3.2.2解一元一次方程(一)导学案(移项)

合集下载

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,

3.2 合并同类项与移项教案

3.2   合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。

本节课是在教授了一元一次方程解法第一课时因此尤为重要。

同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。

教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。

移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。

第3章 3.2 第2课时 用移项的方法解一元一次方程

第3章 3.2 第2课时 用移项的方法解一元一次方程
解:设手工小组有 x 人,由题意,得 5x+2=6x-8,移项,得 5x-6x =-8-2,合并同类项,得-x=-10,系数化为 1,得 x=10.答:手工小 组有 10 人.
17.已知整式 5x-7 与 4x+9 的值互为相反数,求 x 的值. 解:由题意得 5x-7+4x+9=0.移项,得 5x+4x=7-9.合并同类项, 得 9x=-2.系数化为 1,得 x=-29.
根据“表示同一个量的两个不同的式子相等”列方程解决问

同步考点手册 P24
9.某商品的标价为 200 元,8 折销售仍赚 40 元,则该商品的进价为( B )
A.140 元
B.120 元
C.160 元
D.100 元
10.甲厂库存钢材 100 吨,每月用去 15 吨;乙厂库存钢材 82 吨,每
月用去 9 吨,经过 x 个月后,两厂剩下的钢材相等,则 x 等于( B )
第三章 一元一次方程 3.2 解一元一次方程(一)——合并同类项与移项 第2课时 用移项的方法解一元一次方程
用移项解一元一次方程
同步考点手册 P23
1.解方程时移项的根据是( D )
A.加法的结合律
B.乘法结合律
C.分配律
D.等式的性质 1
2.下列解方程移项正确的是( C ) A.由 3x-2=2x-1,得 3x+2x=1+2 B.由 x-1=2x+2,得 x-2x=2-1 C.由 2x-1=3x-2,得 2x-3x=1-2 D.由 2x+1=3-x,得 2x+x=3+1
①合并同类项,得 5x=7;②移项,得 3x+2x=3+4;③系数化为 1,
得 x=75.
A.①②③
B.③②①
x+2 的值相等,则 x 的值等于( A )

一元一次方程的解法移项

一元一次方程的解法移项

一元一次方程的解法移项
一元一次方程(也称为一次方程)是指方程中只含有一个未知数,并
且该未知数的最高次数为1的方程。

解一元一次方程的常见方法之一
是移项。

移项是通过改变方程中的项的位置,将含有未知数的项移到一边,并
将不含未知数的项移到另一边,从而得到一个更简化的形式。

以下是解一元一次方程的移项步骤:
1. 首先,将方程中的所有常数项(即不含未知数的项)移到方程的另
一边。

例如,如果方程为2x - 5 = 1,则将-5移到等号的另一边,得
到2x = 1 + 5,即2x = 6。

2. 接下来,将方程中的系数项(即含有未知数的项)移到方程的另一边。

在该步骤中,要根据项的正负情况进行不同的处理。

如果未知数
项的系数为正数,则将该项移到等号的另一边应将符号取反。

如果未
知数项的系数为负数,则将该项移到等号的另一边时符号不变。

由于
系数项移动到等号的另一边时,影响其符号的是移动前的正负情况。

例如,将2x = 6中的2x移动到等号的另一边,由于2x的系数为正数,所以2x移动后需要变为-2x,得到-2x = 6。

3. 最后,根据需要计算未知数的值,将方程进行求解。

可以通过除以
未知数的系数来解得未知数的值。

在这个例子中,通过除以-2,得到x = 6 ÷ -2,即x = -3。

综上所述,移项是解一元一次方程的常见方法,通过改变方程中项的位置,将含有未知数的项移到一边,从而得到最终的解。

用移项的方法解一元一次方程导学案

用移项的方法解一元一次方程导学案

用移项的方法解一元一次方程导学案一.学习目标1.理解移项的意义,掌握移项的方法.(重点)2.学会运用移项解形如“ax+b=cx+d”的一元一次方程.(重点)二.预习反馈1.等式的性质1: 等式两边,结果仍相等。

如果a=b,那么。

2.等式的性质2: 等式两边,结果仍相等。

如果a=b,那么;如果a=b(c≠0),那么。

3.解下列方程(1)4x-15=9-4 (2)5x=2x-21三.合作探究探究一怎样才能将方程3x+20=4x-25转化为x=a的形式呢?(1)如何消去方程3x+20=4x-25中等号右边的4x ?(2)如何消去方程3x+20=4x-25中等号左边的20 ?(3)方程3x+20=4x-25 经过消去了4x和20是不是得到3x-4x=-25-20?如果是,那么通过两者的对比发现什么?1. 叫做移项2.注意事项:(1)等号的一边移到另一边.(2)移项一定要.探究二下面是五位同学做的方程变形,是移项的打√,不是的打×且说明理由A.由-3x=24得x=-8 ( )B.由3x+6-2x=8 得3x+2x-6=8 ( )C.由4x+5=0 得-4x=5 ( )D.由2x+1=0得2x=-1 ( )E.由3x +2=4x-8得3x-4x =2-8 ( )四.精讲释疑例1 解方程:3x+7=32-2x五.课堂检测1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92.下列方程的变形,属于移项的是( )A. 9x +5=0, 9x =-5B. -2x =-3,x =C. 7-2x =5,-2x +7=5D. 4(x -2)=1, 4x -8=13.(广东中考)方程2x -1=3x +2的解为( )A.x =1 B.x=-1 C.x=3D.x=-34. 已知 2m -3=3n +1,则 2m -3n = .5.(2018·四川安岳县中考)当x =_____时,式子 2x -1 的值比式子 5x +6 的值小1.6、解下列方程:(1) 5x -7=2x -10 (2) -0.3x +3=9+1.2x六.1.本节小结2.课后作业23。

《3.2 用移项的方法解一元一次方程》课件(三套)

《3.2 用移项的方法解一元一次方程》课件(三套)
因为,这批书的总数是一个定值,表示它
的两个式子应相等,根据这一相等关系列
得方程:_3_x_+__2_0_=__4_x_-_2_5_
如何求方程3x+20=4x-25的解?
根据等式的性质1,方程两边先同时 减去4x,再同时减去20,得到: ___3_x_-4__x_=_-2_5__-2_0______ 上面的方程的变形,相当于把原方 程左边的20变为-20移到右边,把右 边的4x变为-4x移到左边.
解法二:设船有x条.则
6(x+1)=9(x-1)
得出 x=5
6× (5+1)=36(人)
答:这个班共有36人.
这节课我们学习了什么?
1. :一般地, 把等式中的某些项、 变号后移到另一边, 叫做移项。
2.解一元一次方程需 要移项时我们把含未 知数的项移到方程的 一边(通常移到左 边),常数项移到方
4x –41x5= +9+1155.= 9 + 15 2x2x–5-x 5=x5x=–-2121–.5x
合并同类项 ,得
4x = 24.
合并同类项 ,得
-3x=-21.
系数化为1,得
x = 6.
系数化为1,得
x = 7.
4x-15 = 9 4x = 9+15
2x = 5x -21 2x-5x= -21

生阅读,如果每人分3本,则剩

余20本;如果每人分4本,则还

缺25本,这个班学生有多少人?




解:设这个班学生有x人,
(1)每人分3本,共分出书__3_x__本,加上 剩余20本,这批书共有(___3_x_+_2__0_)____本. (2)如果每人分4本,需要__4_x____本,减 去缺的25本,这批书共有__(__4_x__-2__5_)__本.

解一元一次方程——移项(教案)

解一元一次方程——移项(教案)
这批书共_______本.
2、找相等关系
这批书的总数是一个定值,表示它的两个等式相等
3、列方程
思考1:它与练习1遇到的方程有何不同?
方程的两边都有未知项(3x与4x)和常数项(20与-25).
思考2:如何才能使这个方程转化为练习1的方程?
(利用等式性质1,等式两边同时减去4x)
(利用等式性质1,等式两边同时减去20)
2、解形如“ax+b=cx+d”的方程的一般步骤及依据
移项(等式的性质1)注意变号哦!
合并同类项(分配律)
系数化为1(等式的性质2)
3、列一元一次方程解应用题的一般步骤:
审题→设未知数→找等量关系列方程→解方程→作答
[家庭作业]:自编作业!
备注
定义:把等式一边的某项变号后移到另一边,叫做移项。
移项=变号+移到等式另一边
思考3:“移项”的依据是什么?
移项的依据是等式的性质1
思考4: “移项”起了什么作用?
通过移项,使等号一边仅含未知项,等号另一边仅含常数
项,使方程更接近x=a的形式.
列一元一次方程解应用题的一般步骤:
审题→设未知数→找等量关系列方程→解方程→作答
【练习1】解下面方程:
(1)
(2)
(3)
【例1】把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?
分析:1、设未知数:设这个班有x名学生.
每人分3本,共分出__ 本,还剩余20本,
这批书共__Байду номын сангаас____ 本.
每人分4本,需要____本,还缺25本,
⑷ 方程2x-7=-5x,移项得: .

人教版数学七年级上册3.2 解一元一次方程(一)——合并同类项与移项 课件(共17张PPT)

人教版数学七年级上册3.2 解一元一次方程(一)——合并同类项与移项  课件(共17张PPT)

B
知识点二 合并同类项
把方程两边的____同__类__项______分别合并,从而把方程转化 为_____a_x_=__b_____的形式,然后再转化为x=c的形式(其中 a,b,c是常数).
2. 解方程-7x+4x=9的步骤: (1)__合__并__同__类__项__,__得__-__3_x_=__9_______; (2)__系__数__化__为__1_,__得__x_=__-__3_________.
【例3】解下列方程: (1)3x+2x+x=24; 解:合并同类项,得6x=24. 系数化为1,得x=4.
(2)-3x+6x=18. 解:合并同类项,得3x=18. 系数化为1,得x=6.
思路点拨:先合并同类 项,再将系数化为1即 可.
解:合并同类项,得-x=-3. 系数化为1,得x=3.
【例4】有一列数,按一定的规律排列成-2,4,-8,16 ,…,其中某三个相邻的数的和为-384,求这三个数各为 多少.
第三章Байду номын сангаас一元一次方程
第27课时 解一元一次方程(一)——合并同类项
目录
01 本课目标 02 课堂导练
本课目标
1. 运用合并同类项解形如 ax+bx+cx=p的方程. 2. 经历运用方程解决实际问题的过程,体会方程是刻画现 实世界的有效数学模型.
知识点一 未知数系数化为1
把形如ax=b的方程,利用等式的性质,两边同时 ____除__以__a______,从而把方程转化为x=c的形式(其中a,b ,c是常数).
谢谢
课堂导练
解:系数化为1,得x=2. 思路点拨:利用将未知数系数化为1的方法解答即可.
解:系数化为1,得x=-3.
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.2解一元一次方程(一)
----移项
学习目标:
1、通过观察,独立归纳出移项法则;
2、利用移项法则解形如“ax+b=cx+d”类型的一元一次方程;
3、通过分析实际问题中的数量关系,体会建模思想在一元一次方程中的作用
重点难点:运用移项法则解一元一次方程。

学习过程:
问题1:把一些图书分给某班同学阅读,如果每人3本,则剩余20本;若每人4本,则还缺少25本,这个班的学生有多少人?
分析:设这个班有x名学生,这批书共有本,
这批书总数还可表示成本
等量关系:
列得方程:
如何解这个方程呢?
1、使方程右边不含x的项,方程两边同时减,得:
2、使方程左边不含常数项,方程两边同时减,得:
观察方程:把某项从等式一边移到另一边时有什么变化?
上面方程的变形,相当于把原方程左边的变为
移到右边,把右边的变为移到左边.
归纳:把等式一边的某项变号后移到另一边,叫做移项。

思考:解方程中“移项”起了什么作用?
通过移项,含与分别放在方程的左右两边,使方程更接近于x=a的形式.
问题1的解答过程:
解:设这个班有x名学生,依题意得
3x+20=4x-25
移项,得
合并同类项,得
系数化为1,得
答:这个班的学生有人.
d cx b ax +=+巩固练习:
1、解下列方程
2、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg.采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?
小结:
1、今天学习解形如方程有哪些步骤?
2、列方程解应用题分哪些步骤?
作业:课本P91页
习题3.2第 3(3)(4)、4、6题
课后反思: (1)6745;x x -=-13(2)624x x -=(3)5278;x x -=+35(4)13;22
x x -=+。

相关文档
最新文档