鸡兔同笼问题讲解及习题(含答案)

合集下载

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析

小学鸡兔同笼问题练习题及答案解析1.题目:鸡比兔多13只,鸡腿比兔腿多16条,鸡和兔各有多少只?答案:鸡有25只,兔有12只。

解析:设兔有x只,则鸡有x+13只。

根据题意,鸡腿比兔腿多16条,即2(x+13) - 4x = 16,解得x=12,所以兔有12只,鸡有25只。

2.题目:笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚,鸡和兔各有多少只?答案:鸡有23只,兔有12只。

解析:设兔有x只,则鸡有35-x只。

根据题意,4x + 2(35-x) = 94,解得x=12,所以兔有12只,鸡有23只。

3.题目:鸡比兔多3只,鸡腿比兔腿多2条,鸡和兔各有多少只?答案:鸡有7只,兔有4只。

解析:设兔有x只,则鸡有x+3只。

根据题意,2(x+3) - 4x = 2,解得x=4,所以兔有4只,鸡有7只。

4.题目:鸡和兔共有100只,腿共248只,鸡和兔各有多少只?答案:鸡有34只,兔有66只。

解析:设兔有x只,则鸡有100-x只。

根据题意,4x + 2(100-x) = 248,解得x=66,所以兔有66只,鸡有34只。

5.题目:鸡比兔少5只,鸡腿比兔腿少6条,鸡和兔各有多少只?答案:鸡有19只,兔有24只。

解析:设兔有x只,则鸡有x-5只。

根据题意,2(x-5) - 4x = -6,解得x=24,所以兔有24只,鸡有19只。

6.题目:鸡和兔共有15只,腿共40条,鸡和兔各有多少只?答案:鸡有10只,兔有5只。

解析:设兔有x只,则鸡有15-x只。

根据题意,4x + 2(15-x) = 40,解得x=5,所以兔有5只,鸡有10只。

7.题目:鸡比兔多8只,鸡腿比兔腿多12条,鸡和兔各有多少只?答案:鸡有20只,兔有12只。

解析:设兔有x只,则鸡有x+8只。

根据题意,2(x+8) - 4x = 12,解得x=12,所以兔有12只,鸡有20只。

8.题目:笼子里有若干只鸡和兔。

从上面数,有28个头,从下面数,有76只脚,鸡和兔各有多少只?答案:鸡有10只,兔有18只。

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答鸡兔同笼是中国古代著名的数学趣题之一,也是小学数学中常见的一类问题。

它对于培养孩子们的逻辑思维和解题能力有着重要的作用。

下面我们就来通过一些题目练习及解答,深入了解鸡兔同笼问题。

题目一:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?解答:我们可以用假设法来解决这个问题。

假设笼子里全是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 35×2= 70 只脚。

但实际有 94 只脚,多出来的脚就是兔子的。

每只兔子比每只鸡多 4 2 = 2 只脚。

所以兔子的数量就是(94 70)÷ 2 = 12(只)鸡的数量就是 35 12 = 23(只)题目二:一个笼子里鸡兔共有 20 只,脚共有 56 只,问鸡兔各有几只?解答:同样先假设全是鸡,20 只鸡就有 20×2 = 40 只脚。

实际有 56 只脚,多出的脚是兔子的,兔子数量为(56 40)÷ 2 = 8(只)鸡的数量就是 20 8 = 12(只)题目三:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?解答:设兔有 x 只,那么鸡就有 x + 10 只。

每只兔 4 只脚,每只鸡 2 只脚,可列出方程:4x + 2×(x + 10) = 1104x + 2x + 20 = 1106x = 90x = 15 ,即兔有 15 只。

鸡的数量就是 15 + 10 = 25 只。

题目四:有鸡兔同笼,它们共有 48 个头,132 只脚,鸡和兔各有几只?解答:假设全是鸡,48 只鸡共有脚 48×2 = 96 只。

实际 132 只脚,多出的是兔子的,兔子数量为(132 96)÷ 2 = 18 只。

鸡的数量为 48 18 = 30 只。

题目五:笼子里鸡兔的数量相同,它们的脚一共有 90 只,鸡兔各有几只?解答:因为鸡兔数量相同,设鸡兔各有 x 只。

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案鸡兔同笼问题是一个古典的算术问题,它包括第一鸡兔同笼问题和第二鸡兔同笼问题。

第一鸡兔同笼问题是已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题;第二鸡兔同笼问题是已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题。

解答这类问题一般采用假设法,可以先假设都是鸡或都是兔,然后进行置换,使问题得到解决。

对于第一鸡兔同笼问题,假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。

对于第二鸡兔同笼问题,假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。

举个例子,假设一笼里有长毛兔子和芦花鸡,数数头有35,脚数共有94.我们可以先假设35只全为兔,然后求出鸡数和兔数;也可以先假设35只全为鸡,然后求出鸡数和兔数。

这样就可以得出答案,即有鸡23只,有兔12只。

另一个例子是,有2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?这个问题可以转化为“鸡兔同笼”问题。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)。

最后一个例子是第二鸡兔同笼问题,鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?我们可以假设全都是鸡或都是兔,然后求出鸡数和兔数。

根据计算,鸡有60只,兔有40只。

答案:有6辆车和270人。

年龄问题是指两人的年龄差不变,但是两人年龄之间的倍数关系随着年龄的增长在发生变化。

解题时要紧紧抓住“年龄差不变”这个特点,可以利用“差倍问题”的解题思路和方法。

例如,爸爸今年35岁,XXX今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?根据年龄差不变,可以得出35÷5=7(倍),明年爸爸的年龄是(35+1)÷(5+1)=6(倍)。

鸡兔同笼讲解与练习题

鸡兔同笼讲解与练习题

笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?如果笼子里都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。

一只兔比一只鸡多2只脚,也就是有10÷2=5只兔。

所以笼子里有3只鸡,5只兔。

8×2=16(只)26-16=10(只)10÷2=5(只)8-5=3(只)还可以这样想:如果笼子里都是兔,那么就有()只脚,这样就少出()只脚。

一只鸡比一只兔少()只脚,也就是有()只鸡。

所以笼子里有()只鸡,()只兔。

列式:得出公式:鸡的只数=(头的总个数×4-脚的总只数)÷(4-2)兔的只数=(脚的总只数-头的总个数×2)÷(4-2)练习:1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。

其中男生平均得60分,女生平均得70分。

求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。

“鸡兔同笼”问题最常用的四种解题方法 练习题(含答案和解析)

“鸡兔同笼”问题最常用的四种解题方法 练习题(含答案和解析)

“鸡兔同笼”问题最常用的四种解题方法练习题(含答案和解析)鸡兔同笼问题早在1500年前,《孙子算经》中就记载了,小学奥数及小升初考试中经常出现,甚至公务员考试中也会出现。

现面我们就鸡兔同笼相关解法作一简单介绍。

题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头15个,腿40条,球鸡和兔子各有多少只?(请用尽量多的方法解答)1、金鸡独立法分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即20只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从20里减去头数15,剩下来的就是兔的头数20-15=5只,鸡有20-5=15只。

2、吹哨法分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有40-15=15只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有25-15=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有15-5=10只。

3、假设法(1)分析:假设全部是鸡,则有15×2=30条腿,比实际少40-30=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为15-5=10只。

(2)分析:假设全部是兔子,则有15×4=60条腿,比实际多60-40=20只,一只兔子变成一只鸡腿减少2条,20÷2=10只,所以需要10只兔子变成鸡,即鸡为10只,兔子为15-10=5只。

4、方程法(1)分析:设鸡的数量为x只,则兔子有(15-x)只,有2x+4(15-x)=40,解出x=10,所以有鸡10只,兔子15-10=5只。

(2)分析:设兔子的数量为x只,则鸡有(15-x)只,有4x+2(15-x)=40.解得x=5,所以兔子有5只,鸡有15-5=10只。

试题答案:第1题:正确答案:B 答案解析:第2题:正确答案:C 答案解析:第3题:正确答案:D 答案解析:第4题:正确答案:D 答案解析:第5题:正确答案:A 答案解析:第6题:正确答案:C 答案解析:。

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案一、例题精讲若干只鸡和兔子关在同一个笼子里,从上边数,有35个头,从下边数,有94只脚,问,鸡和兔子各有几只。

【解析】题目中告诉我们鸡和兔子共有35个头,94只脚,而常识告诉我们,一只鸡有一个头两只脚,一只兔子有一个头4只脚,所以,我们可以假设鸡和兔子分别有x,y只,则有: x+y=35,2x+4y=94,由此可以解得x=23,y=12。

按照我们的方程法,其实就是可以解出的,但是在实际操作过程中,方程可能将比较耗时,所以我们须要给大家传授另外一种快速的方法,假设法。

在这道题中,我们可以假设全部的动物都就是鸡,则35个动物就可以存有70只脚,但实际上,存有94只脚,所以我们算是的70可以和实际差距24只脚,再去思索一下,为啥可以差距呢?是因为我们把所有的兔子都当作了鸡,每把一直兔子当作鸡的时候就可以太少两只脚,所以共少24只脚,就须要12只兔子。

因此就可以存有23只鸡。

对比上述两种方法,我们会发现假设法比较简单一些。

二、典型例题例1.某餐厅设有可坐12人和10人两种规格的餐桌共28张,最多可容纳人同时就餐,问餐厅有多少10人桌?a.2b.4c.6d.8【答案】a。

中公解析:假设全部都是10人桌,则共可以容纳人,但实际上容纳人,相差52人,而每一张12人桌和10人桌会相差2人,所以会有26张12人桌,因此我们可以得到10人桌有2张。

三、题目稳固例. 有一辆货车运输只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角钱,如有破损,破损一只还要倒赔2角,结果共得到运费.2元,破损的只数是:a.17b. 24c.34d.36【答案】a。

解析:假设所有的瓶子都是完好无损的,则可以得到运费元,但实际上只有.2,相差6.8元,因为当瓶子破损时,与好的瓶子相比,除了2角钱运费得不到还需要倒赔2角,所以每有一个坏瓶子会与好瓶子相差4角,因此共有17个坏的瓶子。

选择a。

鸡兔同笼问题解法及例题透析

鸡兔同笼问题解法及例题透析

鸡兔同笼问题解法及例题透析【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

人教版数学四年级下册:鸡兔同笼问题 讲解及习题(含答案)

人教版数学四年级下册:鸡兔同笼问题 讲解及习题(含答案)

人教版数学四年级下册:鸡兔同笼问题讲解及习题(含答案)鸡兔同笼问题是一类古老的中国算题,它涉及到鸡和兔,许多小学算术应用题都可以转化为这种问题来解决。

例如,有一个XXX家,她养了鸡和兔,它们的头一共有16个,脚有44只。

我们可以假设所有的头都是鸡,但实际上有12只脚是兔子的。

因此,我们可以用兔去换鸡,每换一只兔,头数不变,但脚数增加2只。

通过计算,我们得知XXX 家有6只兔和10只鸡。

同样的,我们也可以假设所有的头都是兔子,但实际上有20只脚是鸡的。

这时,我们可以用鸡去换兔,每换一只鸡,头数不变,但脚数减少2只。

通过计算,我们得知XXX家有6只兔和10只鸡。

在解决鸡兔同笼问题时,我们通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

另一个例子是,有100个和尚和140个馍,大和尚每人分3个馍,小和尚每人分1个馍。

我们可以将大和尚看作鸡,小和尚看作兔,馍看作脚,这样就可以用鸡兔同笼问题来解决。

假设100个人都是大和尚,这时需要300个馍,比实际情况多了160个馍。

我们可以用小和尚去换大和尚,每换一个,总人数不变,但馍数减少2个。

通过计算,我们得知小和尚有80人,大和尚有20人。

最后一个例子是,彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

我们可以将彩色文化用品看作鸡,普通文化用品看作兔,这样就可以用鸡兔同笼问题来解决。

假设有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。

通过计算,我们得知彩色文化用品买了8套,普通文化用品买了8套。

买彩色文化用品16套,需要支付19元/套,因此总共需要支付19×16=304元。

但实际支付的金额为280元,因此多支付了304-280=24元。

现在可以用普通文化用品去换彩色文化用品,每换一套可以少支付19-11=8元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。

许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。


解:有兔(44—2×16)÷(4—2)=6(只),
有鸡16—6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。

我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?
分析与解:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。

这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8(元),所以买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。

问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。

这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。

现在以免换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只)。

解:有兔(2×100—20)÷(2+4)=30(只),
有鸡100-30=70(只)。

答:有鸡70只,兔30只。

例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。

问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。

解:小瓶有(4×50—20)÷(4+2)=30(个),
大瓶有50—30=20(个)。

答:有大瓶20个,小瓶30个。

例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。

已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆
大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。

根据条件,要装完这144吨钢材还需要45—36=9(辆)小卡车。

这样每辆小卡车能装144÷9=16(吨)。

由此可求出这批钢材有多少吨。

解:4×36÷(45—36)×45=720(吨)。

答:这批钢材有720吨。

例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。

实际上只得到115.5元,少得120—115.5二4.5(元)。

搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。

因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。

已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。

可求出小乐每分钟跳 (780-60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780—270×2=240(下)。

练习题
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。

活页簿每本L9元,日记本每本3.1元。

问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。

问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。

贺年卡每张3元5角,明信片每张2元5角。

问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,
他接连几天共植树112棵,平均每天植树14棵。

问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。

做对一题得5分,没做或做错一题都要扣3分。

小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。

已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现有三种小虫共18只,有118条腿和20对翅膀。

问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。

问:鸡、兔各几只?。

相关文档
最新文档