等温可逆过程
∫ ∫ W = V2 PdV = V2 nRT dV =nRT ln V2 = Q
V1
V V1
V1
z 对抗恒外压 W= P外 ( V2- V1) = Q
2. 理想气体绝热过程 Q=0 ∆U= nCv.m∆T ∆H = nCp.m∆T W=-∆U(可由内能求功)
浴的温度发生变化即∆T=0, 由此可知
系统 无热传递 环境
Q=0
(2) 气体 向真空膨胀,P外=0, W膨=0
由第一定律则: ∆U=Q-W膨=0 此时:dU=(∂U/∂T)vdT + (∂U/∂V)TdV =0
因dT =0 (∂U/∂v)Tdv=0 但dv≠0 故 (∂U/∂v)T = 0 同理可证 (∂U/∂P)T = 0 即U=f(T)

第一章 热力学第一定律

第一章  热力学第一定律
pdV pvdm
对于单位质量工质,
wf pv
流动功是由泵或风机加给被输送工质并随 工质流动向前传递的一种能量,非工质本身具 有的能量。
40
二、开口系统的稳定流动能量方程 在 时间内,
进口质量 m1、 流 速 cf1、 标 高 z1
出口质量 m2、 流 速 cf2、 标 高 z2
稳定流动:
34
(2)示热图 在可逆过程中 单位质量工质与外 界交换的热量可以 用T-s 图(温熵图) 上过程曲线下的面 积来表示。 温熵图也称 示热图
q Tds
1 2
例1-5
35
§1-5
热力学第一定律及其解析式
一、热力学第一定律的实质
热力学第一定律实质就是热力过程中的 能量守恒和转换定律 ,可表述为 :
W pAdx pdV
对于可逆过程1~2: W

2 1
pdV
30
单位质量工质所作的膨胀功用符号w 表 示,单位为J/kg 或 kJ/kg。
w pdv
膨胀:dv > 0 , w > 0 压缩:dv < 0 , w < 0 (2) 示功图(p-v图) w的大小可以 pv 图上的过程曲线下 面的面积来表示 。 功是过程量而不 是状态量。
w pdv
1
2
31
二、热量与示热图
(1)热量 系统与外界之间依靠温差传递的能量称 为热量。符号:Q ;单位:J 或kJ。 单位质量工质所传递的热量用q 表示,单 位为 J/kg 或 kJ/kg。 热量正负的规定: 系统吸热:q > 0 ; 系统放热:q < 0 。 热量和功量都是系统与外界在相互作用的过 程中所传递的能量,都是过程量而不是状态量

物理化学知识点总结(热力学第一定律)

物理化学知识点总结(热力学第一定律)

热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。

封闭系统:与环境只有能量交换而无物质交换的系统。

(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。

2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。

根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。

广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。

强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。

注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。

它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。

或者说dU与过程无关而δQ和δW却与过程有关。

这里的W既包括体积功也包括非体积功。

以上两个式子便是热力学第一定律的数学表达式。

它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。

三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。

将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。

当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。

大学化学《物理化学-热力学第一定律及其应用》课件

大学化学《物理化学-热力学第一定律及其应用》课件

(1)克服外压为 p ',体积从V1 膨胀到V ' ; (2)克服外压为 p",体积从V ' 膨胀到V " ;
(3)克服外压为 p2,体积从V "膨胀到V2 。
We,3 p '(V 'V1)
p"(V "V ')
p
p1
p1V1
p2 (V2 V ")
p'
所作的功等于3次作功的加和。p "
p 'V ' p"V "
可见,外压差距越小,膨 p2 胀次数越多,做的功也越多。
V1 V ' V "
p2V2
V2 V
上一内容 下一内容 回主目录
返回
2024/9/13
功与过程(多次等外压膨胀)
p"
p' p1
V"
V1
V'
p
p1
p1V1
p2
V2
p'
p 'V '
阴影面积代表We,3
p"
p"V "
p2
p2V2
上一内容
下一内容
V1 V ' V "
第三步:用 p1 的压力将体系从V ' 压缩到 V1 。
p
W' e,1
p"(V "
V2 )
p1
p1V1
p' (V ' V ")
p'
p 'V '
p1(V1 V ' )
回主目录
V2 V

热力学第一定律

热力学第一定律

热 力 学第一章 热力学第一定律§1 热力学第一定律 一.准静态过程系统的状态发生变化时—系统在经历一个过程。

过程进行的任一时刻,系统的状态并非平衡态.热力学中,为能利用平衡态的性质,引入准静态过程的概念。

性质:1.准静态过程:是由无数个平衡态组成的过程即系统的每个中间态都是平衡态。

2.准静态过程是一个理想化的过程,是实际过程的近似。

实际过程仅当进行得无限缓慢时才可看作是准静态过程 。

·拉动活塞,使系统由平衡态1 →状态2,过程中系统内各处的密度(压强、温度)并不完全相同,要过一会儿时间,状态 2才能达到新的平衡。

所以,只有过程进行得无限缓慢,每个中间态才可看作是平衡态。

☆怎样判断“无限缓慢”?弛豫时间τ:系统由非平衡态到平衡态所需时间。

准静态过程条件: ∆t 过程进行 >> τ例如,实际汽缸的压缩过程可看作准静态过程, ∆t 过程进行 = 0.1秒τ = 容器线度/分子速度= 0.1米/100米/秒 = 10-3秒3.过程曲线:准静态过程可用P -V 图上 一条线表示。

状态1状态2二.功、内能、热量1.功 ·通过作功可以改变系统的状态。

·机械功(摩擦功、体积功)2.内能·内能包含系统内:(1)分子热运动的能量;(2)分子间势能和分子内的势能;(3)分子内部、原子内部运动的能量; (4)电场能、磁场能等。

·内能是状态的函数*对于一定质量的某种气体,内能一般是T 、V 或P 的函数; *对于理想气体,内能只是温度的函数 E = E (T )*对于刚性理想气体分子, i :自由度; ν :摩尔数 ·通过作功改变系统内能的实质是:分子的有规则运动能量和分子的无规则运动能量的转化和传递。

3.热量·传热也可改变系统的状态,其条件是系统和外界的温度不同。

·传热的微观本质:是分子的无规则运动能量从高温物体向低温物体传递。

第一章 热力学第一定律

第一章 热力学第一定律

混合气体的分压和分体体积
分压定义:
pi = pyi
ECNU
yi ——混合 气体中i组分 摩尔分数

分体积定义:
i
pi pi yi p
Vi = Vyi
V V y V
i i i i
混合理想气体
混合理想气体的定义
ECNU
低压气体 实验
(1)满足pV = nRT 的状态方程; (2)用半透膜将两个混合理想气体隔开,不论气体组 成如何,能透过膜的组分在膜两边的分压相等。 混合理想气体中某组分的分压就是该组分分子碰撞 器壁产生的压力。
状态 状态函数
ECNU
异途同归
状态函数的特性
值变相等
周而复始
数值还原
状态函数在数学上具有全微分的性质。
状态函数的全微分性质
ECNU
状态函数是单值、连续、可微、可积的函数,在状态 图上是一条连续变化的平滑曲线。其全微分性质包括 : 2
(1)
z dz z2 z1
1
( 1 )状态函数的变化与积 分路线无关 ( 2 )在任意循环过程中状 态函数的变化值等于0 ( 3 )双变量体系状态函数 对两个状态参量的混合偏导 数与求导次序无关
强度性质是体系的内在性质,反映体系质的特征, 物理化学中有时体系的状态指的就是其强度性质。
广度性质与强度性质之间关系
ECNU
两个一次奇函数之比是一个零次奇
函数。因此体系某两个广度性质之比等
于体系的一个强度性质,例如
体积/物质的量=摩尔体积(Vm);
质量/体积=密度()
状态方程
ECNU
体系状态函数之间的定量关系式称为状态方程 (state equation )。 对于一定量的单组分均匀体系,状态函数T,p,V 之间有一定量的联系。经验证明,只有两个是独立 的,它们的函数关系可表示为: T=f(p,V) p=f(T,V) V=f(p,T) 例如,理想气体的状态方程可表示为: pV = nRT

第一章 热力学第一定律

第一章 热力学第一定律

1.1.2.3 过程和途径
1.过程:当体系的状态发生变化时,状态变 化的经过,强调变化的方式 2.途径:完成变化的具体步骤,强调经由路 径的不同
注: 过程和途径不是严格区分的两个概念, 不强调方式和路径的时候可通用
几种常见的过程
• 等/定温过程:体系始态、终态及过程中的温度等于环境 温度且为常数。 T始=T终=T体=T环=常数 • 等/定压过程:体系始态、终态及过程中的压力等于环境 压力且为常数。 p始=p终=p体=p环=常数 • 等/定容过程:在变化过程中,体系的容积始终保持不变。 V体=常数

二次恒外压压缩
体系返回原状态,体系虽然恢复原 态,但环境失去功,得到热
等温可逆膨胀
V2 WⅣ nRT ln V1
W WⅣ WⅣ 0 , 又U Q W 0, 则Q 0
等温可逆压缩 V1 WⅣ nRT ln V2
体系循原过程返回,不仅体系恢复原态,而且未给 环境留下功热转化的痕迹,即环境也恢复原状态
1.1.3.1 能量守恒定律
1840年左 右,焦耳 发现了热 功当量
1.1.3.1 能量守恒定律
热功当量
升高相同的温度
状态1 加热 W=0 状态2 热 功 当 量
Q=0
Q=0
机械功 电功
1.1.3.1 能量守恒定律
电量热法
1.1.3.1 能量守恒定律
机械量热法
1.1.3.1 能量守恒定律
到1850年,科学界公认能量守恒定律是自然界的普 遍规律之一。
1.1.3.3 “热一”数学表达 式
Q
W
W
U1
Q
U2
U2-U1 = Q+W
1.1.3.3 “热一”数学表达式

第一章 热力学第一定律

第一章  热力学第一定律

第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。

(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。

用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。

ΔM (实)=ΔM (设)。

这种方法称为热力学的状态函数法。

③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。

此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。

⎰-=21V V a m bdV p W ,其中p amb 为环境压力。

Q 由热容计算或由热力学第一定律求得。

dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂xM y M y y x x M )(22尤拉关系式xy My x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2) 2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。

此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 热力学第一定律一、选择题1.下述说法中,哪一种正确( )(A)热容C 不是状态函数; (B)热容C 与途径无关;(C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。

2.对于内能是体系状态的单值函数概念,错误理解是( )(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。

3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( )(A) O 2 (B) Ar (C) CO 2 (D) NH 34.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( )(A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -1 5.已知反应)()(21)(222g O H g O g H =+的标准摩尔反应焓为)(T H mr θ∆,下列说法中不正确的是( )。

(A). )(T H m r θ∆是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ∆是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ∆是负值 (D). )(T H m r θ∆与反应的θm r U ∆数值相等6.在指定的条件下与物质数量无关的一组物理量是( )(A) T , P, n (B) U m , C p, C V(C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B) 7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( ) (A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0 (C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠08.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( ) (A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热 (C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等 9.为判断某气体能否液化,需考察在该条件下的( )(A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值10.某气体的状态方程为PV=RT+bP(b>0),1mol该气体经等温等压压缩后其内能变化为()(A) ΔU>0 (B) ΔU <0 (C) ΔU =0 (D) 该过程本身不能实现11.均相纯物质在相同温度下C V > C P的情况是()(A) (∂P/∂T)V<0 (B) (∂V/∂T)P<0(C) (∂P/∂V)T<0 (D) 不可能出现C V>C P12.理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是()(A) T可逆> T不可逆, V可逆> V不可逆, ΔH可逆>ΔH不可逆(B) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆<ΔH不可逆(C) T可逆< T不可逆, V可逆> V不可逆, ΔH可逆<ΔH不可逆(D) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆>ΔH不可逆13.1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。

这两个过程中功和热的关系为()(A) W1 > W2, Q1 > Q2(B) W1 < W2 , Q1 < Q2(C) W1 = W2, Q1 = Q2(D) W1 > W2 , Q1 < Q214.对于内能是体系状态的单值函数概念,错误理解是( )(A)体系处于一定的状态,具有一定的内能;(B)对应于某一状态,内能只能有一数值不能有两个以上的数值;(C)状态发生变化,内能也一定跟着变化;(D)对应于一个内能值,可以有多个状态。

15.在一个绝热刚瓶中,发生一个放热的分子数增加的化学反应,那么()(A) Q > 0,W > 0,∆U > 0 ;(B) Q = 0,W = 0,∆U < 0 ;(C) Q = 0,W = 0,∆U = 0 ;(D) Q < 0,W > 0,∆U < 0 。

16.一定量的单原子理想气体,从A 态变化到B 态,变化过程不知道,但若A 态与B 态两点的压强、体积和温度都已确定,那就可以求出()(A) 气体膨胀所做的功;(B) 气体内能的变化;(C) 气体分子的质量;(D) 热容的大小。

17.如图,可表示理想气体卡诺循环的示意图是( )(A) 图⑴;(B) 图⑵;(C) 图⑶;(D) 图⑷二、填空题1.焦耳-汤姆孙系数def T J -μ ,μJ-T >0表示节流膨胀后温度将 。

2.在373K ,p θ下,1 mol 液态水向真空蒸发为373K ,p θ下的水蒸气,已知此过程的△H =40.6kJ ,则此过程的△U= kJ ,Q= kJ 。

3.已知反应C(s)+O 2(g)=CO 2(g)的△r H m θ(298K )=-393.51kJ·mol -1。

若此反应在一绝热钢瓶中进行,则此过程的△U 0,△H 0。

4.对于组成不变的均相密闭体系,当有 个独立的强度因素确定后,体系中所有的强度性质也就确定,若再知道 ,则所有的广度性质也就确定。

5.1mol298K 的液体苯在弹式量热计中完全燃烧,放热3264kJ ,则反应:2C 6H 6(l)+15O 2(g) =12CO 2(g)+6H 2O(l)的△r U m (298K) = kJ·mol -1, △r H m (298K) = kJ·mol -1。

6.某理想气体经绝热恒外压压缩,△U 0△H 0。

7.卡诺热机的效率只与 有关,而与 无关。

三、证明题1.证明:若一气体状态方程满足pV m = RT+bp 时,则该气体的内能仅是温度的函数。

2.某气体的状态方程为pV m = RT+ap ,a 为大于零的常数,证明该气体经节流膨胀后,气体的温度上升。

3.若物质的膨胀系数TT V V p 11=⎪⎭⎫ ⎝⎛∂∂=α,则C p 与压力无关。

4.已知纯物质的平衡稳定条件是()0/<∂∂T V p ,请证明任一物质绝热可逆膨胀过程后压力必降低。

5.某气体的状态方程为pV m = RT+ap,a为大于零的常数,证明:该气体的焦耳—汤姆孙系数μJ-T<0。

四、计算题1.某气体的状态方程为pV m = RT+ap,a为大于零的常数,证明:该气体的焦耳—汤姆孙系数μJ-T<0。

6.1mol单原子理想气体从始态273K、202.65kPa沿着p/V=常数的可逆途径变化到压力加倍的终态,试求:该过程的W、ΔU、ΔH、Q。

2.一摩尔单原子理想气体从0℃、2p始态,经由方程pV2 = const 规定的途径到达终态压力为15p,计算沿此途经的平均热容。

3.在空气中有一真空绝热箱,体积为V0,今在箱上刺一个小孔,空气流入箱内,设空气为理想气体(C p,m = 3.5R)。

⑴巳知空气温度是298K,箱内气体温度是多少?⑵若V0 = 10dm3,求该过程的Q、W、∆U、∆H各为多少?4.298.15K,1mol的CO2(实际气体)由始态p1 = 3p V1 = 7.9dm3等温变化到终态p2 = p V2 = 24dm3,求此过程的∆U与∆H。

巳知C p,m(CO2) = 36.6 J·K-1·mol-1,焦耳-汤姆逊系数μJ-T = 1.14 + 8.65 × 10-3(p/p) 。

5.1mol单原子分子理想气体由始态A(2p,298K),沿着p/p= 0.1(V m/ dm3·mol-1) + b的可逆途经膨胀到原体积2倍,计算终态的压力以及此过程的Q、W、第一章 热力学第一定律参考答案一、选择题答案:1-A; 2-C; 3-A; 4-D; 5-B; 6-D; 7-A; 8-D; 9-A; 10-D; 11-B; 12-B; 13- A; 14-C; 15-C; 16-B; 17-C; 二、填空题答案 1. 答案:Hp T ⎪⎪⎭⎫⎝⎛∂∂, 降低 2. 答案:37.5kJ ,37.5kJ 3. 答案:=,> 4. 答案:2,物质的量 5. 答案:-6528,-6535 6. 答案:>,> 7. 答案:两个热源的温度,工作物质 三、证明题答案1.证明:若一气体状态方程满足pV m = RT+bp 时,则该气体的内能仅是温度的函数2.某气体的状态方程为pV m = RT+ap ,a 为大于零的常数,证明该气体经节流膨胀后,气体的温度上升。

关及内能的变化与体积无也得分)证明:(其它合理证明0=--=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-∂∂=-⎪⎭⎫ ⎝⎛∂∂=-⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂⇒-=p b V RT p b V RT T T pT p T pV S T V U pdVTdS du m V m V T T )后,温度升高。

故节流膨胀(给分。

证明:其它合理证明也011][11,,,,,,p <pC a T C a C R V V C p RC T V C T V T V C p H C p T mp mp mp m m mp m p m mp pp T p H T J ∆∆⨯-=∆⇒-=-+-=⨯+-=⎪⎭⎫ ⎝⎛∂∂--=⎪⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂=-μ3.若物质的膨胀系数TT V V p 11=⎪⎭⎫ ⎝⎛∂∂=α,则C p 与压力无关。

4. 5.与压力无关即又由给分证明:其它合理证明也p pp T pp T T pTT p T pp p C T V T V T pC T V T V V p S T pH VdP TdS dH p HTT H p p C TV T V T T V V 0)(11=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂⇒⎪⎭⎫ ⎝⎛∂∂-=+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂⇒+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂⇒=⎪⎭⎫ ⎝⎛∂∂=α()()011//<-=⎥⎦⎤⎢⎣⎡--=∴=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+∂∂=⎪⎭⎫ ⎝⎛∂∂⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛∂∂-=∂∂∂∂-=⎪⎪⎭⎫⎝⎛∂∂=--ppT J pp p p pT HT J C aV p R T C p Rp ap RT T T V V T V T C T H p H p T μμ 证明:故绝热膨胀后压力降低得分证明:其它合理证明也01<⎪⎭⎫ ⎝⎛∂∂=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂⇒-=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂TV p p pV V S p V S p p p p p VV V V V V p C C V T T C T p C T V p S V pSV p T V C T S T T V S V p T T C p T T S p S四、计算题答案1.W=3404.6J ; Q=13619J ; ΔU=10214J ; ΔH=17023J2. C= 4.16 JK-13. T= 417.2K ; Q=0 ; W=ΔU=723.7J ; ΔH=1013.2J4.ΔU=54.3J ; ΔH=84.73J5.W=-3.236J ; Q=11.53kJ ; ΔU=8.29kJ ; ΔH=13.82kJ。

相关文档
最新文档