八年级数学上册位置与坐标练习题

合集下载

(好题)初中数学八年级数学上册第三单元《位置与坐标》测试题(包含答案解析)

(好题)初中数学八年级数学上册第三单元《位置与坐标》测试题(包含答案解析)

一、选择题1.在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号 2.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2)C .(3,1)D .(0,4)4.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上5.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12506.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 7.在平面直角坐标系中,若0a <,则点(﹣2,﹣a )的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位9.在平面直角坐标系中,下列各点在第三象限的是( ) A .()1,2B .()2,1-C .()2,1-D .()1,2--10.已知(4,2)P a +在第一象限内,且点P 到两坐标轴的距离相等,则a 的值为( ) A .2B .3C .-6D .2或-611.点M 在x 轴上方,y 轴左侧,距离x 轴1个单位长度,距离y 轴4个单位长度,则点M 的坐标为( ) A .(1,4) B .(﹣1,﹣4)C .(4,﹣1)D .(﹣4,1)12.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .5二、填空题13.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到1A ,第2次移动到2A ,第3次移动到3A ,……,第n 次移动到n A ,则22020OA A ∆的面积是__________.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.15.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .16.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.已知平面直角坐标系中,A (3,0),B (0,4),C (0,c ),且△ABC 的面积是△OAB 面积的3倍,则c =__.20.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______.三、解答题21.作图题,如图,△ABC 为格点三角形(不要求写作法)(1)请在坐标系内用直尺画出△111A B C ,使△111A B C 与△ABC 关于y 轴对称; (2)请在坐标系内用直尺画出△222A B C ,使△222A B C 与△ABC 关于x 轴对称;22.如图,在平面直角坐标系中,△ABC 的位置如图所示(每个方格的边长均为1个单位长度).(1)写出下列点的坐标:A ( , ),B ( , ) C ( , )(2)若△ABC 各顶点的纵坐标不变,横坐标都乘﹣1,请在同一直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC 与△A′B′C′有怎样的位置关系?23.如图,在平面直角坐标系xoy 中,(15)A -,,()10B -,,(43)C -,.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)若以线段AB 为一边作格点△ABD ,使所作的△ABD 与△ABC 全等,则所有满足条件的点D 的坐标是 .24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.25.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △; (2)点1A ,1B ,1C 的坐标分别是______,______,______; (3)ABC 的面积为______.26.如图,在平面直角坐标系中,直线l 过点M (1,0)且与y 轴平行,△ABC 的三个顶点的坐标分别为A (-2,5),B (-4,3),C (-1,1). (1)作出△ABC 关于x 轴对称111A B C △;(2)作出△ABC 关于直线l 对称222A B C △,并写出222A B C △三个顶点的坐标.(3)若点P 的坐标是(-m ,0),其中m >0,点P 关于直线l 的对称点P 1,求PP 1的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案.【详解】A.点P(3,2)到x轴的距离是2,故本选项不符合题意.B.若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C.若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P分别向x轴,y轴作垂线,垂足M,N在x轴,y轴上的坐标分别为x和y,我们则说P点的横坐标为x,纵坐标是y,记作P(x,y);熟练掌握相关定义是解题关键.2.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A6(0,4)…,所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2), 故选:B 【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.4.B解析:B 【分析】根据点的坐标特点判断即可. 【详解】在平面直角坐标系中,点P (-5,0)在x 轴上, 故选B . 【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.5.A解析:A 【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()15050112752=⨯⨯+=.故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.6.C解析:C 【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可. 【详解】 解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A .故选C . 【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.7.B解析:B 【分析】根据各象限的点的坐标特征解答. 【详解】 解:∵a <0, ∴-a >0,∴点(-2,-a )在第二象限. 故选:B . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.A解析:A 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称. 【详解】解:∵纵坐标乘以﹣1, ∴变化前后纵坐标互为相反数, 又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称. 故选:A . 【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.D解析:D 【分析】根据各象限内点的坐标特征解答对各选项分析判断后利用排除法求解即可.【详解】解:A、(1,2)在第一象限,故本选项不符合题意;B、(-2,1)在第二象限,故本选项不符合题意;C、(2,-1)在第四象限,故本选项不符合题意;D、(-1,-2)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.A解析:A【分析】本题可通过横坐标为4确定点P到纵轴距离,继而根据点P到坐标轴距离相等列方程求解.【详解】a+=,由已知得:24a+=,因为点P在第一象限,故:24a=.解得:2故选:A.【点睛】本题考查平面直角坐标系、一元一次方程、绝对值的化简,易错点在于若坐标含有未知数,考查距离问题时需要加绝对值或者分类讨论,确保结果不重不漏.11.D解析:D【分析】由点M在x轴的上方,在y轴左侧,判断点M在第二象限,符号为(-,+),再根据点M 到x轴的距离决定纵坐标,到y轴的距离决定横坐标,求M点的坐标.【详解】解:∵点M在x轴上方,y轴左侧,∴点M的纵坐标大于0,横坐标小于0,点M在第二象限;∵点M距离x轴1个单位长度,距离y轴4个单位长度,∴点的横坐标是-4,纵坐标是1,故点M的坐标为(-4,1).故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.C解析:C【分析】由垂线段最短可知点BC ⊥AC 时,BC 有最小值,从而可确定点C 的坐标.【详解】解:如图所示:由垂线段最短可知:当BC ⊥AC 时,BC 有最小值.∴点C 的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题13.505【分析】由图可得分别表示246通过找规律可得表示1010进而可得的长根据三角形的面积公式计算即可求解;【详解】由题意得分别表示246∴表示1010∴=1010∴△的面积为=故答案为:505【点解析:505【分析】由图可得2348121A A A A A ,,, 分别表示2,4,6,通过找规律可得2020A 表示1010,进而可得23A A ,2020OA 的长,根据三角形的面积公式计算即可求解;【详解】由题意得2348121A A A A A =,,,分别表示2,4,6,∴ 2020A 表示1010,∴ 2020OA =1010,∴ △22020OA A 的面积为=111010=5052⨯⨯ , 故答案为:505.【点睛】本题主要考找规律,三角形的面积,找规律求解2020OA 是解题的关键. 14.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.15.(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.17.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.18.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.19.﹣8或16【分析】根据AB 两点坐标可求解△OAB 面积利用△ABC 的面积是△OAB 面积的3倍可求出c 的值【详解】∵A (30)B (04)∴OA=3OB=4∴S △OAB=OA•OB=×3×4=6∵△ABC解析:﹣8或16【分析】根据A ,B 两点坐标可求解△OAB 面积,利用△ABC 的面积是△OAB 面积的3倍可求出c 的值.【详解】∵A (3,0),B (0,4),∴OA =3,OB =4,∴S △OAB =12OA •OB =12×3×4=6, ∵△ABC 的面积是△OAB 面积的3倍,C (0,c ), ∴S △ABC =12OA •BC =12×34c -=18, ∴4c -=12,即412c -=±,∴c =﹣8或16.故答案为:﹣8或16.【点睛】本题主要考查了图形与坐标,三角形的面积,利用△ABC 的面积得到4c -=12是解题的关键.20.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用关于y轴对称的点的坐标特征写出点A1和点B1、点C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点A2和点B2、点C2的坐标,然后描点即可.【详解】解:如图所示,△A1B1C1和△A2B2C2即为所求:【点睛】本题考查轴对称变换,解题的关键是熟练掌握轴对称的性质,属于中考常考题型.22.(1)A(3,4),B(1,2)C(5,1);(2)△ABC与△A′B′C′关于y轴对称;见解析【分析】(1)根据直角坐标系即可依次写出坐标;(2)根据△ABC各顶点的纵坐标不变,横坐标都乘﹣1,得到对应点的坐标,再顺次连接,根据对称性即可判断.【详解】(1)点的坐标为:A(3,4),B(1,2)C(5,1);故答案为:(3,4),(1,2),(5,1);(2)△A′B′C′即为所求,△ABC与△A′B′C′关于y轴对称.【点睛】此题主要考查了作图−−轴对称变换,关键是掌握几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也就是要确定一些特殊的对称点,然后再连接即可.23.(1)见解析;(2)作图见解析;点D坐标为(-4,2)、(2,3)、(2,2).【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可;(2)根据网格特点和全等三角形的判定可以找到满足条件的点D.【详解】(1)画出图形如图所示;(2)如图,满足条件的点D有三个,则点D坐标(-4,2)、(2,3)、(2,2),故答案为:(-4,2)、(2,3)、(2,2).【点睛】本题考查了基本作图-轴对称变换、坐标与图形、全等三角形的判定,利用格点判断三角形全等,熟练掌握轴对称变换的画法是解答的关键.24.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D作DM⊥AM交AG于点M,过点E作EN⊥AG于点N.根据“K字模型”即可证明AH=DM 和AH=EN,即EN=DM,再根据全等三角形的判定和性质即可证明DG=EG,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172. 【分析】(1)首先作出A 、B 、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S △ABC =5×5-12×4×5-12×1×3-12×2×5=172; 故答案为:172. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键. 26.(1)答案见解析;(2)答案见解析,点A 2(4,5),点B 2(6,3),点C 2(3,1);(3)PP 1=2+2m【分析】(1)分别作出点A 、B 、C 关于x 轴对称的点,然后顺次连接;(2)分别作出点A 、B 、C 关于直线l 对称的点,然后顺次连接,并写出△A 2B 2C 2三个顶点的坐标(3)根据对称的性质即可得出答案.【详解】解:(1)如图所示,111A B C ∆即为所求;(2)如图所示,△A2B2C2即为所求,由图可知,点A2的坐标是(4,5),点B2的坐标是(6,3),点C2的坐标是(3,1);(3)PP1=2(1+m)=2+2m.【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.。

2022-2023学年八年级上学期数学:位置与坐标(附答案解析)

2022-2023学年八年级上学期数学:位置与坐标(附答案解析)

2022-2023学年八年级上学期数学:位置与坐标
一.选择题(共5小题)
1.点(3,﹣4)到x轴的距离是()
A.3B.4C.5D.7
2.如果点P(2,b)和点Q(a,3)关于x轴对称,则a+b的值是()A.1B.﹣1C.5D.0
3.经过点P(﹣4,3)垂直于x轴的直线可以表示为()
A.直线x=3B.直线y=﹣4C.直线x=﹣4D.直线y=3
4.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“炮”的坐标为(3,﹣2),则棋子“马”的坐标为()
A.(1,1)B.(﹣1,1)C.(1,﹣1)D.(﹣1,﹣1)5.如图是天安门周围的景点分布示意图.在图中,分别以正东,正北方向为x轴,y轴的正方向建立平面直角坐标系.如果表示景山的点的坐标为(0,4),表示王府井的点的坐标为(3,1),则表示人民大会堂的点的坐标为()
A.(3,2)B.(﹣1,2)C.(﹣1,﹣1)D.(﹣1,﹣2)二.填空题(共5小题)
6.经过点Q(1,﹣3)且垂直于y轴的直线可以表示为直线.
7.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,1)关于原点对称,则点M(m,
第1页(共18页)。

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

北师大版八年级上册数学第三章 位置与坐标含答案(必刷题)

北师大版八年级上册数学第三章 位置与坐标含答案(必刷题)

北师大版八年级上册数学第三章位置与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个2、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)3、为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,0),表示点B的坐标为(3,3),则表示其他位置的点的坐标正确的是()A. B. C. D.4、已知点A(a﹣2,a+1)在x轴上,则a等于()A.1B.0C.﹣1D.25、在直角坐标系中,点M(,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(﹣2,3)C.(0,0)D.(﹣3,﹣2)7、下列数据能确定物体具体位置的是()A.明华小区东B.希望路右边C.东经118°,北纬28°D.北偏东30°8、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)9、平面直角坐标系中的点P(2,-1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、如图,己知菱形ABCD的顶点的坐标为,顶点B的坐标为若将菱形ABCD绕原点O逆时针旋转称为1次变换,则经过2020次变换后点C的坐标为( )A. B. C. D.11、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)12、已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)13、若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为A.(2,3)B.(3,2)C.(2,1)D.(3,3)14、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个15、如果点M在第四象限,且点M到y轴的距离是4,到x轴的距离是3,则点M的坐标为()A.(4,-3)B.(-4,3)C.(3,4)D.(-3,4)二、填空题(共10题,共计30分)16、点M(2,﹣3)关于y轴对称的对称点N的坐标是________17、在平面直角坐标系中,已知点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A2016的坐标为________18、如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B 的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为________.19、如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(45,2)的是点________.20、如图,在平面直角坐标系中,点A、B的坐标分别为、,点在第一象限内,连接、.已知,则________.21、点关于原点对称的点的坐标是________.22、在平面直角坐标系中,点P(-2,1)关于x轴的对称点的坐标为________23、点(5,-8)关于原点对称点的坐标为________24、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.25、若点与点关于轴对称,则________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

八年级数学上册第三章位置与坐标测试题

八年级数学上册第三章位置与坐标测试题

第三章 位置与坐标测试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔每一小题2分,一共20分〕1.如图是地图简图的一局部,图中“故宫〞、“鼓楼〞所在的区域分别是〔 〕A .D7,E6B .D6,E7C .E7,D6D .E6,D72.在平面直角坐标系中,以下各点在第二象限的是〔 〕A .〔2,1〕B .〔2,-1〕C .〔-2,1〕D .〔-2,-1〕3.点M 〔1,2〕关于x 轴对称的点坐标为〔 〕A .〔-1,2〕B .〔1,-2〕C .〔2,-1〕D .〔-1,-2〕4.点P (-2 ,3) 关于 y 轴对称的点的坐标是〔 〕A .(-2 ,-3)B .(3 ,-2)C .(2 ,3)D .(2 ,-3)5.点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值是( )A .-4B .4C .4或者-4D .不能确定6.假如点P()1,3++m m 在x 轴上,那么点P 的坐标为〔 〕A.(0,2) B .(2,0) C.(4,0) D .(0,-4)7.点P 到x 轴的间隔 为3,到y 轴的间隔 为2,那么P 点的坐标一定为( )A .(3,2)B .(2,3)C .(-3,-2)D .以上答案都不对8.点P 的坐标为()63,2+-a a ,且点P 到两坐标轴的间隔 相等,那么点P 的坐标为〔 〕A .(3,3) B.〔3,-3〕 C . (6,)6- D .(3,3)或者(6,)6-9.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于y 轴的负半轴上,那么该点坐标为〔 〕A .〔2,0〕B .〔0,-2〕C .〔0,〕D .〔0,-〕10.正△ABC 的边长为2,以BC 的中点为原点,BC 所在的直线为x 轴,那么点A 的坐标为( )A .0)或者0)B .(0)或者(0,C .(0)D .(0,)二、填空题〔每一小题2分,一共20分〕11.点A 的横坐标是4,纵坐标是-3,点A 的坐标记作_______.12.点A 〔6,-8〕到y 轴的间隔 为_______,到x 轴的间隔 为_____,到原点间隔 为_____.13.与点A 〔3,4〕关于x 轴对称的点的坐标为 ,关于y 轴对称的点的坐标为 ,关于原点对称的点的坐标为 .14. 点P 〔3,-1〕关于y 轴的对称点Q 的坐标是〔a +b ,1-b 〕,那么ba 的值是_______.15.点A 〔a +1,2a -5〕到x 轴间隔 与到y 轴间隔 相等,那么a = .16.点A 在y 轴上,且与原点的间隔 为5,那么点A 的坐标是_____.17.第三象限内的点()P x y ,,满足5x =,29y =,那么点P 的坐标是 .18.点M 在y 轴上,点P(3,-2),假设线段MP 的长为5,那么点M 的坐标是_____.19.将点P(-3,y)向下平移3个单位长度,向左平移2个单位长度后得到点Q(x ,-1),那么xy=______.20.如图,在平面直角坐标系xOy 中,点M 0的坐标为〔1,0〕,将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…根据以上规律,请直接写出OM2021的长度为______.三、解答题〔一共60分〕21.如图,正方形ABCD以〔0,0〕为中心,边长为4,求各顶点的坐标.22.如图,长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.23. 在边长为1的小正方形网格中,△AOB的顶点均在格点上,⑴ B点关于y轴的对称点坐标为_______;⑵将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;⑶在〔2〕的条件下,A1的坐标为_______.24. 平面直角坐标系内,点A〔2,1〕,O为坐标原点.请你在坐标轴上确定点P,使得△AOP成为等腰三角形.求P点坐标.25.等边△ABC的两个顶点坐标为A〔-4,0〕,B〔2,0〕,求:⑴点C的坐标;⑵△ABC 的面积.26.如图,求ΔCDE的面积.27.△ABC 在平面直角坐标系中的位置如下图,A 、B 、C 三点在格点上.⑴ 作出 △ABC 关于y轴对称的△111A B C ,并写出点1C 的坐标;⑵ 作出△ABC 关于原点O 对称的△222A B C ,并写出点2C 的坐标.28. 请在平面直角坐标系中标出A(0,4),B(-3,0),C(3,0)三点,再以A 、B 、C 为顶点画平行四边形,并根据A 、B 、C 三点的坐标,写出第四个顶点D 的坐标.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

八年级数学上册第3章 位置与坐标练习题及答案解析

八年级数学上册第3章 位置与坐标练习题及答案解析

第三章位置与坐标专题一与平面直角坐标系有关的规律探究题1.如图;在平面直角坐标系中;有若干个整数点(横纵坐标都为整数的点);其顺序按图中“→”方向排列;如:(1;0);(2;0);(2;1);(3;2);(3;1);(3;0);(4;0);(4;1);…;观察规律可得;该排列中第100个点的坐标是().A.(10;6)B.(12;8)C.(14;6)D.(14;8)2.如图;动点P在平面直角坐标系中按图中箭头所示方向运动;第1次从原点运动到点(1;1);第2次接着运动到点(2;0);第3次接着运动到点(3;2);…;按这样的运动规律;经过第2013次运动后;动点P的坐标是_____________.3.如图;一粒子在区域直角坐标系内运动;在第1秒内它从原点运动到点B1(0;1);接着由点B1→C1→A1;然后按图中箭头所示方向在x轴;y轴及其平行线上运动;且每秒移动1个单位长度;求该粒子从原点运动到点P(16;44)时所需要的时间.专题二 坐标与图形4. 如图所示;A (-3;0)、B (0;1)分别为x 轴、y 轴上的点;△ABC 为等边三角形;点P (3;a )在第一象限内;且满足2S △ABP =S △ABC ;则a 的值为( )A .47 B .2 C .3D .25.如图;△ABC 中;点A 的坐标为(0;1);点C 的坐标为(4;3);如果要使△ABD 与△ABC 全等;那么点D 的坐标是____________________________________.6.如图;在直角坐标系中;△ABC 满足;∠C =90°;AC =4;BC =2;点A 、C 分别在x 轴、y 轴上;当A 点从原点开始在x 轴正半轴上运动时;点C 随着在y 轴正半轴上运动. (1)当A 点在原点时;求原点O 到点B 的距离OB ; (2)当OA =OC 时;求原点O 到点B 的距离OB .yx AOCB答案:1.D 【解析】 因为1+2+3+…+13=91;所以第91个点的坐标为(13;0).因为在第14行点的走向为向上;故第100个点在此行上;横坐标就为14;纵坐标为从第92个点向上数8个点;即为8.故第100个点的坐标为(14;8).故选D .2.D 【解析】 根据动点P 在平面直角坐标系中按图中箭头所示方向运动;第1次从原点运动到点(1;1);第2次接着运动到点(2;0);第3次接着运动到点(3;2);∴第4次运动到点(4;0);第5次接着运动到点(5;1);…;∴横坐标为运动次数;经过第2013次运动后;动点P 的横坐标为2013;纵坐标为1;0;2;0;每4次一轮;∴经过第2013次运动后;动点P 的纵坐标为:2013÷4=503余1;故纵坐标为四个数中第一个;即为1;∴经过第2013次运动后;动点P 的坐标是:(2013;2);故答案为:(2013;1). 3.解:设粒子从原点到达A n 、B n 、C n 时所用的时间分别为a n 、b n 、c n ;则有:a 1=3;a 2=a 1+1;a 3=a 1+12=a 1+3×4;a 4=a 3+1;a 5=a 3+20=a 3+5×4;a 6=a 5+1;…; a 2n-1=a 2n-3+(2n-1)×4;a 2n =a 2n-1+1;∴a 2n-1=a 1+4[3+5+…+(2n-1)]=4n 2-1;a 2n =a 2n-1+1=4n 2;∴b 2n-1=a 2n-1-2(2n-1)=4n 2-4n+1;b 2n =a 2n +2×2n=4n 2+4n ;c 2n-1=b 2n-1+(2n-1)=4n 2-2n=)12(122-+-n n )(;c 2n =a 2n +2n=4n 2+2n=(2n )2+2n ; ∴c n =n 2+n ;∴粒子到达(16;44)所需时间是到达点C 44时所用的时间;再加上44-16=28(s );所以t=442+447+28=2008(s ).4.C 【解析】 过P 点作PD ⊥x 轴;垂足为D ; 由A (﹣3;0)、B (0;1);得OA =3;OB =1; 由勾股定理;得AB =22OB OA +=2; ∴S △ABC =21×2×3=3. 又S △ABP =S △AOB +S 梯形BODP ﹣S △ADP =21×3×1+21×(1+a )×3﹣21×(3+3)×a =2333a-+;由2S △ABP =S △ABC ;得3+3-3a =3;∴a =3.故选C .5.(4;﹣1)或(﹣1;3)或(﹣1;﹣1) 【解析】 △ABD 与△ABC 有一条公共边AB ; 当点D 在AB 的下边时;点D 有两种情况①坐标是(4;﹣1);②坐标为(﹣1;﹣1); 当点D 在AB 的上边时;坐标为(﹣1;3);点D 的坐标是(4;﹣1)或(﹣1;3)或(﹣1;﹣1). 6.解:(1)当A 点在原点时;AC 在y 轴上;BC⊥y 轴;所以OB=AB=2225AC CB .(2)当OA=OC 时;△OAC 是等腰直角三角形; 而AC=4;所以OA=OC=22.过点B 作BE⊥OA 于E ;过点C 作CD⊥OC;且CD 与BE 交于点D ;可得︒=∠=∠=∠45221. 又BC=2;所以CD=BD=2;所以BE=BD+DE=BD+OC=32;又OE=CD=2;所以OB=2225BE OE .专题折叠问题1.如图;长方形OABC的边OA、OC分别在x轴.y轴上;点B的坐标为(3;2).点D、E分别在AB、BC边上;BD=BE=1.沿直线DE将△BDE翻折;点B落在点B′处.则点B′的坐标为()A.(1;2)B.(2;1)C.(2;2)D.(3;1)2.(2012江苏南京)在平面直角坐标系中;规定把一个三角形先沿着x轴翻折;再向右平移2个单位长度称为1次变换.如图;已知等边三角形ABC的顶点B、C的坐标分别是(-1;-1)、(-3;-1);把△ABC经过连续9次这样的变换得到△A′B′C′;则点A的对应点A′的坐标是.3.(2012山东菏泽)如图;OABC是一张放在平面直角坐标系中的长方形纸片;O为原点;点A在x轴的正半轴上;点C 在y轴的正半轴上;OA=10;OC=8;在OC边上取一点D;将纸片沿AD翻折;使点O落在BC边上的点E处;求D、E两点的坐标.答案:1.B 【解析】 ∵长方OABC 的边OA 、OC 分别在x 轴、y 轴上;点B 的坐标为(3;2);∴CB =3;AB =2;又根据折叠得B ′E =BE ;B ′D =BD ;而BD =BE =1;∴CE =2;AD =1;∴B ′的坐标为(2;1).故选B .2.(16;3) 【解析】 因为经过一次变换后点A 的对应点A ′的坐标是(0;3);经过两次变换后点A 的对应点A ′的坐标是(2;-3);经过三次变换后点A 的对应点A ′的坐标是(4;3);经过四次变换后点A 的对应点A ′的坐标是(6;-3);可见;经过n 次变换后点A 的对应点A ′的坐标为:当n 是偶数时为(2n -2;-3);当n 为奇数时(2n -2;3);所以经过连续9次这样的变换后点A 的对应点A ′的坐标是(2×9-2;3);即(16;3).故答案为(16;3).3.解:由题意;可知;折痕AD 是四边形OAED 的对称轴;在Rt △ABE 中;AE=AO =10;AB =8;6BE ===;∴CE=4 ∴E(4;8);在Rt △DC E 中;222DC CE DE +=; 又DE=OD ;∴222(8)4OD OD -+=; ∴OD =5; ∴D (0;5).。

新版北师大初中数学八年级(上)第三章位置与坐标练习题(附答案)

新版北师大初中数学八年级(上)第三章位置与坐标练习题(附答案)

新版北师大八年级数学(上)第三章位置与坐标练习题一、细心选一选1.点),(nmP是第三象限的点,则()(A)ba+<0 (C)ab>0 (D)a+>0 (B)bab<02.若点P的坐标为)0,(a,且a<0,则点P位于()(A)x正半轴(B)x负半轴(C)y轴正半轴(D)y轴负半轴3.若点A的坐标为(3,-2),点B的坐标是(-3, -2),则点A与点B 的位置关系是()(A)关于原点对称(B)关于x轴对称(C)关于y轴对称(D)无法推断4.点M(-2,5)关于x轴的对称点是N,则线段MN的长是()(A)10 (B)4 (C)5(D)25.一只七星瓢虫自点(-2,4)先程度向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只七星瓢虫的位置是()(A)(-5,2)(B)(1,4)(C)(2,1)(D)(1,2)6.以点(2,0)为圆心,以3为半径画一个圆,则这个圆与x轴的交点是()(A)(0,-1)与(0,5)(B)(-1,0)与(5,0)(C)(-1,0)与(5,0)(D)(0,-1)与(0,5)7.若点P),(b a在第四象限,则Q)a-+在(b,1()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.如图1所示,线段AB 的中点为C ,若点A 、B 的坐标分别是(1,2)与(5,4),则点C 的坐标是 ( )(A )(3,3.5) (B )(3,2)(C )(2,3) (D )(3,3)9.如图2,在直角坐标系中,△AOB 的顶点O 与BO (0,0),B (4,0),且∠OAB=90°,AO =关 于x 轴的对称点的坐标是 ( )(A )(2,2) (B )(-2,2)(C )(2,-2) (D )(-2,-2)10. 若0>xy ,且0>+y x ,则点)(y x P ,在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 二、耐性填一填11.若点P 的坐标为(-3,4),则点P 到x 轴的间隔 是_____,到原点的间隔 是_____. 12.过两点A (-2,4)与B (3,4)作直线AB . 13.如图3,Rt△AOB 的斜边长为4,始终角边A 的坐标是_____,点B 的坐标是_____.14.点A )2,(a 与点B ),3(b 关于x 轴对称,则ab =_____.15.商店在学校的东南方向,则学校在商店的_________.16.点P 的坐标是(-2,12+a ),则点P 肯定在第_______象限.17.若点A 的坐标是(-2,3),点B 与点A 关于原点对称,点C 与点B 关于y 轴对称,则点C 的坐标是_____.18.一个矩形的两边长分别是3与4,已知它在直角坐标系中的三个顶点的坐标分别是(0,0),(4,0),(0,-3),则此矩形第四个顶点的坐标是_____.19.将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____.20.如图4,∠OMA=90°,∠AOM=30°,AM=203米, 站在O 点视察点A ,则点A 的方向上,间隔 点O_____米. 三、专心做一做21. 已知点P(b a ,)在第二象限,且|a |=3,|b |=8,求点P 的坐标.22. 在平面直角坐标系中,描出下列各点:A (-2,-1),B (4,-1),C (3,2),D (0,2),并计算四边形ABCD 的面积.23. 如图5,每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O、C 、D 、E 多点的坐标; (2新版北师大 八年级数学(上) 案一、1.C 2.B 3.C 4.A 10.A 二、11. 4 3 5 12.平行于 13.)7,0( (3,0) 14. -615.西北方向 16. 二17.(-2,-3) 18.(4,-3) 19.(1,-2) 20. 60 40 三、21.由题意,得a <0,b >0;又|a |=3,得a = ±3,|b |=8,得=b ±8,故8,3=-=b a ,故点P 的坐标是(-3,8).22. 图略.四边形ABCD 的面积是13.5.23.(1)A(1,0),B(1,2),C(-2,2),D(-2, -2),E(3,-2);(2)F (3,4). 图 M 图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.在如图所示的正方形网格中, 每个小正方形的边长为 1,格点三角形 (顶 点是网格线的交点的三角形) ABC 的顶点 A, C 的坐标分别为(﹣ 4, 5), (﹣ 1, 3). (1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出 △ ABC 关于 y 轴对称的 △ A ′B′C′; (3)写出点 B ′的坐标.
a, b 的值.
( 1) 3 27 12
Байду номын сангаас
( 2) ( 3 )0
20 15 ( 1)2015 5
( 3) (2
5 )(2
5) (2
2) 2 1 2
10.如上图,在一次寻宝游戏中,寻宝人已经找到了
A ( -3,1)和 B 点的
坐标分别为(﹣ 3, -1),则宝藏的坐标( 3, 3)在哪里?
11.已知点 A( a, 3), B(﹣ 4, b),试根据下列条件求出 ( 1)A ,B 两点关于 y 轴对称 ( 2)A ,B 两点关于 x 轴对称 ( 3)AB ∥ x 轴 ( 4)AB ∥ y 轴. 12 计算
八年级数学周练题
班级 _______ 姓名 _____ 家长签字 _________
1.点 A (﹣ 2, 1)在第 __________象限. 2.已知点 P(﹣ 3,2),点 A 与点 P 关于 y 轴对称,则点 A 的坐标是 __________. 3.已知点 A ( m﹣1, 2),点 B( 3,2m),且 AB ∥ y 轴,则点 B 的坐标为 __________. 4.若 P( x、 y)在第二象限且 |x|=2, |y|=3,则 x+y=__________ . 5.一束光线从 y 轴上点 A( 0,2)出发,经过 x 轴上某点 C 反射后经过点 B( 6, 6),光线从 A 点到 B 点所经过的路线长为 __________ . 6.点 P(m+3,m+1)在直角坐标系的 x 轴上, 则 P 点坐标为 __________. 7.已知 △ ABC 是等腰直角三角形,若在平面直角坐标系内, B、C 两点对 应的坐标分别是( 2, 0),( 0,0),则 A 点对应的坐标是 __________. 8. ① 已知点 A (﹣ 3,2a﹣ 1)与点 B(b,﹣ 3)关于原点对称,那么点 P (a, b)关于 y 轴的对称点 P′的坐标为 __________ . ② 当 m 为何整数值时,点 A ( 4﹣ m, 3m+2)到 x 轴的距离等于它到 y 轴 的距离的一半.
相关文档
最新文档