水泥水化热试验方法(直接法)

合集下载

11.水泥产品生产许可证办法(精简)

11.水泥产品生产许可证办法(精简)

11.水泥产品生产许可证实施细则(摘录)全国工业产品生产许可证办公室(2007-04-04公布,2007-04-04实施)1 总则1.1为了做好水泥产品生产许可证发证工作,依据《中华人民共和国工业产品生产许可证管理条例》(国务院令第440号)、《中华人民共和国工业产品生产许可证管理条例实施办法》(国家质量监督检验检疫总局令第80号)等规定,制定本实施细则。

1.2 在中华人民共和国境内生产、销售或者在经营活动中使用水泥产品的,适用本实施细则。

任何企业未取得生产许可证不得生产水泥产品,任何单位和个人不得销售或者在经营活动中使用未取得生产许可证的水泥产品。

1.3水泥产品生产许可证的适用范围1.3.1实施生产许可证管理的水泥包括所有执行国家标准、行业标准的水泥。

本细则中水泥包括通用水泥、特种水泥和熟料。

1.3.2水泥产品生产许可证分为三个产品单元。

见表1表1 企业生产水泥品种、执行标准及申证单元划分表1.3.3 通用水泥产品单元中,水泥产品生产许可证证书注明的水泥强度等级,是指批准该企业所生产的水泥最高强度等级。

企业获取本单元中任一品种批准的强度等级通用水泥生产许可证,允许生产本单元内其他任何品种同(及以下)强度等级的水泥产品。

特种水泥产品单元中,生产特种水泥的企业应按标准规定单个品种分别申请。

企业获取特种水泥生产许可证,允许生产该品种内任一等级的特种水泥产品。

熟料产品单元中,水泥产品生产许可证证书注明的熟料强度等级,是指批准该企业生产熟料的最高强度等级。

1.3.4 本细则中水泥企业按生产工艺划分为水泥厂、熟料厂、粉磨站和配制厂四种类型。

水泥厂指包括原料处理、生料粉磨、熟料煅烧、水泥粉磨、水泥均化及配制、水泥包装及散装生产工序的企业;熟料厂指包括原料处理、生料粉磨、熟料煅烧生产工序的企业;粉磨站指包括水泥粉磨、水泥均化及配制、水泥包装及散装生产工序的企业;配制厂指包括水泥均化及配制、水泥包装及散装生产工序的企业。

PTS-12S数字式水泥水化热测量系统

PTS-12S数字式水泥水化热测量系统

PTS-12S数字式水泥水化热测量系统该系统由我公司2006年依照国标GB-T 2022—1980(现更新为GB/T 12959-2008)水泥水化热试验方法(直接法)研发,用于自动记录多组热量计内水泥胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天(28天)内的水化热。

该系统全自动化,采样点密集且精度高,全面取代老式人工读数仪器,可用于水泥厂,科研部门,大专院校以及建筑工程部门。

是检测“大坝水泥”“硅酸盐水泥”“矿渣硅酸盐水泥”“粉煤灰硅酸盐水泥”以及掺加外加剂等水泥水化热的必备设备。

使用该系统排除了传统仪器需安排人工值班读数费力,且读数记录误差大的问题,一旦装好试样后不再需要人工干预,系统将按程序设置自动控制水化热数据的采集/记录/停止/分析/计算并打印水化热检测报告。

系统采用高精度温度传感器采集热量计中水泥的温度变化,多组热量计被安装在一个带数控装置的恒温循环水槽中以保证外界温度的恒定,热量值的变化被多通道数据采集装置实时采集并传输到电脑上,软件自动分析数据得出7~28天内的水泥放热曲线和总热量值。

--新款水浴采用大屏幕彩色液晶控制器,并采用倾斜面板安装,造型美观同时有效防止台面上的水滴入操作面板内--新款水浴的热量计支架框采用整体提篮式制作,不用时可从水槽中整体提出,方便水槽底部的清洁,预防水锈--新款水浴在不做水化热试验时可抽出整体水化热试样的支架框,可当做一个大容积的恒温水槽使用--新款水浴的噪音更低,运行更稳定--新款水浴提供6孔,8孔,10孔,12孔,16孔等多个版本按用户要求--新款软件采用同个窗口下的多页面多通道操作,单个通道试验的失误或意外终止不会影响到其他通道的试验正常运行--新款软件可按提供7天标准版和28天加长版等多个版本系统技术参数:可放置试样通道:16个(8组),也可按用户要求制作6~32个(即6、8、10、12、14、16.。

32个)水浴容积:260升(16个样品)试样支架:新款提篮式,可从水槽中整体取出水浴控温精度:20±0.1℃水浴控温范围:10℃~80℃(也可按客户要求设计水浴控温范围,进行其他材料的高低温试验,如低温0℃或高温80℃)系统分辨率:0.01℃系统精度:±0.1℃系统校准:有校准传感器零点漂移和冷端补偿功能数据接口:RS 232数据采集速度:>20点/s(1/5/10/30/60分钟可选,也可按用户要求设置)软件版本:7天或28天按客户要求符合规范:国家GB/T 12959-2008水泥水化热试验方法标准的16通道数字式直接法水泥水化热测量系统系统组成如下表:序号型号说明数量1PTS-12S 数字式水泥水化热测量系统(直接法) 1 该系统包括:1.1/数控低温循环恒温水浴槽,可同时测量16个热量计1台1.2PT100 高精度铂电阻温度传感器16个1.3/16通道自动温度采集系统1个1.4/ 水化热分析软件1套1.5戴尔或同类品牌台式电脑控制,电脑几本配置:奔腾四型不低于2.0MHz处理器,硬盘40~80G,DVD光驱,17液晶显示器。

水泥水化热2种试验方法的比较

水泥水化热2种试验方法的比较
分热量 是 在 3d以 内放 出。但 大 体积 混 凝 土 中水 泥
定 浓度 的标 准酸 中溶 解 ,测得 溶解 热之差 ,此 即
水化过 程产 生 的大量 水化 热 不容 易散 发 ,由此 造成
内部温 度不 断上 升 ,而混 凝土 表面 散热 较快 ,从 而
为水 泥在 规定 龄期 内所 放 出 的水 化热 。
贵 州 水 力 发 电
20 0 8年 2月
表 2 不 同 品 种 水 泥 测 读 温 度 的 间隔 时 间
3 试 验 方 法
3 1 样 品 的制备 .
距初 测期 温度 t 。的间 隔时 间/n rn j
水 泥 品种
( )直 接法 :为 了保证 热量计 中温度 均匀 ,规 1 范要求 采用 胶砂进 行试 验 。胶砂 配 比则根据 水 泥品
使 内外 截面产 生 温 度 梯 度 。特 别是 昼 夜 温 差 大 时 , 大体积 混凝 土 的内外 温度差 别更 大 ,其 内部 混凝 土 热 胀变形 将产 生 压力 ,外 部混凝 土 冷缩 变形 将产 生 拉 应力 ,由于混凝 土早 期抗 拉强 度较 低 ,当混凝 土 内部 的这种拉 应力 超过 混凝 土抗 拉强 度 时 ,混凝 土
裁方 法交 替之 际 ,本作 者工 作单 位对 2种 试验 方法
进行 了多方 面 的 比较 。
作者简介 :徐敏 (9 5 ,女 ,江苏 省江堰市人 ,工程 师,从事 混 17 一)
凝土防裂研究工作。

57 ・
维普资讯
第2 第 l 2卷 期
表 1 直 接 法 与溶 解 热 法 2种 试 验 方 法仪 器设 备 的 比较
是温控 计算 中的一个 重要 参数 ,是 必 检 的项 目。

水泥水化热试验方法(直接法)

水泥水化热试验方法(直接法)

水泥水化热‎试验方法(直接法)本标准适用‎于测定水泥‎水化热。

本标准是在‎热量计周围‎温度不变条‎件下,直接测定热‎量计内水泥‎胶砂温度的‎变化,计算热量计‎内积蓄和散‎失热量的总‎和,从而求得水‎泥水化7天‎内的水化热‎(单位是卡/克)。

注:水泥水化7‎天今期的水‎化热可按附‎录方法推算‎,但试验结果‎有争议时,以实测法为‎准。

一、仪器设备1.热量计(1)保温瓶:可用备有软‎木塞的五磅‎广口保温瓶‎,内深约22‎厘米,内径为8.5厘米。

(2)截锥形圆筒‎:用厚约0.5毫米的铜‎皮或白铁皮‎制成,高17厘米‎,上口径7.5厘米,底径为6.5厘米。

(3)长尾温度计‎:0-50℃,刻度精确至‎0.1℃。

2.恒温水槽水槽容积可‎根据安放热‎量计的数量‎及温度易于‎控制的原则‎而定,水槽内水的‎温度应准确‎控制在20‎±0.1℃,水槽应装有‎下列附件:(1)搅拌器。

(2)温度控制装‎置:可采用低压‎电热丝及电‎子继电器等‎自动控制。

(3)温度计:精确度为±0.1℃。

(4)固定热量计‎用的支架与‎夹具。

二、准备工作3.温度计:须在15、20、25,30、35及40‎℃范围内,用标准温度‎计进行校核‎。

4·软木塞盆:为防止热量‎计的软木塞‎盖渗水或吸‎水,其上、下走向及周‎围应用蜡涂‎封。

较大孔洞可‎先用胶泥堵‎封,然后再涂蜡‎。

封蜡前先将‎软木塞中心‎钻一插温度‎计用的小孔‎并称重,底面封蜡后‎再称其重以‎求得蜡重,然后在小孔‎中插入温度‎计。

温度计插入‎的深度应为‎热量计中心‎稍低一些。

离软木塞底‎面约12厘‎米,最后再用蜡‎封软木塞上‎表面以及其‎与温度计间‎的空隙。

5.套管:温度计在插‎入水泥胶砂‎中时,必须先插入‎一端封口的‎薄玻璃营管‎或铜套管,其内径较温‎度计大约2‎毫米,长约12厘‎米,以免温度计‎与水泥胶砂‎直接接触。

6.保温瓶、软木塞、截锥形圆筒‎、温度计等均‎需编号并称‎量,每个热量计‎的部件不宜‎互换,否则需重新‎计算热量计‎的平均热容‎量。

水泥水化热试验容易忽略的几个细节

水泥水化热试验容易忽略的几个细节

3 1 硝 酸 的配 制 .
水化热 试验对硝酸 的消耗量 比较大 ,试验过程 往往需要配
制 大 量 的硝 酸 溶 液 。 配 制 大 量 的 硝 酸 时 必 须 注 意 反 复 搅 拌 均 匀 ,以免 造 成 上 下 层 浓 度 不 一 致 而 引 起 错 误 试 验 。 建议 将 配 制
水化热 ,而世界 卜美国 、英 同 、日本等许多发达 国家大多采用
在 规定 龄期 内所 放 出 的水 化 热 。
响 ,因为混凝 土的导热 能力很 低 ,水 泥水 化放 出的热 量聚集 在混凝 土 内部不 易散失 ,使混 凝上 内部温 度升高 ,有 时高达 5 O℃以上。混凝土 内部温度 升高使得 混凝土 内 、外部 之间形
成 巨大 的 温 差 与 温 度应 力 ,易 导致混 凝 上 裂 缝 的产 生 ,形 成 混 凝 土 的结 构 损 伤 ,给 工 程 带 来 危 害 [ 因 此 ,为 了保 证 混 凝 土 1 1 。 T 程 的 质 量 ,除 了 在施 T 时 采取 适 当 的 降热 措 施 外 ,还 须 对 所 用 水 泥 的 水 化 热进 行控 制 。 所 以 ,有 必要 对 水 泥 的水 化 热 进 行 研 究 , 以获 得 水 泥 矿 物 水 化 过 程 的 信 息 ,为 混 凝 土 工 程 选 择 、
溶 解 热 法 来 测 定水 泥水 化 热 。溶 解 热 法 与 直 接 法 相 比具 有 明 显 的 优 势 。 溶解 热法 测 定 水泥 水化 热 历 时短 、工 作 量 小 ,省 时 省 力 。但 是 ,一 般 的 水 泥 厂都 不会 配 备熔 解 热 法 所 用 的仪 器 , 即
应用技术
A pi e h o g p l dT c n l y e o

大体积混凝土水化热计算和混凝土抗裂验算

大体积混凝土水化热计算和混凝土抗裂验算

大体积混凝土水化热计算和混凝土抗裂验算一、大体积混凝土水化热计算:1、水化热的产生原因:混凝土的水泥水化过程是一个放热反应,水化反应导致的水化热主要是由于水化反应中水化产物的结晶和水化反应放出的水化热所引起的。

2、水化热计算方法:水化热计算方法主要包括实测法和计算法两种。

(1)实测法:通过对实测数据的收集和分析,计算出混凝土的水化热释放量。

实测法的优点是直接、准确,可以考虑到混凝土组成、水胶比、水化速率等因素的影响,但是需要投入较多的时间和资源。

(2)计算法:通过数学模型以及相应的参数,进行计算得出混凝土的水化热释放量。

计算法的优点是快捷、简便,但是由于模型参数的选择可能存在一定的误差。

二、混凝土抗裂验算:混凝土在干燥或温度变化时容易发生变形和裂缝,因此需要进行抗裂验算,以确保混凝土结构的安全和可靠。

1、裂缝的产生原因:混凝土结构中的裂缝主要有干缩裂缝和温度裂缝两种。

(1)干缩裂缝:由于混凝土在硬化过程中含有的水分蒸发会引起收缩,从而产生干缩裂缝。

干缩裂缝的产生与混凝土的材料性能、环境条件等因素有关。

(2)温度裂缝:由于混凝土的体积膨胀系数与环境温度变化有关,当混凝土结构受热膨胀或受冷缩小时,就会产生温度裂缝。

2、抗裂验算方法:混凝土抗裂验算通常采用两种方法,分别是应力限值法和变形控制法。

(1)应力限值法:根据混凝土结构的应力状态来判断是否会产生裂缝。

通过计算混凝土的受力状态、所受荷载及其变化等参数,然后与设计的裂缝承受能力进行比较,判断是否满足裂缝控制要求。

(2)变形控制法:通过控制混凝土的变形,来控制混凝土的裂缝产生。

根据混凝土结构的变形性能来确定裂缝的控制要求,通常采用限制最大变形或稳定变形的方法。

以上就是大体积混凝土水化热计算和混凝土抗裂验算的一些基本内容,通过合理的水化热计算和抗裂验算,可以确保混凝土结构的安全和可靠性。

水泥相关标准目录908

水泥相关标准目录908

水泥相关标准目录(根据相关报导整理2010.02)一.水泥产品标准1)水泥的命名,定义和术语GB/T 4131-19972)通用硅酸盐水泥 GB 175-2007代替:矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥(GB1344-1999)复合硅酸盐水泥(GB12958-1999)硅酸盐水泥、普通硅酸盐水泥(GB175-1999)3)快硬硅酸盐水泥 GB 199-904)中热硅酸盐水泥低热硅酸盐水泥低热矿渣硅酸盐水泥GB 200-20035)铝酸盐水泥GB/T 201-20006)抗硫酸盐硅酸盐水泥GB/T 748-20057)白色硅酸盐水泥GB/T 2015-20058)低热微膨胀水泥 GB 2938-20089)道路硅酸盐水泥GB 20472-200610)钢渣矿渣水泥 GB 13590-9211)砌筑水泥 GB/T 3183-199712)油井水泥 GB 10238-8813)自应力里铝酸盐水泥 JC 214-199614)自应力硅酸盐水泥 JC/T 218-199515)高铝水泥-65 JC 236-199616)明矾石膨胀水泥 JC/T 311-200417)快凝快硬硅酸盐水泥 JC/T 314-199618)147 快硬高强铝酸盐水泥 JC/T 416-199619)型砂水泥 JC/T 419-199620)快硬铁铝酸盐水泥 JC 435-199621)膨胀铁铝酸盐水泥 JC/T 436-199622)自应力铁铝酸盐水泥 JC 437-199623)石灰石硅酸盐水泥 JC 600-199524)低碱度硫铝酸盐水泥 JC/T 659-199725)快硬硫铝酸盐水泥 JC 714-199626)自应力硫铝酸盐水泥 JC 715-199627)特快硬调凝铝酸盐水泥 JC/T 736-199628) I型低碱度硫铝酸盐水泥 JC/T 737-199629)磷渣硅酸盐水泥 JC/T 740-199630)无收缩快硬硅酸盐水泥 JC/T 741-199631)硅酸盐水泥熟料 JC/T 853-199932)快硬硫铝酸盐水泥快硬铁铝酸盐水泥 JC 933-2003二.水泥性能检测1)水泥取样方法 GB 12573-20082)水泥标准稠度用水量、凝结时间、安定性检验方法 GB/T 1346-20013)水泥密度测定方法 GB/T 208-19944)硅酸盐水泥在硫酸盐环境中的潜在膨胀性能试验方法GB/T749-20015)水泥压蒸安定性试验方法GB/T750-19926)水泥细度检验方法(80 m筛筛析法) GB 1345-20057)水泥水化热试验方法(直接法) GB 2022-19808)水泥胶砂流动度测定方法GB/T 2419-20059)水泥抗硫酸盐侵蚀快速试验方法GB/T 2420-198110)水泥比表面积测定方法(勃氏法) GB 8074-200811)水泥水化热测定方法 GB/T 12959-200812)用于水泥混合材的工业废渣活性试验方法GB/T 12957-200513)水泥组分的定量测定GB/T 12960-200714)自应力水泥物理检验方法(JC/T 453-2004) GB/T 14579-200415)水泥强度快速检验方法(JC/T 738-2004) GB/T 14584-200416)水泥胶砂强度检验方法(ISO法)等同ISO 697:1989 GB/T 17671-199917)水泥比表面积测定方法(勃式法) GB/T 80754-200818)铝酸盐自应力水泥物理检验方法 JC/T 215-199619)膨胀水泥膨胀率试验方法 JC/T 313-199620)自应力水泥物理检验方法 JC/T 453-200421)水泥强度快速检验方法 JC/T 738-2004三.水泥化学分析方法标准1)水泥化学分析法 GB/T 176-20082)水泥组分定量分析 GB/T 12960-20073)铝酸盐水泥化学分析方法GB/T 205-20004)水泥原料中氯的化学分析方法 JC/T 420-19915)铝酸盐水泥中全硫的测定艾什卡法 JC/T 913-20036)粉煤灰游离氧化钙测定方法 (经国家发改委批准的电力行业标准) DL/T 498-19927)粉煤灰中砷镉铬铜镍铅和锌的分析方法(原子吸收分光光度法) DL/T 867-2004四.水泥试验设备1)水泥胶砂试体成型振实台 JC/T 682-20052)40mm X 40mm水泥抗压夹具 JC/T 683-20053)水泥胶砂振动台 JC/T 723-20054)水泥胶砂电动抗折试验机 JC/T 724-20055)水泥胶砂试模 JC/T 726-20056)水泥净浆标准稠度与凝结时间测定仪 JC/T 727-20057)水泥标准筛和筛分析 JC/T 728-20058)水泥净浆搅拌机 JC/T 729-20059)水泥安定性试验用雷氏夹 JC/T 954-200510)水泥安定性试验用沸煮箱 JC/T 955-200511)勃氏透气仪 JC/T 956-200512)水泥胶砂流动度测定仪 JC/T 958-200513)水泥胶砂试体养护箱 JC/T 959-200514)水泥胶砂强度自动压力试验机 JC/T 960-200515)水泥胶砂耐磨性试验机 JC/T 961-200516)雷氏夹膨胀测定仪 JC/T 962-200517)蒸压加气混凝土模具 JC/T 1031-200718)水泥电动抗折试验机 JJG(交通)048-200419)水泥标准筛(80 m) JJG(交通)049-200420)水泥净浆标准稠度与凝结时间测定仪 JJG(交通)050-200421)中国ISO比对标准砂(有效期20年) GSB 08-1509-200222)强度检验用水泥标准样品(有效期4个月) GSB 14-1510-200223)水泥细度和比表标准样品(有效期1年) GSB 14-1511-2002五. 水泥用原材料检验标准1)用于水泥中的粒化高炉矿渣GB/T 203-19942)用于水泥和混凝土中的粉煤灰GB 1596-20053)用于水泥中的火山灰质混合料GB/T 2847-20054)石膏化学分析方法GB/T 5484-20005)用于水泥中的粒化电炉矿渣GB/T 6645-19866)用于水泥和混凝土中的粒化高炉矿渣粉GB/T 18046-20007)用于水泥和混凝土的钢渣粉GB/T 20491-2006六. 水泥检测设备检定规程1)《水泥胶砂搅拌机检定规程》JJG(建材)102-19992)《水泥净浆搅拌机检定规程》JJG(建材)104-19943)《水泥胶砂振动台检定规程》JJG(建材)103-19994)《胶砂试体成型振实台检定规程》JJG(建材)124-19995)《净浆标准稠度与凝结时间测定仪检定规程》JJG(建材)105-19996)《水泥安定性试验用雷氏夹检定规程》JJG(建材)111-19947)《雷氏夹膨胀测定仪》JJG(建材)110-19948)《水泥胶砂流动度测定仪检定规程》JJG(建材)126-19999)《水泥标准筛检定规程》JJG(建材)106-199910)《胶砂试模检定规程》JJG(建材)122-199911)《行星式胶砂搅拌机检定规程》JJG(建材)123-1999七. 其它标准(建筑砂浆、混凝土试验、混凝土渗加剂)1)建筑砂浆基本性能试验方法 JGJ/T 70-20092)砌筑砂浆配制技术规程 DBJ 53-20033)砌筑砂浆配合比设计规程 JFG 98-20004)水泥胶砂强度检验方法(ISO法) GB/T 17671-19995)水泥胶砂流动度测定方法 GB/T 2419-20056)水泥胶砂耐磨性试验方法 GB/T 14578-20047)水泥胶砂干缩试验方法 GB/T 14582-20048)建筑保温砂浆 GB/T 20473-20069)混凝土强度检验评定标准 GB J 107-8710)预拌混凝土 GB 14902-200311)普通砼配制技术规程 GB J 53-2-200312)普通砼拌合物性能试验方法标准 GB/T 50080-200213)普通砼力学性能试验方法 GB/T 50081-200214)普通砼长期性能和耐久性能试验方法 GBJ 82-8515)混凝土泵送施工技术规程 JGJ/T 10-9516)普通混凝土配合比设计规程 JGJ/T 55-200017)混凝土拌合用水标准 JGJ 63-8918)水工混凝土试验规程 SL 352-200619)超声波检测混凝土缺陷技术规范 CECS 21-200020)混凝土外加剂定义、分类、命名与术语 GB/T 8075-200521)混凝土外加剂 GB 8076-199722)混凝土泵送剂 JC 473-199823)砂浆、混凝土防水剂 JC 474-199824)混凝土防冻剂 JC 475-199825)混凝土膨胀剂 JC 476-199826)混凝土外加剂应用技术规范 GB 50119-200327)用于水泥和混凝土中的钢渣粉 GB/T 20491-200628)用于水泥和混凝土中的粉煤灰 GB/T 1596-200529)用于水泥中的工业副产石膏 GB/T 21371-200830)建筑砂浆基本性能试验方法 JGJ 70-199031)砌筑砂浆配合比设计规程 JGJ 98-2000,J65-200032)贯入法检测砌筑砂浆抗压强度技术规程 JGJ/T 136-2001,J131-200133)混凝土外加剂定义,分类,命名与术语GB 8075-200534)混凝土外加剂GB 8076-199735)混凝土外加剂匀质性试验方法GB 8077-200036)人造气氛腐蚀试验盐雾试验GB/T 10125-199737)加气混凝土性能试验方法总则GB/T 11969-199738)加气混凝土体积密度,含水率和吸水率试验方法GB/T 11970-199739)加气混凝土力学性能试验方法GB/T 11971-199740)加气混凝土干燥收缩试验方法GB/T 11972-199741)加气混凝土抗冻性试验方法GB/T 11973-199742)加气混凝土碳化试验方法GB/T 11974-199743)加气混凝土干湿循环试验方法GB/T 11975-199744)建筑保温砂浆GB 20473-200645)普通混凝土拌合物性能试验方法标准GB 50080-200246)普通混凝土力学性能试验方法标准GB 50081-200247)混凝土外加剂应用技术规范GB 50119-200348)水工混凝土掺用粉煤灰技术规范 DL/T 5055-199649)公路工程水泥及水泥混凝土试验规程 JTG E30-200550)砂浆,混凝土防水剂 JC 474-199951)混凝土防冻剂 JC 475-200452)混凝土膨胀剂 JC 476-200153)喷射混凝土用速凝剂 JC 477-200554)评定水泥强度匀质性试验方法 JC 578-199555)水泥胶砂含气量测定方法 JC/T 601-199556)水泥早期凝固检验方法 JC/T 602-199557)水泥胶砂干缩试验方法 JC/T 603-200458)水泥助磨剂 JC/T 667-200459)水泥混凝土养护剂 JC 901-200260)水泥砂浆抗裂性能试验方法 JC/T 951-2005。

水工混凝土施工规范

水工混凝土施工规范

核心提示:水工混凝土施工规范:本标准规定了水工混凝土施工行为和质量的基本要求,适用于大、中型水电水利工程中1、2、3级水工建筑物的混凝土和钢筋混凝土的施工。

1 范围本标准规定了水工混凝土施工行为和质量的基本要求,适用于大、中型水电水利工程中1、2、3级水工建筑物的混凝土和钢筋混凝土的施工。

2 引用标准下列标准所包含的条文,在本标准中引用而构成为本标准的条文。

在标准出版时,所示版本均为有效。

所有标准都会被修改,使用本标准的各方应探讨使用下列标准的最新版本的可能性。

GB 175—1999 硅酸盐水泥、普通硅酸盐水泥GB/T 176—1996 水泥化学分析方法GB 200-1989 中热硅酸盐水泥、低热矿渣硅酸盐水泥GB 748-1996 抗硫酸盐硅酸盐水泥GB/T 750—1992 水泥压蒸安定性试验方法GB 1344—1999 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥GB/T 1345—1991 水泥细度检验方法GB/T 1346—1989 水泥标准稠度用水量、凝结时间、安定性检验方法GB/T 2022—1980 水泥水化热试验方法(直接法)GB/T 2059-2000 铜及铜合金带材GB/T 2847—1996 用于水泥中的火山灰质混合材料GB 2938-1997 低热微膨胀水泥GB 5749-1985 生活饮用水质标准GB/T 6645—1986 用于水泥中的粒化电炉磷渣GB 8076—1997 混凝土外加剂GB/T 9142-2000 混凝土搅拌机GB 12573—90 水泥取样方法GB/T 12959—1991 水泥水化热测定方法(溶解热法)GB/T 14684-2001 建筑用砂GB/T 14685-2001 建筑用卵石、碎石GB/T 17671—1999 水泥胶砂强度检验方法(ISO法) GB 50164—1992 混凝土质量控制标准GBJ 80—1985 普通混凝土拌和物性能试验方法GBJ 107—1987 混凝土强度评定标准GBJ 119-1988 混凝土外加剂应用技术规范GBJ 146-1990 粉煤灰混凝土应用技术规范CECS 03:88 钻芯法检测混凝土强度技术规程CECS38∶92 钢纤维混凝土结构设计与施工规程DL 5017-1993 压力钢管制造安装及验收规范DL/T 5055-96 水工混凝土掺用粉煤灰技术规程DL/T 5057-96 水工混凝土结构设计规范DL/T 5082-99 水工建筑物抗冻设计规程DL/T 5100-1999 水工混凝土外加剂技术规程HG 2288-1992 橡胶止水带JGJ/T 10-95 混凝土泵送施工技术规程JGJ 52-92 普通混凝土用砂质量标准及检验方法JGJ53-92 普通混凝土用卵石、碎石质量标准及检验方法JGJ/T55-2000 普通混凝土配合比设计技术规程JGJ 63-89 混凝土拌和用水标准JGJ 104-97 建筑工程冬期施工规程SD 105-1982 水工混凝土试验规程SDJ 12-1978 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)SDJ 17-1978 水利水电工程天然建筑材料勘察规程SDJ 249.1-1988 水利水电基本建设工程单元工程质量等级评定标准SDJ 336-1989 混凝土大坝安全检测技术规范(试行)SDJ 338-1989 水利水电工程施工组织设计规范SL 62-1994 水工建筑物水泥灌浆施工技术规范SL 172-1996 小型水电站施工技术规范SL 176-1996 水利水电工程施工质量评定规范(试行)AC 1211.1-1995 普通混凝土、重质混凝土及大体积混凝土配合比选择的标准方法AC 214-1989 混凝土强度试验结果评定推荐方法3 总则3.0.1 本标准规范了水工建筑物混凝土的材料、配合比洗涤、施工、温度控制、低温季节施工、预埋件施工、质量控制与检查的基本要求3.0.2 水工混凝土应满足抗压、抗拉、抗渗、抗冻、抗裂、抗冲耐磨和抗侵蚀等设计要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥水化热试验方法(直接法)本标准适用于测定水泥水化热。

本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天内的水化热(单位是卡/克)。

注:水泥水化7天今期的水化热可按附录方法推算,但试验结果有争议时,以实测法为准。

一、仪器设备1.热量计(1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22厘米,内径为8.5厘米。

(2)截锥形圆筒:用厚约0.5毫米的铜皮或白铁皮制成,高17厘米,上口径7.5厘米,底径为6.5厘米。

(3)长尾温度计:0-50℃,刻度精确至0.1℃。

2.恒温水槽水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准确控制在20±0.1℃,水槽应装有下列附件:(1)搅拌器。

(2)温度控制装置:可采用低压电热丝及电子继电器等自动控制。

(3)温度计:精确度为±0.1℃。

(4)固定热量计用的支架与夹具。

二、准备工作3.温度计:须在15、20、25,30、35及40℃范围内,用标准温度计进行校核。

4·软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用蜡涂封。

较大孔洞可先用胶泥堵封,然后再涂蜡。

封蜡前先将软木塞中心钻一插温度计用的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。

温度计插入的深度应为热量计中心稍低一些。

离软木塞底面约12厘米,最后再用蜡封软木塞上表面以及其与温度计间的空隙。

5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。

6.保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部件不宜互换,否则需重新计算热量计的平均热容量。

三、热量计热容量的计算7.热量计的平均热容量C,按下式计算:g g1C=0.2×── +0.45×── +0.2×g2+0.095×g3+0.79×g4+0.4×g52 2+0.46×V式中:C──不装水泥胶砂时热量计的热容量,卡/℃;g──保温瓶重,克;g1──软木塞重,克;g2──玻璃管重,克(如用铜管时系数改为0.095);g3──铜截锥形圆筒重,克(如用白铁皮制时系数改为0.11);g4──软木塞底面的蜡重,克;g5──塑料薄膜重,克;V──温度计伸人热量计的体积,厘米[3](0.46是玻璃的容积比热,卡/厘米[3]·℃)。

式中各系数分别为所用材料的比热(卡/克·℃)。

四、热量计散热常数的测定8.试验前热量计各部件和试验用品应预先在20±2℃下恒温24小时,首先在截锥形圆筒上面,盖一块16x16厘米,中心带有圆孔的塑料薄膜,边缘向下折,用橡皮筋箍紧,移人热量计中,用漏斗向圆筒内注入550毫升温度约45℃的温水,然后用备好的插有温度计(带有玻璃或铜套管)的软木塞盖紧。

在保温瓶与软木塞之间用蜡或胶泥密封以防止渗水,然后将热量计垂直固定于恒温水槽内进行试验。

9.恒温水槽内的水温应始终保持20±0.l℃,试验开始经6小时测定第一次温度T1(一般为35℃左右),经44小时后测定第二次温度T2(一般为21℃左右)。

10.热量计散热常数的计算热量计散热常数K按下式计算注:lgδT1-lgδT2K=(C+W)─────────0.434δt式中:K──散热常数,卡/小时。

℃;W──水量(或热当量,卡/℃),克;C──热量计的平均热容量,卡/℃;δT1──试验开始6小时后热量计与恒温水槽的温度差,℃;δT2──试验经过44小时后热量计与恒温水槽的温度差,℃;δt──自T1至T2时所经过的时间,小时。

注:此公式是根据测定过程中,热量计散失的热量Q与该测定过程中的平均温度差δT和时间间隔δt成正比推算,其比例常散为散热常数K。

Q=K·δT·δtQK=─────δT·δt式中:Q=(C+W)(T1-T2)δT1-δT2δT=───────δT1ln───δT2热量计散热常数应测定两次,取其平均值。

两次相差应小于1卡/小时·℃。

热量计散热常数K应小于40卡/小时·℃,热量计每年必须重行测定散热常。

五、水泥胶砂水化热的测定11.为了保证热量计温度均匀,采用胶砂进行试验。

砂子采用GB178-77《水泥强度试验用标准砂》中规定的平谭标准砂,水泥与砂子配比根据水泥品种与标号选定,配比的选择宜参照表1;胶砂在试验过程中,温度最高值应在30-38℃范围内(即比恒温水槽的温度高10-18℃)。

试验中胶砂温度的最大上升值小于10℃或大于18℃,则须改变配比,重新进行试验。

表1━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━│ 水泥与砂子配比水泥品种├────┬────┬──────│325号│425号│ 525号以上───────────────────┼────┼────┼──────硅酸盐大坝水泥、普通硅酸盐大坝水泥、硅│││酸盐水泥、普通硅酸盐水泥、抗硫酸盐水泥│ 1:2.0 │ 1:2.5 │ 1:3.0───────────────────┼────┼────┼──────矿渣大坝水泥、粉煤灰大坝水泥、矿渣硅酸│││盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸│ 1:1.0 │ 1:1.5 │ 1:2.0盐水泥│││━━━━━━━━━━━━━━━━━━━┷━━━━┷━━━━┷━━━━━━12.胶砂的加水量:以水泥净浆的标准稠度(%)加系数B(%)作为水泥用水量(%)。

B值根据胶砂配比而不同,见表2。

胶砂的加水量为胶砂配比中水泥的重量乘以水泥用水量(%)。

表2━━━━━┯━━━━┯━━━━┯━━━━┯━━━━┯━━━━┯━━━━━胶砂配比│ 1:1.0 │ 1:1.5 │ 1:2.0 │ 1:2.5 │ 1:3.0 │ 1:3.5─────┼────┼────┼────┼────┼────┼─────B│0│0.5│ 1.0│ 3.0│ 5.0│ 6.0━━━━━┷━━━━┷━━━━┷━━━━┷━━━━┷━━━━┷━━━━━13.试验前,水泥、砂子、水待等材料和热量计各部件应预先在20±2℃下恒温。

试验时,水泥与砂子干混合物总重量为800克,按选择的胶砂配比,计算水泥与标准砂用量分别称量后,倒入拌合锅内干拌1分钟,移入已用湿布擦过的拌合锅内,按表2规定的胶砂加水量加水。

湿拌3分钟后,迅速将胶砂装入内壁已衬有牛皮纸衬的截锥形圆筒内,粘在锅和勺上的胶砂,用小块棉花擦净,一起放入截锥形圆筒中,并在胶砂中心钻一个深约12厘米的孔,放入玻璃管或铜管以备插入温度计。

然后盖上中心带有圆孔的塑料薄膜,用橡皮筋捆紧,将其置于热量计中,用插有温度计的软木塞盖紧。

从加水时间起至软木塞盖紧应在5分钟内完成,至7分钟时(自加水时间算起),记录初始温度t及时间。

然后在软木塞与热量计接缝之间封蜡或胶泥,封好后即将热量计放于恒温水槽中加以固定。

水槽内高出水面应高出软木塞顶面2厘米。

注:牛皮纸衬的热容量可忽略不计。

14.热量计放入恒温水槽后,在温度上升过程中,应每小时记录一次;在温度下降过程中,改为每2小时记录一次,温度继续下降或变化不大时改为4小时或8小时记录一次。

试验进行到七昼夜为止。

六、试验结果的计算15.根据所记录各时间与水泥胶砂的对应温度,以时间为横坐标(1厘米=5小时),温度为纵坐标(1厘米=1℃)在坐标纸上作图。

并画出20℃水槽温度恒温线。

恒温线与胶砂温度曲线间总面积(恒温线上的面积为正面积,恒温线以下的面积为负面积)ΣF0 ̄x(小时·℃)可按下列计算方法求得。

(1)用求积仪求得。

(2)把恒温线与胶砂温度曲线间的面积按几何形状划分较小的三角形、抛物线、梯形面积F1、F2、F3……(小时·℃)等,分别计算,然后将其相加,因为1平方厘米等于5小时·℃,所以总面积乘5即得ΣF0 ̄x (小时·℃)。

(3)近似矩形法:参照图,以每5小时(1厘米)作为一个计算单位,并作为矩形的宽度。

矩形的长度(温度值)是通过面积补偿确定。

如图所示,在补偿的面积中间选一点,这一点如能使一个计算单位的画实线面积与空白面积相等,那么这一点的高度便可作为矩形的长度,然后与宽度相乘即得矩形面积。

将每一个矩形面积相加,再乘以5即得ΣF0 ̄x(小时·℃)的数值(4)用电子仪器自动记录和计算。

(5)其他方法16.根据水泥与砂子重量、水量及热量计平均热容量C,按下式计算装水泥胶砂后热量计的热容量Cp(卡/℃)。

Cp=(0.2×水泥重)+(0.2×砂重)+1.0×水重+C17.在-定龄期X时,水泥水化放出的总热量为热量计中积蓄热量和散失热量的总和Qx(卡),按下式求得:Qx=Cp(tx-t0)+K·ΣF0 ̄x式中:Cp──装水泥胶砂后热量计的热容量,卡/℃;tx──水泥胶砂在龄期为x小时的温度,℃;t0──水泥胶砂的初始温度,℃;K──热量计的散热常数,卡/小时·℃;ΣF0 ̄x2──在0~x小时间恒温水槽温度直线与胶砂温度曲线间的面积,小时·℃。

18.在一定龄期时水泥水化热q,(卡/克),按下式计算:Qxqx=───G式中:Qx──龄期为x时,水泥放出的总热量,卡;G──试验用水泥重量,克。

19.水泥水化热试验结果必须采取两次试验的平均值并取整数,两次结果相差应小于3卡/克。

附录7天水化热的推算法1.根据热量计内水泥胶砂温升曲线3天末的高度h及按水泥品种选用的经验常数A,代入下式ΣF3 ̄7(推算)=A·h求得ΣF3 ̄7(推算):式中:ΣF3 ̄8(推算)──为推算的3-7天龄期恒温水槽等温线与胶砂温度曲线间的面积,小时·℃;h──水泥胶砂温升曲线3天末的高度,℃;A──常数,是根据大量的不同品种水泥水化热试验结果,分别统计整理的,其数值见下表。

2.将ΣF3 ̄7(推算)及按水泥品种选用的7天末温度经验值Ty代入下式求得3~7天龄期推算的水泥水化热q3-7(推算)。

Cp(Ty-T3)+K·ΣF3 ̄7(推算)q=──────────────────G式中:Ty──是根据大量水泥水化热试验实测结果,按水泥品种分别统计整理的水泥胶砂7天末温度的数值,℃见下表;T3──为实测水泥胶砂水化3天未温度值,℃;Cp、K、G同标准正文。

常数A及7天末温度Ty的统计值注━━━━━━━━━━━━━━━┯━━┯━━━水泥品种│ A│ Ty───────────────┼──┼───硅酸盐水泥、硅酸盐大坝水泥│ 55 │ 20.4───────────────┼──┼───矿渣硅酸盐水泥、矿渣大坝水泥│ 57 │ 20.6━━━━━━━━━━━━━━━┷━━┷━━━注:表内A及Ty值可根据生产厂统计结果进行修正。

相关文档
最新文档