江苏盐城中考数学试题解析版
2022年江苏省盐城市中考数学试卷原卷附解析

2022年江苏省盐城市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()A.路灯的左侧B.路灯的右侧C.路灯的下方D.以上都可以2.若α是锐角,且sinα=34,则()A.60°<a<90°B. 45°<α<60°C. 30°<α<45°D.0°<a<30°3.如图,AB切⊙O于B,割线ACD经过圆心O,若∠BCD=70°则∠A的度数为()A.20°B.50°C.40°D.80°4.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2,3,5的三条线段,以它们为边组成一个三角形.其中不确定事件是()A.(1)(2)B.(1)(3)C.(2)(3)D.(2)(4)5.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对6.王京从点O出发.先向西走40米,再向南走30米,到达点M.如果点M的位置用(-40,-30)表示,从点M继续向东走50米,再向北走50米,到达点N,那么点N的坐标是()A.(-l0,10)B.(10,-l0)C.(10,-20)D.(10,20)7.如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是()A.415B.13C.15D.2158.下面每组图形中的两个图形不是通过相似变换得到的是()9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形10.将叶片图案旋转l80°后,得到的图形是( )11.如图所示,已知∠1=∠2,AD=CB ,AC ,BD 相交于点0,MN 经过点O ,则图中全等三角形的对数为( ) A .4对B .5对C .6对D .7对12.下列图形中.成轴对称图形的是 ( )13.“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中轴对称图形的个数是 ( )A .1个B .2个C .3个D .4个二、填空题14.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.15.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)16.某青年棒球队14名队员的年龄如下表:1年龄(岁)192021221人数(人)3722则出现次数最多的年龄是.17.如图,在△ABC中,∠A=80°,BD=BE,CD=CF,则∠EDF .18.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.19.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.三、解答题20.如图,AB为⊙O的直径,P为AB的延长线上一点,PT切⊙O于T,若PT=6,PB=3,求⊙O的直径.21.如图①,在矩形 ABCD 中,AB =20 cm,BC=4 cm,点 P从A 开始沿折线A B C D---以 4 cm/s 的速度移动,点Q从C开始沿 CD 边以 1 cm/s 的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达 D 时,另一点也随之停止运动,设运动时间为 t(s).(1)t 为何值时,四边形 APQD 为矩形?(2)如图②,如果⊙P 和⊙Q 的半径都是2 cm,那么t为何值时,OP 与⊙Q外切?图1图222.武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44减至32,已知原台阶AB 的长为5米(BC 所在地面为水平面). (1)改善后的台阶会加长多少?(精确到0.01米) (2)改善后的台阶多占多长一段地面?(精确到0.01米)23.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.24.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?25.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE .26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的 高度吗?说说其中的道理...lB A27.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)1410028.在一次美化校园的活动中,老师安排32人除草,20人植树.后来发现人手不够,就增派20人去支援,并且使除草的人数是植树人数的2倍.问:增派的20人中,支援除草的有多少人?29.下列表述中字母各表示什么?(1)正方形的面积为2a;(2)买 5 斤桔子需5a元钱;(3)七年级甲班有40 人,乙班人数为40x 人.30.文明于世的埃及字塔、形似方锥,大小各异,这些金字塔的高与底面边长的比都接近于黄金比,胡夫金字塔是埃及现存规模最大的金字塔,破喻为“世界古代七大奇观之一”,底面呈正方形,每边长约为230m.请估计该金字塔的高度(精确到1 m).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.B5.C6.D7.B8.D9.D10.D11.C12.D13.B二、填空题 14. 415.灯光16.20岁17.50°18.90019.31三、解答题 20. 921.(1)当四边形 APQD 为矩形时,DQ=AP,20-t=4t,t=4(s)(2)∵r=2,∴当 PQ=4 时,⊙P 与⊙Q 外切,即四边形APQD 为矩形 20-t=4t,t=4(s).22.解:(1)如图,在Rt ABC △中,sin 445sin 44 3.473AC AB ==≈.在Rt ACD △中,3.4736.554sin 32sin 32AC AD ==≈, 6.5545 1.55AD AB ∴-=-≈.即改善后的台阶会加长1.55米. (2)如图,在Rt ABC △中,cos 445cos 44 3.597BC AB ==≈.在Rt ACD △中,3.4735.558tan 32tan 32AC CD ==≈,5.558 3.597 1.96BD CD BC ∴=-=-≈. 即改善后的台阶多占1.96米长的一段地面.23.画AB 的垂直平分线与直线l 的交点就是圆心,图略.24.P 运动到∠A 的平分线与BC 的交点25.(1)解:图2中ABE ACD △≌△. 证明如下:ABC △与AED △均为等腰直角三角形, AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.26.3 cm ,理由略27.表中依次填:20,50;40,40,628.设支援除草的有x 人,则支援植树的有(20—x )人, 由题意得322(40)x x +=- ,x=16,∴支援除草的有16 人.29.(1)a 表示正方形的边长 (2)a 表示桔子的单价 (3)x 表示乙班比甲班多x 人30.设该金字塔的高度为 x (m).由题意得230x =,1)x =,142x ≈ 答:该金字塔高度约为 142 m .。
江苏省盐城市2021年中考数学试题(解析版)

盐城市二〇二一年初中毕业与升学考试数学试卷一、选择题1.2021-的绝对值是()A.12021 B.12021- C.2021- D.2021【答案】D【解析】【分析】根据绝对值的意义进行计算,再进行判断即可【详解】解:2021-的绝对值是2021;故选:D【点睛】本题考查了绝对值的意义,熟练掌握绝对值的性质是解题的关键2.计算:⋅2a a 的结果是()A.3a B.2a C.a D.22a 【答案】A【解析】【分析】利用同底幂乘法的运算法则计算可得【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意3.北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【点睛】本题考查了轴对称图形的定义,准确理解定义是解题的关键.4.如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的是主视图,由此可得答案.【详解】解:观察图形可知,该几何体的主视图是.故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的是主视图.5.2020年12月30日盐城至南通高速铁路开通运营,盐通高铁总投资约2628000万元,将数据2628000用科学记数法表示为()A.70.262810⨯ B.62.62810⨯ C.526.2810⨯ D.3262810⨯【答案】B【解析】【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵2628000=62.62810⨯,故选B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.6.将一副三角板按如图方式重叠,则1∠的度数为()A.45︒B.60︒C.75︒D.105︒【答案】C【解析】【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【详解】解:如图所示:由题意可得,∠2=30°,∠3=45°则∠1=∠2+∠3=45°+30°=75°.故选:C .【点睛】此题主要考查了三角形的外角以及三角尺的特征,正确利用三角形外角的性质是解题关键.7.若12,x x 是一元二次方程2230x x --=的两个根,则12x x +的值是()A.2B.-2C.3D.-3【答案】A【解析】【分析】根据一元二次方程根与系数的关系解答即可.【详解】解:∵12,x x 是一元二次方程2230x x --=的两个根,∴12x x +=2.故选:A .【点睛】本题考查了一元二次方程根与系数的关系,属于基本题目,熟练掌握该知识是解题的关键.8.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是()A.SASB.ASAC.AASD.SSS【答案】D【解析】【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知,OC OD MC MD==在OCM ODM △和△中OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩∴OCM ODM ≅△△(SSS )∴COM DOM∠=∠∴OM 就是AOB ∠的平分线故选:D【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、填空题9.一组数据2,0,2,1,6的众数为________.【答案】2【解析】【分析】根据众数的定义进行求解即可得.【详解】解:数据2,0,2,1,6中数据2出现次数最多,所以这组数据的众数是2.故答案为2.【点睛】本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.10.分解因式:a 2+2a +1=_____.【答案】(a +1)2【解析】【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是912.如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【解析】【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:∵ABCD 是⊙O 的内接四边形,∠ABC =100°,∴∠ABC +∠ADC =180°,∴180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.13.如图,在Rt ABC 中,CD 为斜边AB 上的中线,若2CD =,则AB =________.【答案】4【解析】【分析】根据直角三角形斜边中线等于斜边的一半即可解决问题;【详解】解:如图,∵△ABC 是直角三角形,CD 是斜边中线,∴CD 12=AB ,∵CD =2,∴AB =4,故答案为4.【点睛】本题考查直角三角形的性质,解题的关键是记住直角三角形斜边上的中线等于斜边的一半.14.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:该圆锥的侧面积=12×2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x +=【解析】【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2;依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .16.如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC ' 是以AE 为腰的等腰三角形.【答案】78或43【解析】【分析】对AEC ' 是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt △ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得△ABE ≌△AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =.【详解】解:当=AE EC '时,设BE x =,则4EC x =-,∵ECF △沿EF 翻折得EC F '△,∴=4EC EC x '=-,在Rt △ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+,解得:7=8x ;当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,∵AH ⊥EC ',=AE AC ',∴EH C H '=,∵EF AE ⊥,∴=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠∵ECF △沿EF 翻折得EC F '△,∴=C EF FEC '∠∠,∴BEA AEH =∠∠,在△ABE 和△AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△AHE (AAS ),∴BE HE =,∴=BE HE HC '=,∴12BE EC '=∵EC EC '=,∴12BE EC =,∴14=33BE BC =,综上所述,7483BE =或,故答案为:7483或【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.三、解答题17.计算:1011)3-⎛⎫+-- ⎪⎝⎭.【答案】2.【解析】【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【详解】1011)3-⎛⎫+-- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键.18.解不等式组:311424x x x x -≥+⎧⎨-<+⎩【答案】1x 2≤<【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再找到解集的公共部分.【详解】311424x x x x -≥+⎧⎨-<+⎩①②解:解不等式①得:1≥x 解不等式②得:2x <在数轴上表示不等式①、②的解集(如图)∴不等式组的解集为12x ≤<.【点睛】本题考查了解一元一次不等式组,熟练解一元一次不等式是解题的关键,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19.先化简,再求值:21111m m m-⎛⎫+ ⎪-⎝⎭ ,其中2m =.【答案】1m +,3【解析】【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m -+-+=⋅-(1)(1) 1m m m m m-+=⋅-1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.20.已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0).(1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.【答案】(1)1a =,4h =-;(2)242y x x =-+【解析】【分析】(1)将点(0,3)-和(3,0),代入解析式求解即可;(2)将2(1)4y x =--,按题目要求平移即可.【详解】(1)将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩∴1a =,4h =-(2) 原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得:∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+【点睛】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.21.如图,点A 是数轴上表示实数a 的点.(1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2a 的大小,并说明理由.【答案】(1)见解析;(2)a >,见解析【解析】【分析】(1,再利用圆规画圆弧即可得到点P .(2)在数轴上比较,越靠右边的数越大.【详解】解:(1)如图所示,点P 即为所求.(2)如图所示,点A 在点P 的右侧,所以a >【点睛】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.22.圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)【答案】(1)110;(2)见解析,12【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为110,故答案为:110;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴P (其中有一幅是祖冲之)61122==.【点睛】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.23.如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【解析】【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB∵//DE AF∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC∠∵AE 平分BAC∠∴DAE FAE∠=∠又∵平行四边形ADEF∴//EF DA∴=∠∠FAE AEF∴AF EF=∴平行四边形ADEF 是菱形选③AB AC=∵//EF AB 且12EF AB =//DE AC 且12DE AC =又∵AB AC =∴EF DE=∴平行四边形ADEF 为菱形故答案为:②或③【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.24.如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的⊙O 交PB 于点A ,点C 在⊙O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是⊙O 的切线;(2)若3AB PA =,求AC BC 的值.【答案】(1)见解析;(2)12【解析】【分析】(1)连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC∵2PC PA PB=⋅∴PC PB PA PC=,又∵∠P =∠P ,∴PAC PCB∽∴PAC PCB =∠∠,PCA PBC∠=∠∵PCO PCB OCB∠=∠-∠∴PCO PAC OCB∠=∠-∠又∵OC OB=∴OCB OBC∠=∠∴PCO PAC ABC ACB∠=∠-∠=∠已知C 是O 上的点,AB 是直径,∴90ACB ∠=︒,∴90PCO ∠=︒∴AC PO ⊥,∴PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a=∴ 1.5OC a=在Rt △PCO 中∵ 2.5OP a =, 1.5OC a =,∴2PC a=已知PAC PCB ∽,AC PA BC PC =∴12AC BC =.【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.25.某种落地灯如图1所示,AB 为立杆,其高为84cm ;BC 为支杆,它可绕点B 旋转,其中BC 长为54cm ;DE 为悬杆,滑动悬杆可调节CD 的长度.支杆BC 与悬杆DE 之间的夹角BCD ∠为60︒.(1)如图2,当支杆BC 与地面垂直,且CD 的长为50cm 时,求灯泡悬挂点D 距离地面的高度;(2)在图2所示的状态下,将支杆BC 绕点B 顺时针旋转20︒,同时调节CD 的长(如图3),此时测得灯泡悬挂点D 到地面的距离为90cm ,求CD 的长.(结果精确到1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)【答案】(1)点D 距离地面113厘米;(2)CD 长为58厘米【解析】【分析】(1)过点D 作DF BC ⊥交BC 于F ,利用60°三角函数可求FC ,根据线段和差FA AB BC CF =+-求即可;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,可证四边形ABGN 为矩形,利用三角函数先求cos20CN BC =⨯︒50.76(cm)≈,利用MG 与CN 的重叠部分求6(cm)MN =,然后求出CM ,利用三角函数即可求出CD .【详解】解:(1)过点D 作DF BC ⊥交BC 于F ,∵60FCD ∠=︒,90CFD ∠=︒∴cos60FC CD =⨯︒,1502=⨯,25(cm)=,∴845425113(cm)FA AB BC CF =+-=+-=,答:点D 距离地面113厘米;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,∴∠BAG =∠AGN =∠BNG =90°,∴四边形ABGN 为矩形,∴AB =GN =84(cm),∵54(cm)BC =,将支杆BC 绕点B 顺时针旋转20︒,∴∠BCN =20°,∠MCD =∠BCD -∠BCN =40°,∴cos20CN BC =⨯︒,540.94=⨯,50.76(cm)=,∴CG =CN +NG =50.76+84=134.76(cm),∴50.7690134.766(cm)MN CN MG CG =+-=+-=,∵6(cm)MN =,∴44.76(cm)CM CN MN =-=,∵44.76(cm)CM =,∴cos40CD CM =÷︒,44.760.77=÷,58(cm)≈,答:CD 长为58厘米.【点睛】本题考查解直角三角形应用,矩形的判定与性质,掌握锐角三角函数的定义,矩形判定与性质是解题关键.26.为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表周次第1周第2周第3周第4周第5周第6周第7周第8周接种人数(万人)710121825293742该地区全民接种疫苗情况扇形统计图A :建议接种疫苗已接种人群B :建议接种疫苗尚未接种人群C :暂不建议接种疫苗人群根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为66y x =-),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为________万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少(0)a a >万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 1.8a =,那么该地区的建议接种人群最早将于第几周全部完成接种?【答案】(1)22.5,800;(2)①48;②最早到13周实现全面免疫;(3)25周时全部完成接种【解析】【分析】(1)根据前8周总数除以8即可得平均数,8周总数除以所占百分比即可;(2)①将9x =代入66y x =-即可;②设最早到第x 周,根据题意列不等式求解;(3)设第x 周接种人数y 不低于20万人,列不等式求解即可【详解】(1)1(710121825293742)8+++++++=22.5,18022.5%800÷=故答案为:22.5,800.(2)①把9x =代入66,y x =-54648.y ∴=-=故答案为:48②∵疫苗接种率至少达到60%∴接种总人数至少为80060%480⨯=万设最早到第x 周,达到实现全民免疫的标准则由题意得接种总人数为180(696)(6106)(66)x +⨯-+⨯-+⋅⋅⋅+-∴180(696)(6106)(66)480x +⨯-+⨯-+⋅⋅⋅⋅⋅+-≥化简得(7)(8)100x x +-≥当13x =时,(137)(138)205100+-=⨯=∴最早到13周实现全面免疫(3)由题意得,第9周接种人数为42 1.840.2-=万以此类推,设第x 周接种人数y 不低于20万人,即42 1.8(8) 1.856.4y x x =--=-+∴ 1.856.420x -+≥,即1829x ≤∴当20x =周时,不低于20万人;当21x =周时,低于20万人;从第9周开始当周接种人数为y , 1.856.4,(920)20(21)x x y x -+≤≤⎧=⎨≥⎩∴当21x ≥时总接种人数为:18056.4 1.8956.4 1.81056.4 1.82020(20)800(121%)x +-⨯+-⨯+⋅⋅⋅+-⨯+-≥⨯-解之得24.42x ≥∴当x 为25周时全部完成接种.【点睛】本题考查的是扇形统计图的综合运用,平均数的概念,一次函数的性质,列不等式解决实际问题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27.学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.【初步感知】如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P'的坐标为________;(2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.【深入感悟】(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x=-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP ' 的面积.【灵活运用】(4)如图3,设A (1,3)-,60α=︒,点P 是二次函数21372y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.【答案】(1)(1,3);(2)1322y x =+;(3)12;(4)存在最小值,118【解析】【分析】(1)根据旋转的定义得112AP AP '==,观察点1P '和(1,1)A 在同一直线上即可直接得出结果.(2)根据题意得出2P 的坐标,再利用待定系数法求出原一次函数表达式即可.(3)先根据1(0)y x y x x =-⎧⎪⎨=-<⎪⎩计算出交点坐标,再分类讨论①当1x ≤-时,先证明()PQA P MA AAS ' ≌再计算OMP ' 面积.②当-10x <<时,证()PHO OP M AAS ' ≌,再计算122P MO PHO k S S '=== 即可.(4)先证明OAB 为等边三角形,再证明()C AO CAB SAS ' ≌,根据在Rt C GB ' 中,9030C GB C B C '''∠=︒-∠=︒,写出1,22C ⎛⎫' ⎪ ⎪⎝⎭,从而得出OC '的函数表达式,当直线l 与抛物线相切时取最小值,得出112y =+,由'B C T B C P S S '''= 计算得出BCP '△的面积最小值.【详解】(1)由题意可得:112AP AP '==∴1P '的坐标为(1,3)故答案为:(1,3);(2)∵2(2,1)P ',由题意得2P 坐标为(1,2)∵1(1,1)P -,2(1,2)P在原一次函数上,∴设原一次函数解析式为y kx b=+则12k b k b -+=⎧⎨+=⎩∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴原一次函数表达式为1322y x =+;(3)设双曲线与二、四象限平分线交于N 点,则1(0)y x y x x =-⎧⎪⎨=-<⎪⎩解得(1,1)N -①当1x ≤-时作PQ x ⊥轴于Q∵45QAM POP '∠=∠=︒∴PAQ P AN'∠=∠∵PM AM⊥∴90P MA PQA '∠=∠=︒∴在PQA △和P MA ' 中PQA P MA PAQ P AM AP AP ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PQA P MA AAS ' ≌122P MA PQA k S S '=== 即12OMP S '=;②当-10x <<时作PH ⊥于y 轴于点H∵45POP NOY '∠=∠=︒∴PON P OY'∠=∠∴90MP O MOY P OY''∠=︒-∠-∠45P OY'=︒-∠∴POH POP P OY''∠=∠-∠45P OY'=︒-∠∴POH OMP '∠=∠在POH 和OP M ' 中PHO OMP POH MP O PO P O ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PHO OP M AAS ' ≌∴122P MO PHO kS S '===;(4)连接AB ,AC ,将B ,C 绕A 逆时针旋转60︒得B ',C ',作AH x ⊥轴于H∵A ,(2,0)B ∴1OH BH ==∴2OA AB OB ===∴OAB 为等边三角形,此时B '与O 重合,即(0,0)B '连接C O ',∵60CAC BAO ∠=∠='︒∴CAB C AB ''∠=∠∴在C AO ' 和CAB △中C A CA C AO CAB BA OA =⎧⎪∠=∠'⎨='⎪⎩∴()C AO CAB SAS ' ≌∴1C O CB '==,120C OA CBA ∠'=∠=︒∴作C G y '⊥轴于G在Rt C GB ' 中,9030C GB C B C '''∠=︒-∠=︒∴1sin 2C G OC C BG '''=⋅∠=∴32OG =,即13,22C ⎛⎫' ⎪ ⎪⎝⎭,此时OC '的函数表达式为:y =设过P 且与B C ''平行的直线l解析式为y b=+∵B PBC C P S S '''= ∴当直线l 与抛物线相切时取最小值则2172y b y x ⎧=+⎪⎨=++⎪⎩2172b x +=++∴21702x b ++-=当0∆=时,得112b =∴112y =+设l 与y 轴交于T 点∵'B C T B C PS S '''= ∴12B C P S B T CG '''=⨯⨯ 1111222=⨯⨯118=的交点问题,函数的最小值的问题,灵活进行角的转换是关键.。
2020年江苏盐城中考数学试卷(解析版)

2020年江苏盐城中考数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ).A. B. C. D.2.下列图形中,属于中心对称图形的是( ).A. B. C. D.3.下列运算正确的是( ).A. B. C. D.4.实数、在数轴上表示的位置如图所示,则:( ).A.B.C.D.5.如图是由个小正方体组合成的几何体,该几何体的俯视图是:( ).A.B.C.D.6.年月盐城黄海湿地申遗成功,它的面积约为万平方米,将数据用科学记数法表示应为:( ).A.B.C.D.7.把这个数填入方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中的值为:( ).南西北左右東後前洛书图图A.B.C.D.8.如图,在菱形中,对角线、相交于点,为中点,、,则线段的长为( ).A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.如图,直线、被直线所截,,,那么.10.一组数据、、、、的平均数为 .11.因式分解: .12.分式方程的解为 .13.一只不透明的袋中装有个白球和个黑球,这些球除颜色外都相同,搅匀后从中任意摸出个球.摸到白球的概率为 .14.如图,在中,点在上,,则.15.如图,,且,,,则的值为 .16.如图,已知点、、.直线轴,垂足为点,其中.若与关于直线对称,且有两个顶点在函数的图象上,则的值为: .三、解答题(本大题共11小题,共102分)17.计算:.18.解不等式组:.19.先化简,再求值:,其中.20.如图.在中,,,的平分线交于点..求的长?(1)(2)21.如图,点是正方形的中心.用直尺和圆规在正方形内部作一点(异于点),使得.(保留作图痕迹.不写作法)连接、、,求证:.(1)(2)(3)22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如下统计图:图①为地区累计确诊人数的条形统计图,图②为地区新增确诊人数的折线统计图.一二三四星期累计确诊人数五六日图一二三四星期新增确诊人数五六日图根据图①中的数据,地区星期三累计确诊人数为 ,新增确诊人数为 .已知地区星期一新增确诊人数为人,在图②中画出表示地区新增确诊人数的折线统计图.你对这两个地区的疫情做怎样的分析,推断.23.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂器色或不涂色可表示两个不同的信息.(1)(2)(3)用树状图或列表格的方法,求图③可表示不同信息的总个数:(图中标号、表示两个不同位置的小方格,下同)图④为的网格图.它可表示不同信息的总个数为 .某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则的最小值为 .(1)(2)24.如图,⊙是的外接圆,是⊙的直径,.求证:是⊙的切线.若,垂足为,交于点,求证:是等腰三角形.(1)(2)(3)25.若二次函数的图象与轴有两个交点,(),且经过点,过点的直线与轴交于点,与该函数的图象交于点(异于点).满足是等腰直角三角形,记的面积为,的面积为,且.抛物线的开口方向 (填“上”或“下”).求直线相应的函数表达式.求该二次函数的表达式.26.木门常常需要雕刻美丽的图案.(1)(2)图①为某矩形木门示意图,其中长为厘米,长为厘米,阴影部分是边长为厘米的正方形雕刻模具,刻刀的位置在模具的中心点处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长.图如图②,对于()中的木门,当模具换成边长为厘米的等边三角形时,刻刀的位置仍在模具的中心点处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.图27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题.()在中,,,在探究三边关系时,通过画图、度量和计算,收集到几组数据如下表;(单位:厘米)()根据学习函数的经验,选取上表中和的数据进行分析:①设,,以为坐标,在图①所示的坐标系中描出对应的点:(1)(2)(3)表示平行入射光线表示不透光材料图(4)图②连线;观察思考()结合表中的数据以及所画的图象,猜想.当 时,最大.()进一步精想:若中,,斜边(为常数,),则.时,最大.推理证明()对()中的猜想进行证明.在图①中完善()的描点过程,并依次连线.补全观察思考中的两个猜想,() ;() .证明上述()中的猜想.图②中折线是一个感光元件的截面设计草图,其中点、间的距离是厘米,厘米..平行光线从区域射入,.线段、为感光区域,当的长度为多少时,感光区域长度之和最大,并求出最大值.【答案】解析:的相反数是.故选.解析:由实数,在数轴上的位置可知,,,故,到原点距离大于到原点距离,故.故选.解析:图形的俯视图为三个并列的小正方形.故选.解析:∵科学记数法的标准形式是:,∴.故选.解析:如图所示,设右下角的数为,A 1.B 2.C 3.C 4.A 5.D 6.A 7.根据题意可知:的九宫格中每一行,每一列,对角线上的个数之和相等,则对角线上个数分别为,,,即,第列的个数分别为:,,,即,解得:,第行的个数分别为:,,,即,将代入,解得:.故选.解析:∵四边形是菱形,∴,,,∴,∴,∵是中点,∴,故选.解析:∵,∴,∵,∴.解析:一组数据,,,,的平均数为.故平均数为.B 8.9.10.11.解析:.12.解析:,去分母得,∴,经检验是原方程的解.故答案为:.13.解析:∵袋中有个白球和个黑球,∴袋中球总个数为,∴任意摸出一个球是白球的概率为.14.解析:∵,为劣弧所对的圆心角,故劣弧度数为,∴优弧度数为.又∵为优弧所对的圆周角,∴.15.解析:设,则.∵,,∴,∴,解得:,.∵,∴,∴,∴.故答案为:.解析:∵与关于直线对称,故可设,,,则有,解得,∴,,,∵,∴,即点、、均在第二象限,故,由于有两个顶点在函数图象上,则有两种情况:①点,在函数图象上,②点,在函数图象上,对情况①,如下图所示,xy则有方程组,解得,满足,此情况可成立.对于情况②如下图所示,则有方程组,解得,或16.满足,此情况可成立.综上所述,或.xy解析:.解析:,解不等式①,得,解不等式②,得,在数轴上表示不等式①,②的解集如图:∴不等式组的解集为.解析:原式.17..18.①②.19.(1)(2)当时代入原式.解析:在中,,,∴,,∵是的平分线,∴.又∵,∴,在中,,,∴.解析:如图所示,点即为所求.连接、,.20.(1)画图见解析.(2)证明见解析.21.(1)(2)(3)(1)由()得:,∵是正方形中心,∴,∴在和中,,∴≌,∴.解析:由柱状图得,地区星期三的累计确诊人数是人,人,所以星期三的新增确诊人数是人.如图所示:一二三四星期新增确诊人数五六日地区累计确诊人数可能会持续增加,地区新增人数有减少趋势,疫情控制情况较好(答案不唯一,仅供参考).解析:方法一:画树状图如图所示:(1) ; (2)画图见解析.(3)地区增加,地区减少,控制情况较好.22.(1)画图见解析.(2)(3)23.(2)(3)(1)开始黑色(黑色,黑色)黑色黑色不涂色不涂色不涂色(黑色,不涂色)(不涂色,黑色)(不涂色,不涂色)第一次第二次所有可能的结果∴图③可以表示不同信息的总数个数有个.方法二:用列表法如下表所示:方格方格黑色不涂色黑色(黑色,黑色)(不涂色,黑色)不涂色(黑色,不涂色)(不涂色,不涂色)故图③可表示信息个数为个.每个方格都有两种涂色情况.涂黑色和不涂色,图④有个方格,故可表示不同信息的总个数为(个).的网格图共有个方格,则可表示的信息个数为(个).由于名师生每个人的信息必不相同.则要求,由于,,∴(为正整数),∴,故最小值为.解析:连接,个(1)证明见解析.(2)证明见解析.24.(2)(1)∵,∴,∵为圆的直径,∴,∴.又∵,∴,∴,又∵点在圆上,∴是⊙的切线.∵,,∴,∵,∴,∴,又∵,∴,∴是等腰三角形.解析:∵二次函数的图象与轴交于点、(),,如图:(1)上(2)直线:.(3)抛物线解析式为:.25.(2)(3)∴抛物线开口向上.①若,则与重合,直线与二次函数图象交于点,因为直线与该函数的图象交于点(异于点),所以不合符题意,舍去;②若,则在轴下方,因为点在轴上,所以不合符题意,舍去;③若,则,∴,,设直线:将,代入:,解得:,∴直线:.过点作轴,垂足为,,,又,∴,又∵,∴,即点纵坐标为,将代入中,得,(1)(2)∴,将、、三点坐标代入中,得,解得,∴抛物线解析式为.解析:如图,过点作,垂足为,∵是边长为的正方形模具的中心,∴.同理:与之间的距离为,与之间的距离为,与之间的距离为,∴,,∴.答:图案的周长为.连接、、,过点作,垂足为,(1).(2)画图见解析,.26.四边形(1)∵是边长为的等边三角形模具的中心,∴,.∵,∴,∴,,当三角形向上平移至点与点重合时,由题意可得:绕点顺时针旋转使得与边重合,∴绕点顺时针旋转至,∴.同理可得其余三个角对应图案均为弧长为的圆弧,.答:雕刻所得图案的草图的周长为.解析:(1)画图见解析.(2);.(3)证明见解析.(4)当时,感光区域长度之和最大,为.27.(2)(3);.,,,,∵关于的一元二次方程有实根,∴.∴当时,有大值.法一:(判别式法).设,,在中,∵,,∴,∴,,,∵关于的一元二次方程有实根,,∴.∵,,∴,当取最大值时,,,.(4)∴当时,有最大值.法二:(基本不等式)设,,,在中,∵,∴.∵,∴.当时,等式成立,∴,.,∵,∴,∴当时,有最大值.法一:延长交于点,过点作于点,垂足为,过点作交于点.垂足为,交于点.由题可知:在中,,,,∴,即,∴.∵,∴.又∵,∴,∴.∵,,,∴在中,,即∴,∵,,∴四边形为矩形,∴,∵,,∴四边形为矩形,∴.∵,∴在 中,,由问题可知,当时,最大∴,最大为(.即当时,感光区域长度之和最大为(.法二:延长、相交于点,同法一求得:,设,,∵四边形为矩形,∴,.∴,,∴,∵,由问题可知,当,最大,∴,最大为.即当时,感光区域长度之和最大,为.。
2020年江苏省盐城市中考数学试卷(解析版)

2020 年盐城市中考数学试卷、选择题(共 8 小题)5.如图是由 4 个小正方体组合成的几何体,该几何体的俯视图是(7.把 1~9这 9个数填入 3× 3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图 ① ),是世界 上最早的“幻方”.图 ② 是仅可以看到部分数值的“九宫格”,则其中 x 的值为( )1. 2020 的相反数是( A .﹣ 2020B . 2020C .D .2. 下列图形中,属于中心对称图形的是(A .3. 列运算正确的是( A .2a ﹣a =2B .a 3? a 2=a 6C .D . 2a 2)3=6a 54.实数 a ,b 在数轴上表示的位置如图所示,则A .a >0B .a >bC . a <bD .|a|<|b| 6.2019年 7 月盐城黄海湿地申遗成功,它的面积约为 400000 万平方米.将数据 400000 用科学记数法表示应为(A .0.4×106B .4×109C .40×104D .4×105B .D .a 3÷a =a )A .B .A .1 B.3 C.4 D.68.如图,在菱形ABCD 中,对角线AC、BD 相交于点O,H 为BC 中点,AC=6,BD =8.则线段OH 的长为()A .B.C.3 D.5二、填空题(本大题共有8 小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上).9.如图,直线a、b 被直线c所截,a∥ b,∠ 1=60°,那么∠ 2=°.10.一组数据1、4、7、﹣4、2 的平均数为.11.因式分解:x2﹣y2=.12.分式方程=0 的解为x=.13.一只不透明的袋中装有2 个白球和3 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球.摸到白球的概率为.14.如图,在⊙O中,点A 在上,∠ BOC =100°.则∠ BAC=°.如图,在△ ABC 中,∠C =90°,tanA = ,∠ABC 的平分线 BD 交AC 于点 D ,CD ,求 AB 的长?AD =BC =4,AB+DE =10.则 的值为5,4)、 C (8,1).直线 l ⊥x 轴,垂足为点 M ( m ,17.计算: 23﹣ +( ﹣ π) 0. 18.解不等式组: 19.÷(1+20.文字说明、推理过程或演算步骤)0).其中 m < ,若△ A ′B ′C ′与△ ABC 关于直线 l 对称,且△ A ′ B ′C ′有两个顶先化简,再求值:),其中 m =﹣ 2.21.如图,点 O 是正方形 ABCD 的中心.1)用直尺和圆规在正方形内部作一点 E (异于点 O ),使得 EB =EC ;(保留作图痕迹,不写作法)(2)连接 EB 、EC 、EO ,求证:∠ BEO =∠ CEO .22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为 A 地区累计确诊人数的条形统计图,图 ② 为 B 地区新增确诊人数的折线统计图.1 )根据图 ① 中的数据, A 地区星期三累计确诊人数为 ,新增确诊人数(2)已知 A 地区星期一新增确诊人数为 14 人,在图②中画出表示 A 地区新增确诊人数 的折线统计图.( 3)你对这两个地区的疫情做怎样的分析、推断.23.生活在数字时代的我们,很多场合用二维码(如图 ① )来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例 如:网格中只有一个小方格,如图 ② ,通过涂色或不涂色可表示两个不同的信息. (1)用树状图或列表格的方法,求图 ③可表示不同信息的总个数;(图中标号 1、2 表示两个不同位置的小方格,下同)(2)图④为 2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用 n ×n 的网格图来表示个人身份信息,若该校师生共 492人,则 n 的最小值为 .24.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,∠ DCA=∠ B.1)求证:CD 是⊙O 的切线;2)若DE ⊥ AB ,垂足为E,DE 交AC 于点F,求证:△ DCF 是等腰三角形.25.若二次函数y=ax2+bx+c 的图象与x 轴有两个交点M(x1,0),N(x2,0)< x 2),且经过点A(0,2).过点A 的直线l 与x 轴交于点C,与该函数的图象交于点B(异于点A).满足△ ACN 是等腰直角三角形,记△ AMN 的面积为S1,△ BMN 的面积为S2,且S2=S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l 相应的函数表达式;(3)求该二次函数的表达式.26.木门常常需要雕刻美丽的图案.1)图①为某矩形木门示意图,其中AB 长为200厘米,AD 长为100厘米,阴影部分是边长为30 厘米的正方形雕刻模具,刻刀的位置在模具的中心点P 处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图② ,对于(1)中的木门,当模具换成边长为30 厘米的等边三角形时,刻0<x1刀的位置仍在模具的中心点P 处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图② 中画出雕刻所得图案的草图,并求其周长.27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt △ ABC 中,∠ C=90°,AB=2 ,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.3 2 1.5 0.4BC 0.4 0.8 1.2 1.6 2 2.4 2.8 AC+BC 3.2 3.5 3.8 3.9 4 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC 和AC +BC 的数据进行分析:① BC=x,AC+BC=y,以(x,y)为坐标,在图① 所示的坐标系中描出对应的点:② 连线:观察思考Ⅲ)结合表中的数据以及所画的图象,猜想.当x=_____ 时,y 最大;Ⅳ)进一步精想:若Rt△ABC 中,∠ C=90°,斜边AB=2a(a 为常数,a>0),则BC=____ 时,AC+BC 最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图① 中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B﹣﹣E﹣﹣F﹣﹣G﹣﹣A 是一个感光元件的截面设计草图,其中点A,B 间的距离是4 厘米,AG=BE=1 厘米.∠ E=∠F=∠ G=90 °.平行光线从AB 区域射入,∠ BNE =60°,线段FM 、FN 为感光区域,当EF 的长度为多少时,感光区域长度之和最大,并求出最大值.参考答案、选择题(本大题共有8 小题,每小题3 分,共24 分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2020 的相反数是()A.﹣2020 B.2020 C.D.﹣【分析】根据a 的相反数是﹣a,直接得结论即可.解:2020 的相反数是﹣2020.故选:A .2.下列图形中,属于中心对称图形的是()【分析】根据中心对称图形的概念求解.解:A.此图案不是中心对称图形,不符合题意;B.此图案是中心对称图形,符合题意;C.此图案不是中心对称图形,不符合题意;D.此图案不是中心对称图形,不符合题意;故选:B .3.下列运算正确的是()A.2a﹣a=2 B.a3? a2=a6C.a3÷a=a2D.(2a2)3=6a5【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、2a﹣a=a,故此选项错误;B、a3? a2=a5,故此选项错误;C、a3÷a=a2,正确;D、(2a2)3=8a6,故此选项错误;故选: C .4.实数 a ,b 在数轴上表示的位置如图所示,则(分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断. 解:根据实数 a ,b 在数轴上表示的位置可知: a <0,b >0, ∴a <b . 故选: C .5.如图是由 4 个小正方体组合成的几何体,该几何体的俯视图是( )分析】根据从上面看得到的图象是俯视图,可得答案.故选: A .6.2019 年 7 月盐城黄海湿地申遗成功,它的面积约为 400000 万平方米.将数据 400000用科学记数法表示应为( )A . 0.4×106B . 4× 109C .40× 104D . 4×105【分析】按科学记数法的要求,直接把数据表示为 a × 10n(其中 1≤|a|< 10,n 为整数)的形式即可.解: 400000= 4×105. 故选: D .7.把 1~9 这 9 个数填入 3×3 方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图 ① ),是世界 上最早的“幻方”.图 ② 是仅可以看到部分数值的“九宫格”,则其中 x 的值为( )A . a > 0B . a > bC .a <bD .|a|<|b|A .B .解:观察图形可知,该几何体的俯视图是∵H 为 BC 中点,故选: B .二、填空题(本大题共有 8 小题,每小题 3分,共 24分.不需写出解答过程,请将答案直 接写在答题卡的相应位置上)9.如图,直线 a 、b 被直线 c 所截, a ∥b ,∠ 1=60°,那么∠ 2= 60BC =∴ OH =A .1B .3C .4D .6分析】 根据任意一行,任意一列及两条对角线上的数之和都相等,可得第三行与第三 列上的两个数之和相等,依此列出方程即可. 解:由题意,可得 8+ x = 2+7, 解得 x = 1. 故选: A .8.如图,在菱形 ABCD 中,对角线 AC 、BD 相交于点 O ,H 为 BC 中点,AC =6,BD =8.则B .C .3D .5分析】先根据菱形的性质得到 AC ⊥BD , OB =OD =再利用勾股定理计算出 BC ,然后根据直角三角形斜边上的中线性质得到 OH 的长.解:∵四边形 ABCD 为菱形, ∴AC ⊥ BD ,OB =OD =BD =4,OC =OA =AC =3,在 Rt △ BOC 中, BC = =5,线段 OH 的长为(A . =3,BD =4,OC =OA【分析】利用平行线的性质,直接得结论.解:∵ a∥ b,∴∠ 2=∠ 1=60°.故答案为:60°.10.一组数据1、4、7、﹣4、2 的平均数为2 .【分析】直接根据算术平均数的定义列式求解可得.解:数据1、4、7、﹣4、2 的平均数为=2,故答案为:2.11.因式分解:x2﹣y2=(x﹣y)(x+y).【分析】直接利用平方差公式分解因式得出即可.解:x 2﹣y2=(x+y)(x﹣y).故答案为:(x+y)(x﹣y).12.分式方程=0 的解为x=1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:分式方程=0,去分母得:x﹣1=0,解得:x=1,经检验x=1 是分式方程的解.故答案为:1.13.一只不透明的袋中装有2 个白球和3 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球.摸到白球的概率为分析】直接利用概率公式进而计算得出答案.解:∵一只不透明的袋中装有 2 个白球和3 个黑球,∴搅匀后从中任意摸出1 个球摸到白球的概率为:故答案A 在上,∠ BOC =100°.则∠ BAC=130分析】根据圆周角定理和圆内接四边形的性质即可得到结论.解:如图,取⊙O 上的一点D,连接BD,CD,∵∠ BOC=100°,∴∠ D=50°,∴∠ BAC =180°﹣50°=130°,15.如图,故答案为:130BC ∥DE ,且BC< DE,AD =BC=4,AB+DE=10.则的值为分析】由平行线得三角形相似,得出AB? DE ,进而求得AB,DE,再由相似三角形求得结果.解:∵ BC∥DE ,∴△ ADE ∽△ ABC,∴=,即=∴=,即=∴ AB? DE =16,∵AB+DE =10,∴ AB =2,DE =8,∴,故答案为:2.16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x 轴,垂足为点M(m,0).其中m< ,若△ A′B′C′与△ ABC 关于直线l 对称,且△ A′ B′C′有两个顶点在函数y=(k≠ 0)的图象上,则k 的值为﹣6或﹣4 .分析】根据题意求得A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),则分两种情况:当A′、C′在函数y=k≠0)的图象上时,求得k=﹣6;当B ′、C′在函数y=(k≠0)的图象上时,求得k=﹣4.解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x 轴,垂足为点M(m,0).其中m< ,△ A′ B′ C′与△ ABC 关于直线l 对称,∴ A′(2m﹣5,2),B ′(2m ﹣5,4),C′(2m﹣8,1),∵ A ′、B ′的横坐标相同,∴在函数y=(k≠ 0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y=(k≠ 0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴ k =﹣6;当B′、C′在函数y=(k≠ 0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴ k =﹣4,综上, k 的值为﹣ 6 或﹣ 4, 故答案为﹣ 6或﹣ 4.三、解答题(本大题共有 11 小题,共 102分.请在答题卡指定区域内作答,解答时应写出 文字说明、推理过程或演算步骤) 17.计算:23﹣ +( ﹣ π) 0. 分析】先求出 23、 、( ﹣π)0的值,再加减即可.解:原式= 8﹣ 2+1 =7.分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中 间找、大大小小无解了确定不等式组的解集 解:解不等式≥ 1,得: x ≥ ,解不等式 4x ﹣5< 3x+2,得: x <7, 分析】先根据分式的混合运算顺序和运算法则化简原式,再将当 m =﹣ 2 时, 原式= = 1.20.如图,在△ ABC 中,∠ C = 90°, tan A = ,∠ABC 的平分线 BD 交AC 于点 D ,CD= ,求 AB 的长?+)÷(18.解不等式组:m 的值代入计算可得.则不等式组的解集为19.先化简,再求值: ),其中 m =﹣ 2.解:原式,可求出∠ A = 30°,∠ ABC = 60°,再根据BD是∠ABC 的平分线,求出∠ CBD =∠ ABD =30°,在不同的直角三角形中,根据边角关 系求解即可.解:在 Rt △ABC 中,∠ C =90°, tanA = ∴∠ A = 30°, ∴∠ ABC = 60°, ∵BD 是∠ ABC 的平分线, ∴∠ CBD =∠ ABD =30°, 又∵ CD = , =3,=3,在 Rt △ ABC 中,∠ C = 90°,∠ A =30°, ∴AB =答: AB 的长为 6.21.如图,点 O 是正方形 ABCD 的中心.(1)用直尺和圆规在正方形内部作一点 E (异于点 O ),使得 EB =EC ;(保留作图痕 迹,不写作法)(2)连接 EB 、EC 、EO ,求证:∠ BEO =∠ CEO .【分析】( 1)作 BC 的垂直平分线,在 BC 的垂直平分线上(正方形内部异于点 O )的 点 E 即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解. 解:( 1)如图所示,点 E 即为所求.( 2)证明:连结 OB ,OC ,∴ BC = =6.tan A=∵点 O 是正方形 ABCD 的中心, ∴OB =OC ,∵EB = EC , ECB ,22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图区累计确诊人数的条形统计图,图 ② 为 B 地区新增确诊人数的折线统计图.1)根据图 ① 中的数据, A 地区星期三累计确诊人数为2)已知 A 地区星期一新增确诊人数为 14 人,在图②中画出表示 A 地区新增确诊人数的折线统计图.( 3)你对这两个地区的疫情做怎样的分析、推断.【分析】( 1)根据图 ① 条形统计图可直接得出星期三 A 地区累计确诊人数,较前一天 的增加值为新增确诊人数;( 2)计算出 A 地区这一周的每天新增确诊人数,再绘制折线统计图; (3)通过“新增确诊人数”的变化,提出意见和建议. 解:( 1)41﹣28= 13(人), 故答案为: 41, 13;(2)分别计算 A 地区一周每一天的“新增确诊人数”为: 14,13,16,17,14,10;∴∠ OBC =∠ OCB ,①为A 地41 ,新增确诊人数为 13 ;∴∠ EBC =绘制的折线统计图如图所示:3)A 地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10 人以上,变化不明显,而B 地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位.23.生活在数字时代的我们,很多场合用二维码(如图① )来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图② ,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2 表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为16 ;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n 的网格图来表示个人身份信息,若该校师生共492人,则n 的最小值为3 .分析】(1)画出树状图,即可得出答案;2)画出树状图,即可得出答案;3)由题意得出规律,即可得出答案.解:(1)画树状图如下:共有4 种等可能结果,∴图③ 可表示不同信息的总个数为4;(2)画树状图如下:共有16 种等可能结果,故答案为:16;(3)由图① 得:当n=1 时,21=2,由图④ 得:当n=2 时,22×22=16,∴n=3 时,23×23×23=512,∵16<492<512,∴ n 的最小值为3,故答案为:3.24.如图,⊙O 是△ ABC 的外接圆,AB 是⊙O 的直径,∠ DCA=∠ B.(1)求证:CD 是⊙O 的切线;(2)若DE ⊥ AB ,垂足为E,DE 交AC 于点F,求证:△ DCF 是等腰三角形.分析】( 1)连接 OC ,根据等腰三角形的性质得到∠ 到∠ BCA = 90°,求得 OC ⊥CD ,于是得到结论;(2)根据已知条件得到∠ A+∠ DCA = 90°,得到∠ DCA =∠ EFA ,推出∠ DCA =∠ DFC , 于是得到结论.【解答】证明:( 1)连接 OC , ∵OC =OA , ∴∠ OCA =∠ A , ∵ AB 是⊙O 的直径, ∴∠ BCA = 90°, ∴∠ A+∠ B = 90°, ∵∠ DCA =∠ B ,∴∠OCA+∠DCA =∠ OCD = 90 ∴OC ⊥CD ,∴CD 是⊙O 的切线; (2)∵∠OCA+∠DCA =90°,∠ OCA =∠ A , ∴∠ A+∠ DCA =90°, ∵DE ⊥AB ,∴∠ A+∠ EFA =90°, ∴∠ DCA =∠ EFA , ∵∠ EFA =∠ DFC ,∴∠ DCA =∠ DFC , ∴△ DCF是等腰三角形.OCA =∠ A ,根据圆周角定理得25.若二次函数y=ax2+bx+c 的图象与x 轴有两个交点M(x1,0),N(x2,0)(0<x1 < x 2),且经过点A(0,2).过点A 的直线l 与x 轴交于点C,与该函数的图象交于点B(异于点A).满足△ ACN 是等腰直角三角形,记△ AMN 的面积为S1,△ BMN 的面积为S2,且S2=S1.(1)抛物线的开口方向上(填“上”或“下”);(2)求直线l 相应的函数表达式;(3)求该二次函数的表达式.【分析】(1)根据题意借助图象即可得到结论;(2)由点A(0,2)及△ CAN 是等腰直角三角形,可知C(﹣2,0),N(2,0),由A、C 两点坐标可求直线l;(3)由S2=S1,可知B 点纵坐标为5,代入直线AB 解析式可求B 点横坐标,将A、B、N 三点坐标代入y=ax2+bx+c 中,可求抛物线解析式.解:(1)如图,如二次函数y=ax2+bx+c 的图象与x 轴有两个交点M(x1,0),N (x 2,0)(0<x1<x2),且经过点A(0,2).∴抛物线开口向上,故答案为:上;2)①若∠ ACN =90°,则C与O重合,直线l与抛物线交于A 点,因为直线l 与该函数的图象交于点B(异于点A),所以不合题意,舍去;②若∠ ANC =90°,则C在x轴的下方,与题意不符,舍去;③ 若∠ CAN =90°,则∠ ACN=∠ ANC=45°,AO=CO=NO=2,∴C(﹣2,0),N(2,0),设直线l 为y=kx+b,将A(0,2)C(﹣2,0)代入得,解得,∴直线l 相应的函数表达式为y=x+2;(3)过B 点作BH⊥x 轴于H,S1=,S2=,∵S2=S1,∵OA=2,∴BH =5,即B 点的纵坐标为5,代入y=x+2 中,得x=3,∴ B(3,5),将A、B、N 三点的坐标代入y=ax2+bx +c 得解得,∴抛物线的解析式为y=2x2﹣5x+2.26.木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB 长为200厘米,AD 长为100厘米,阴影部分是边长为30 厘米的正方形雕刻模具,刻刀的位置在模具的中心点P 处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图② ,对于(1)中的木门,当模具换成边长为30 厘米的等边三角形时,刻刀的位置仍在模具的中心点P 处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图② 中画出雕刻所得图案的草图,并求其周长.【分析】(1)如图① ,过点P作PE⊥CD 于点E,求得PE,进而得矩形A′B′C′D′ 的两邻边长,再由矩形的周长公式便可得答案;(2)连接PE 、PF 、PG,过点P作PQ⊥CD 于点Q,如图②,求得PE 的长度,便可得雕刻图案的4 直线段边的长度,再求得PG 长度,以及DP′绕D 点旋转至DP″的旋转角度, 便可根据弧长公式求得雕刻图案四角的圆弧长, 解:( 1)如图 ① ,过点 P 作 PE ⊥CD 于点 E ,∵点 P 是边长为 30 厘米的正方形雕刻模具的中心,∴ PE = 15cm , 同理: A ′ B ′与 AB 之间的距离为 15cm ,A ′D ′与 AD 之间的距离为 15cm ,B ′C ′与 BC 之间的距离为 15cm ,∴A ′B ′=C ′D ′= 200﹣15﹣15=170(cm ),B ′C ′= A ′D ′=100﹣15﹣15=70(cm ),∴ C 四边形 A ′ B ′C ′D ′= ( 170+70)× 2= 480cm , 答:图案的周长为 480cm ; (2)连接 PE 、PF 、PG ,过点 P 作PQ ⊥CD 于点 Q ,如图②进而得出整个雕刻图案的周长.∵P 点是边长为30 cm 的等边三角形模具的中心,∴PE=PG=PF,∠ PGF =30°,∵PQ⊥ GF,∴ GQ=FQ =15 cm ,∴ PQ=GQ? tan30 °=15cm ,PG==30cm ,当△EFG 向上平移至点G与点D 重合时,由题意可得,△ E′F ′G′绕点D 顺时针旋转30°,使得E′G′与AD 边重合,∴ DP′绕点D 顺时针旋转30°到DP ″,∴,∴,同理可得其余三个角均为弧长为5πcm 的圆弧,∴= 600﹣120 +20π(cm),答:雕刻所得图案的周长为(600﹣120 )cm.27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt △ ABC 中,∠ C=90°,AB=2 ,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.3 2 1.5 0.4BC 0.4 0.8 1.2 1.6 2 2.4 2.8 AC+BC 3.2 3.5 3.8 3.9 4 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC 和AC +BC 的数据进行分析:① BC=x,AC+BC=y,以(x,y)为坐标,在图① 所示的坐标系中描出对应的点:② 连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当 x = ___ 时, y 最大;(Ⅳ)进一步精想:若 Rt △ABC 中,∠ C =90°,斜边 AB =2a (a 为常数, a >0),则 BC = _____ 时, AC+BC 最大. 推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题 1,在图 ① 中完善(Ⅱ)的描点过程,并依次连线;问题 2,补全观察思考中的两个猜想:(Ⅲ) 2 ;(Ⅳ) BC = a ; 问题 3,证明上述(Ⅴ)中的猜想;问题 4,图② 中折线 B ﹣﹣ E ﹣﹣ F ﹣﹣ G ﹣﹣A 是一个感光元件的截面设计草图,其中 点A ,B 间的距离是 4 厘米, AG =BE =1 厘米.∠ E =∠F =∠ G = 90 °.平行光线从 AB 区域射入,∠ BNE = 60°,线段 FM 、FN 为感光区域,当 EF 的长度为多少时,感 光区域长度之和最大,并求出最大值.问题 2:利用图象法解决问题即可. 问题 3: 设 BC =x ,AC ﹣BC =y ,根据一元二次方程,利用根的判别式解决问题即可. 问题 4: 延长 AM 交 EF 的延长线于 C ,过点 A 作 AH ⊥EF 于 H ,过点 B 作 BK ⊥GF 于﹣=K 交 AH 于 Q . 证 明 FN+FM = EF+FG ﹣ EN ﹣ GM = BK+AH BQ+AQ +KQ +QH ﹣=BQ +AQ+2﹣ ,求出 BQ +AQ 的最大值即可解决问题.解:问题 1:函数图象如图所示:问题 1:利用那地方解决问题即分问题2:(Ⅲ)观察图象可知,x=2 时,y 有最大值.(Ⅳ)猜想:BC =a.故答案为:2,BC =a.问题3:设BC=x,AC ﹣BC=y,在Rt△ ABC 中,∵∠ C=90°∴ AC==,∴y=x+ ,∴y﹣x=,∴ y2﹣2xy+x2=4a2﹣x2,∴2x2﹣2xy+y2﹣4a2=0,∵关于x 的一元二次方程有实数根,∴b2﹣4ac=4y2﹣4×2×(y2﹣4a2)≥ 0,∴ y2≤ 8a2,∵ y> 0,a> 0 ,∴y≤ 2 a,当y=2 a 时,2x2﹣4 ax+4a2=0∴(x﹣2a)2=0,∴ x 1=x 2=a,∴当BC=a 时,y有最大值.问题4:延长AM 交EF 的延长线于C,过点A 作AH⊥EF 于H,过点B作BK⊥GF 于∴∠ C = 60°, ∵∠ GFE =90°, ∴∠ CMF = 30°, ∴∠ AMG = 30°,∵∠G =90°,AG =1cm ,∠ AMG =30°,∴GM = (cm ), ∵∠ G =∠ GFH = 90°,∠ AHF = 90°, ∴四边形 AGFH 为矩形, ∴AH =FG , ∵∠GFH =∠E =90°,∠ BKF =90° ∴四边形 BKFE 是矩形, ∴BK = FE , ∵FN+FM =EF+FG ﹣EN ﹣GM =BK+AHBQ+AQ +2﹣在 Rt △ ABQ 中, AB = 4cm ,由问题 3可知,当 BQ =AQ =2 cm 时, AQ+BQ 的值最大,K 交AH 于 Q .在 Rt △ BNE 中,∠ E = 90 ∴ tan ∠ BNE =, =,∴NE = (cm ),∵AM ∥ BN ,,∠ BNE = 60°, BE =1cm ,∴在 Rt △AGM 中, ﹣ = BQ+AQ +KQ+QHtan ∠AMG∙∙∙ BQ = AQ= 2后时,FN÷FM 的最大值为(4^+2_ 4√I) Cm。
2020年江苏省盐城市中考数学试题(解析版)

盐城市二○一一年高中阶段教育招生统一考试数学试题、选择题(本大题共有8小题,每小题 3 分,共 24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)考点】 几何体的三视图。
分析】 根据几何体的三视图,直接得出结果。
4.已知 a-b =1,则代数式 2a -2b -3的值是A .-1B .1答案】 A 。
考点】 代数式代换。
分析】 2a 2b 3 2 a b 3 2 35.若⊙ O 1、⊙ O 2的半径分别为 4和 6,圆心距 O 1O 2=8,则⊙ O 1与⊙ O 2的位置关系是A .内切B .相交C .外切D .外离【答案】 B 。
【考点】 圆心距。
分析】 Q6 4< O 1O 2< 6 4 两圆相交 。
16.对于反比例函数 y= x ,下列说法正确的是x1.- 2的绝对值是1A .-2B .- 2【答案】 C 。
【考点】 绝对值。
【分析】 根据绝对值的定义,直接得出结果。
2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6【答案】 B 。
【考点】 同底幂的乘法。
【分析】 x 4 x 2 x 4 2 x 63.下面四个几何体中,俯视图为四边形的是C .2C .x 6÷x 2= x 3 D .( x 2)3= x 8C .-5D .51CA .图象经过点( 1, -1)B .图象位于第二、四象限C .图象是中心对称图形D .当 x <0时, y 随 x 的增大而增大【答案】 C 。
【考点】 反比例函数。
【分析】 根据反比例函数性质,直接得出结果。
7.某市 6月上旬前 5 天的最高气温如下(单位:℃): 28,29,31,29,32.对这组数据,列说法正 确 的是答案】 B 。
考点】 平均数、众数、中位数、极差。
考点】 二次函数。
分析】 从图可知,他离家 8km 共用了 30min ,他等公交车时间为 16-10=6min ,他步行的 二、填空题(本大题共有 10小题,每小题 3分,共 30 分.不需写出解答过程,请将答案直 接写在答题卡相应位置上)9. 27 的立方根为 ▲ . 【答案】 3。
2023年江苏省盐城市中考数学真题卷(含答案与解析)_8652

2023年江苏省盐城市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 02. 在平面直角坐标系中,点2(1)A ,在( ) A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 下列图形中,属于中心对称图形的是( )A B.C. D.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,125. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )..A. B.C. D.7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.10. 因式分解:2x xy -=__________________.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm. 12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.20. 随着盐城交通的快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.21. 如图,AB AE =,BC ED =,B E ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表: 年份 2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上统计和计算,谈谈你对该保护区的建议或想法.23.课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 的小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )的一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.(1)判断BC 与O 位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】的的(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.27. 综合与实践【问题情境】如图1,小华将矩形纸片ABCD 先沿对角线BD 折叠,展开后再折叠,使点B 落在对角线BD 上,点B 的对应点记为B ',折痕与边AD ,BC 分别交于点E ,F .【活动猜想】(1)如图2,当点B '与点D 重合时,四边形BEDF 是哪种特殊的四边形?答:_________.【问题解决】(2)如图3,当4AB =,8AD =,3BF =时,求证:点A ',B ',C 在同一条直线上.【深入探究】(3)如图4,当AB 与BC 满足什么关系时,始终有A B ''与对角线AC 平行?请说明理由.(4)在(3)的情形下,设AC 与BD ,EF 分别交于点O ,P ,试探究三条线段AP ,B D ',EF 之间满足的等量关系,并说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1. 下列数中,属于负数的是( )A. 2023B. 2023-C. 12023D. 0 【答案】B【解析】【分析】根据小于0的数即为负数解答可得.【详解】2023-是负数,2023和12023是正数,0既不是正数也不是负数 故选:B .【点睛】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键. 2. 在平面直角坐标系中,点2(1)A ,在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据各象限内点的坐标特征解答.【详解】点(1,2)所在的象限是第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−). 3. 下列图形中,属于中心对称图形的是( )A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.由定义可判定A 、C 、D 选项的图形不是中心对称图形,故不符合题意;B 选项的图形是中心对称图形,符合题意.故选:B .【点睛】本题主要考查了中心对称图形,熟知中心对称图形的定义是解题的关键.4. 下列每组数分别表示3根小木棒的长度(单位:cm ),其中能搭成一个三角形的是( )A. 5,7,12B. 7,7,15C. 6,9,16D. 6,8,12【答案】D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【详解】A 、5712+=,不能构成三角形,故此选项不合题意;B 、771415+=<,不能构成三角形,故此选项不合题意;C 、691516+=<,不能构成三角形,故此选项不合题意;D 、681412+=>,能构成三角形,故此选项符合题意.故选:D .【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.5. 2023年5月21日,盐城市家长学校总校五月课堂正式开讲,直播点击量达105000人次.数据105000用科学记数法表示为( )A. 51.0510⨯B. 410.510⨯C. 60.10510⨯D. 61.0510⨯ 【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为10n a ⨯,n 为正整数,且n 比原数的整数位数少1,据此可以解答.【详解】解:数据105000用科学记数法表示为51.0510⨯ .故选:A .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.6. 由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是( )A. B.C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图. 7. 小华将一副三角板(90C D ∠=∠=︒,30B ∠=︒,45E ∠=︒)按如图所示的方式摆放,其中AB EF ∥,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】根据平行线的性质得出45AGF F ∠=∠=︒,然后根据三角形内角和定理求解即可.【详解】解:如图:设AB FD 、交于点G ,∵AB EF ∥,∴45AGF F ∠=∠=︒,∵60A ∠=︒,∴1180180604575A AGF ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了三角形内角和定理、平行线的性质等知识点,熟练掌握平行线的性质是解题的关键.8. 如图,关于x 的函数y 的图象与x 轴有且仅有三个交点,分别是()()()301030--,,,,,,对此,小华认为:①当0y >时,31x -<<-;②当3x >-时,y 有最小值;③点(),1P m m --在函数y 的图象上,符合要求的点P 只有1个;④将函数y 的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】结合函数图象逐个分析即可.【详解】由函数图象可得:当0y >时,31x -<<-或3x >;故①错误;当3x >-时,y 有最小值;故②正确;点(),1P m m --在直线=1y x --上,直线=1y x --与函数图象有3个交点,故③错误;将函数y 的图象向右平移1个或3个单位长度经过原点,故④正确;故选:C .【点睛】本题考查了函数的图象与性质,一次函数图象,解题的关键是数形结合.二、填空题(本大题共8小题,每小题3分,共24分)9. 在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为__________.【答案】3【解析】【分析】根据频数定义可得答案.【详解】在英文句子“Happy Teachers' Day !”中,字母“a ”出现的频数为3,故答案为:3.【点睛】此题主要考查了频数,关键是掌握频数是指每个对象出现的次数.10. 因式分解:2x xy -=__________________.【答案】()x x y -【解析】【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.11. 在ABC 中,D ,E 分别为边AB ,AC 的中点,10cm BC =,则DE 的长为__________cm.【答案】5【解析】【分析】由于D 、E 分别为AB 、AC 边上的中点,那么DE 是ABC 的中位线,根据三角形中位线定理可求DE .【详解】如图所示,D 、E 分别为AB 、AC 边上的中点,DE ∴是ABC 的中位线,12DE BC ∴=; 又∵10cm BC =, ∴15cm 2DE BC ==; 故答案为:5.【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.12. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为__________.【答案】59【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:设小正方形的边长为1,则总面积为9,其中阴影部分面积为5, ∴飞镖落在阴影部分的概率是59, 故答案为:59. 【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.13. 我国古代数学著作《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:“几个人一起去购买某物品,每人出8钱,则多出3钱;每人出7钱,则还差4钱.问人数、物品的价格分别是多少?”该问题中的人数为__________.【答案】7人【解析】【分析】设共有x 人,价格为y 钱,根据题意列出二元一次方程组即可求解.【详解】解:设共有x 人,价格为y 钱,依题意得:8374x y x y -=⎧⎨+=⎩, 解得:753x y =⎧⎨=⎩, 答:物品价格为53钱,共同购买该物品的人数有7人,故答案为:7.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组即可求解.14. 如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB 表示“铁军”雕塑的高,点B ,C ,D 在同一条直线上,且60ACB ∠=︒,30ADB ∠=︒,17.5m CD =,则线段AB 的长约为__________m. 1.7≈)【答案】15【解析】【分析】由60ACB ∠=︒,30ADB ∠=︒可得30ADB CAB CAD ∠︒=∠=∠=,可推得17.5m AC CD ==,由三角函数求出AB 即可.【详解】∵60ACB ∠=︒,30ADB ∠=︒,ACB ADB CAD ∠=∠+∠,∴30ADB CAD ∠=∠=︒,∴17.5m AC CD ==,又∵90ABC ∠=︒,∴906030CAB ∠=︒-︒=︒, ∵cos ∠=AB CAB AC,17.5AB = 解得15AB ≈,故答案为:15.【点睛】此题主要考查了解直角三角形的应用,正确得出AC 的长是解题关键.15. 如图,在Rt ABC △中,90ACB ∠=︒,=60B ∠︒,3BC =,将ABC 绕点C 逆时针旋转到EDC △的位置,点B 的对应点D 首次落在斜边AB 上,则点A 的运动路径的长为_________.【解析】【分析】首先证明BCD △是等边三角形,再根据弧长公式计算即可.【详解】解:在Rt ABC △中,∵90ACB ∠=︒,=60B ∠︒,3BC =,∴26AB BC ==,由旋转的性质得CE CA ===,90ACE BCD ACD ∠=∠=︒-∠,CB CD =,∴BCD △是等边三角形,∴60BCD ACE ∠=︒=∠,∴点A =..【点睛】本题考查了旋转变换,含30︒直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明BCD △是等边三角形.16. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数()0k y x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD 并延长,交x 轴于点E ,连接CE .若2AB BC =,BCE 的面积是4.5,则k 的值为_________.【答案】6【解析】【分析】过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a=-=-,证明∽ ABF ACD ,则AB AF AC AD =,得到3a b =,根据29ABE S BCE == ,进一步列式即可求出k 的值.【详解】解:过点B 作BF AD ⊥于点F ,连接AE ,设点A 的坐标为,k a a ⎛⎫ ⎪⎝⎭,点B 的坐标为,k b b ⎛⎫ ⎪⎝⎭,则,AD a =,k k AF a b BF b a =-=-, ∵2AB BC =, ∴23AB AC =,∵AD y ⊥轴于点D ,∴CD BF ,∴∽ ABF ACD , ∴AB AF AC AD=, ∴23AB a b AC a -==, ∴3a b =,∵2AB BC =,BCE 的面积是4.5,∴29ABE S BCE == , ∴11922AD BF AD OD ⋅+⋅=, ∴11922k k k a a b a a⎛⎫-+⋅= ⎪⎝⎭, 则113392323k k k b b b b b ⎛⎫-+⋅= ⎪⎝⎭, 即3119222k k k -+=,解得6k =,故答案为:6【点睛】此题考查反比例函数的图象和性质、相似三角形的判定和性质等知识,求出3a b =是解题的关键.三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17. 计算:()1014cos 6052π-⎛⎫+︒-- ⎪⎝⎭. 【答案】3【解析】【分析】直接利用负整数指数幂的性质、特殊角的三角函数值、零指数幂分别化简,进而得出答案. 【详解】原式124132=+⨯-=. 【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.18. 解不等式4233x x --<,并把它的解集在数轴上表示出来.【答案】1x <,数轴见详解【解析】【分析】根据解一元一次不等式的步骤解答即可. 【详解】4233x x --< 去分母得:()3234x x -<-,去括号得:694x x -<-,移项得:694x x -<-,合并同类项得:55x <,系数化为1:1x <.在数轴上可表示为:.【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.19. 先化简,再求值:()()()2333a b a b a b +++-,其中2a =,1b =-.【答案】226a ab +,4-【解析】【分析】根据完全平方公式和平方差公式展开后化简,最后代入求值即可.【详解】()()()2333a b a b a b +++- 2222699a ab b a b =+++-226a ab =+当2a =,1b =-时,原式()2226214=⨯+⨯⨯-=-. 【点睛】本题考查整式混合运算的化简求值,解题的关键是根据完全平方公式和平方差公式展开. 20. 随着盐城交通快速发展,城乡居民出行更加便捷.如图,从甲镇到乙镇有乡村公路A 和省级公路B 两条路线;从乙镇到盐城南洋国际机场,有省级公路C 、高速公路D 和城市高架E 三条路线.小华驾车从甲镇到盐城南洋国际机场接人(不考虑其他因素).(1)从甲镇到乙镇,小华所选路线是乡村公路A 的概率为_________.(2)用列表或画树状图的方法,求小华两段路程都选省级公路的概率.【答案】(1)12(2)16【解析】【分析】(1)根据概率公式计算即可;(2)列表表示出所有的可能性,再根据概率公式计算即可.的【小问1详解】从甲镇到乙镇,小华所选路线是乡村公路A 的概率为12, 故答案为:12.【小问2详解】列表如下:C D E AAC AD AE B BC BD BE 共有6种等可能的结果,其中两段路程都选省级公路只有BC ,共1种, ∴小华两段路程都选省级公路的概率16. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m PA n =. 21. 如图,AB AE =,BC ED =,BE ∠=∠.(1)求证:AC AD =;(2)用直尺和圆规作图:过点A 作AF CD ⊥,垂足为F .(不写作法,保留作图痕迹)【答案】(1)见解析(2)见解析 【解析】【分析】(1)根据边角边证明ABC AED ≌△△即可证明结论成立; (2)根据过直线外一点向直线最垂线的作法得出即可.【小问1详解】证明:∵AB AE =,B E ∠=∠,BC ED =,∴()SAS ABC AED ≌,∴AC AD;【小问2详解】解:所作图形如图,.【点睛】本题主要考查了全等三角形的判定和性质,过直线外一点向直线最垂线的作法,熟练记忆正确作法是解题关键.22. 盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数=人工驯养头数+野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为_________°;②在折线统计图中,近6年野生麋鹿头数的中位数为_________头.(2)填表:年份2017 2018 2019 2020 2021 2022人工驯养麋鹿头数 3473 3531 3666 3861 _________ 3917(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.【答案】(1)14.4︒,1585(2)3980(3)见解析【解析】【分析】(1)先计算哺乳类所占百分比,再计算该部分扇形圆心角的度数;(2)先排序,再计算中间的两个数的平均数;(3)从人工驯养和野生保护两个方面表述即可.【小问1详解】解:①在扇形统计图中,哺乳类所占的百分比为:154%32%10%4%---=,∴哺乳类所在扇形的圆心角度数为:3604%14.4︒⨯=︒;②在折线统计图中,近6年野生麋鹿头数按从小到大顺序排序为: 765,1025,1350,1820,2503,3116,近6年野生麋鹿头数的中位数为1350182015852+=, 故答案为:14.4︒,1585;【小问2详解】解:648325033980-=,故答案为:3980;【小问3详解】加强对野生麋鹿的保护的同时,提高人工驯养的技术.【点睛】本题考查了扇形统计图和拆线统计图,中位数,掌握从图形中获取信息的方法是解题的关键. 23. 课堂上,老师提出了下面的问题:已知30a b >>,a M b =,13a Nb +=+,试比较M 与N 的大小. 小华:整式的大小比较可采用“作差法”.老师:比较21x +与21x -的大小.小华:∵()()()222121121110x x x x x +--=+-+=-+>, ∴2121x x +>-.老师:分式大小比较能用“作差法”吗?…(1)请用“作差法”完成老师提出的问题.(2)比较大小:2368__________2265.(填“>”“=”或“<”) 【答案】(1)M N >(2)<【解析】【分析】(1)根据作差法求M N -的值即可得出答案;(2)根据作差法求23226865-的值即可得出答案. 【小问1详解】 解:()()()()()311333333a b b a a a ab a ba b a b M N b b b b b b b b +-+++----=-===++++, 30a b >> ,()3>03a b b b -∴+, >M N ∴; 【小问2详解】解:2322149514961=<06865442044204420--=-, 2322<6865∴. 故答案为:<.【点睛】本题考查分式运算的应用,解题关键是理解材料,通过作差法求解,掌握分式运算的方法. 24. 如图,在ABC 中,O 是AC 上(异于点A ,C )一点,O 恰好经过点A ,B ,AD CB ⊥于点D ,且AB 平分CAD ∠.的的(1)判断BC 与O 的位置关系,并说明理由;(2)若10AC =,8DC =,求O 的半径长.【答案】(1)见解析(2)O 的半径长为154. 【解析】【分析】(1)连接OB ,证明OB AD ∥,即可证得OB BC ⊥,从而证得BC 是圆的切线;(2)设OB OA x ==,则10OC AC OA x =-=-,利用勾股定理求得6AD =,推出COB CAD ∽△△,利用相似三角形的性质列得比例式,据此求解即可.【小问1详解】证明:连接OB ,如下图所示,∵AB 是CAD ∠的平分线,∴BAD BAO ∠=∠,又∵OB OA =,∴OAB OBA ∠=∠,∴BAD OBA ∠=∠,∴OB AD ∥,∴90OBC D ∠=∠=︒,即OB BC ⊥,又∵BC 过半径OB 的外端点B ,∴BC 与O 相切;【小问2详解】解:设OB OA x ==,则10OC AC OA x =-=-,∵在ADC △中,90D Ð=°,10AC =,8DC =,∴6AD ==,∵OB AD ∥,∴COB CAD ∽△△, ∴OB OC AD AC=,即10610x x -=, 解得154x =. 故O 的半径长为154. 【点睛】本题考查了切线的判定,相似三角形的判定和性质,以及勾股定理,熟练掌握切线的判定是解本题的关键.25. 某校举行“二十大知识学习竞赛”活动,老师让班长小华到商店购买笔记本作为奖品.甲、乙两家商店每本硬面笔记本比软面笔记本都贵3元(单价均为整数).(1)若班长小华在甲商店购买,他发现用240元购买硬面笔记本与用195元购买软面笔记本的数量相同,求甲商店硬面笔记本的单价.(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了硬面笔记本的优惠条件(软面笔记本单价不变):一次购买的数量少于30本,按原价售出;不少于30本按软面笔记本的单价售出.班长小华打算购买m 本硬面笔记本(m 为正整数),他发现再多购买5本的费用恰好与按原价购买的费用相同,求乙商店硬面笔记本的原价.【答案】(1)甲商店硬面笔记本的单价为16元(2)乙商店硬面笔记本的原价18元【解析】【分析】(1)根据“硬面笔记本数量=软面笔记本数量”列出分式方程,求解检验即可;(2)设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由再多购买5本的费用恰好与按原价购买的费用相同可得()()53ma m a =+-,再根据30530m m <⎧⎨+≥⎩且m ,均为正整数,即可求解. 【小问1详解】解:设硬面笔记本的单价为x 元,则软面笔记本的单价为()3x -元,根据题意得 2401953x x =-,解得16x =,经检验,16x =是原方程的根,且符合题意,故甲商店硬面笔记本单价为16元;【小问2详解】设乙商店硬面笔记本的原价为a 元,则软面笔记本的单价为()3a -元,由题意可得30530m m <⎧⎨+≥⎩, 解得2530m ≤<,根据题意得()()53ma m a =+-, 解得3155m a +=, m 为正整数, 25m ∴=,26,27,28,29,分别代入3155m a +=, 可得18a =,18.6,19.2,19.8,20.4,由单价均为整数可得18a =,故乙商店硬面笔记本的原价18元.【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是找准等量关系,正确列出相应方程.26. 定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①21y x =-;②2y x x =-,其中,_________为函数1y x =-的轴点函数.(填序号)【尝试应用】(2)函数y x c =+(c 为常数,0c >)的图象与x 轴交于点A ,其轴点函数2y ax bx c =++与x 轴的另一交点为点B .若14OB OA =,求b 的值. 【拓展延伸】 的(3)如图,函数12y x t =+(t 为常数,0t >)的图象与x 轴、y 轴分别交于M ,C 两点,在x 轴的正半轴上取一点N ,使得ON OC =.以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE .若函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++的顶点P 在矩形MNDE 的边上,求n 的值.【答案】(1)①;(2)5b =或3-;(3)1n =或n =14n = 【解析】 【分析】(1)求出函数1y x =-与坐标轴的交点,再判断这两个点在不在二次函数图象上即可; (2)求出函数y x c =+与坐标轴的交点,再由14OB OA =求出点B 坐标,代入二次函数解析式计算即可; (3)先求出M ,C 的坐标,再根据2y mx nx t =++的顶点P 在矩形MNDE 的边上分类讨论即可.【详解】(1)函数1y x =-交x 轴于()1,0,交y 轴于()0,1-,∵点()1,0、()0,1-都在21y x =-函数图象上∴①21y x =-为函数1y x =-的轴点函数;∵点()0,1-不在2y x x =-函数图象上∴②2y x x =-不是函数1y x =-的轴点函数;故答案为:①;(2)函数y x c =+交x 轴于(),0A c -,交y 轴于()0,c , ∵函数y x c =+的轴点函数2y ax bx c =++∴(),0A c -和()0,c 都在2y ax bx c =++上,∵0c >∴OA c = ∵14OB OA =, ∴14OB c = ∴1,04B c ⎛⎫- ⎪⎝⎭或1,04B c ⎛⎫ ⎪⎝⎭当1,04B c ⎛⎫-⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=-+⎪⎨⎪=-+⎩,解得5b =, 当1,04B c ⎛⎫ ⎪⎝⎭时,把(),0A c -1,04B c ⎛⎫ ⎪⎝⎭代入2y ax bx c =++得 221101640ac bc c ac bc c⎧=++⎪⎨⎪=-+⎩,解得3b =-, 综上,5b =或3-;(3)函数12y x t =+交x 轴于()2,0M t -,交y 轴于()0,C t , ∵ON OC =,以线段MN 的长度为长、线段MO 的长度为宽,在x 轴的上方作矩形MNDE∴(),0N t ,(),2D t t ,()2,2E t t -, ∵函数12y x t =+(t 为常数,0t >)的轴点函数2y mx nx t =++ ∴()2,0M t -和()0,C t 在2y mx nx t =++上∴()()2022m t n t t =-+-+,整理得4210mt n -+= ∴122n mt =+∴2y mx nx t =++的顶点P 坐标为24,24n mt n m m ⎛⎫-- ⎪⎝⎭, ∵函数2y mx nx t =++的顶点P 在矩形MNDE 的边上。
2020年江苏省盐城市中考数学试卷解析版
2020年江苏省盐城市中考数学试卷(解析版)一、选择题(本大题有8小题,每小题3分,共24分)1:(2020年江苏省盐城市中考)中考数学工作室1.2020的相反数是()A.﹣2020B.2020C.D.﹣【考点】相反数.【解答】解:2020的相反数是﹣2020.故选:A.2:(2020年江苏省盐城市中考)中考数学工作室2.下列图形中,属于中心对称图形的是()A.B.C.D.【考点】中心对称图形.【解答】解:A.此图形不是中心对称图形,不符合题意;B.此图形是中心对称图形,符合题意;C.此图形不是中心对称图形,不符合题意;D.此图形不是中心对称图形,不符合题意;故选:B.3:(2020年江苏省盐城市中考)中考数学工作室3.下列运算正确的是()A.2a﹣a=2B.a3•a2=a6C.a3÷a=a2D.(2a2)3=6a5【考点】合并同类项;同底数幂的乘法;同底数幂的除法.【解答】解:A、2a﹣a=a,故此选项错误;B、a3•a2=a5,故此选项错误;C、a3÷a=a2,故此选项正确;D、(2a2)3=8a6,故此选项错误;故选:C.4.实数a,b在数轴上表示的位置如图所示,则()A.a>0B.a>b C.a<b D.|a|<|b|【考点】绝对值;实数与数轴.【解答】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.5:(2020年江苏省盐城市中考)中考数学工作室5.如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.6:(2020年江苏省盐城市中考)中考数学工作室6.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为()A.0.4×106B.4×109C.40×104D.4×105【考点】科学记数法—表示较大的数.【解答】解:400000=4×105.故选:D.7.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6【考点】一元一次方程的应用.【解答】解:由题意,可得8+x=2+7,解得x=1.故选:A.8:(2020年江苏省盐城市中考)中考数学工作室8.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5【考点】直角三角形斜边上的中线;三角形中位线定理;菱形的性质.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,在Rt△BOC中,BC===5,∵H为BC中点,∴OH=BC=.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分)9:(2020年江苏省盐城市中考)中考数学工作室9.如图,直线a、b被直线c所截,a∥b,∠1=60°,那么∠2=°.【考点】平行线的性质.【解答】解:∵a∥b,∴∠2=∠1=60°.故答案为:60°.10:(2020年江苏省盐城市中考)中考数学工作室10.一组数据1、4、7、﹣4、2的平均数为.【考点】算术平均数.【解答】解:数据1、4、7、﹣4、2的平均数为=2,故答案为:2.11:(2020年江苏省盐城市中考)中考数学工作室11.因式分解:x2﹣y2=.【考点】因式分解﹣运用公式法.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案为:(x+y)(x﹣y).12:(2020年江苏省盐城市中考)中考数学工作室12.分式方程=0的解为x=.【考点】解分式方程.【解答】解:分式方程=0,去分母得:x﹣1=0,解得:x=1,经检验x=1是分式方程的解.故答案为:1.13.一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.【考点】概率公式.【解答】解:∵一只不透明的袋中装有2个白球和3个黑球,∴搅匀后从中任意摸出1个球摸到白球的概率为:.故答案为:.14:(2020年江苏省盐城市中考)中考数学工作室14.如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC=°.【考点】圆心角、弧、弦的关系;圆周角定理.【解答】解:如图,取⊙O上的一点D,连接BD,CD,则四边形ABDC是⊙O的内接四边形,∴∠D+∠BAC=180°.∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°﹣50°=130°,故答案为:130.15.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.【考点】相似三角形的判定与性质.【解答】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.16:(2020年江苏省盐城市中考)中考数学工作室16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k≠0)的图象上,则k的值为.【考点】反比例函数图象上点的坐标特征;轴对称的性质.【解答】解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其中m<,△A′B′C′与△ABC关于直线l对称,∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,∴在函数y=(k≠0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y=(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.三、解答题(本大题共有11小题,共102分)17:(2020年江苏省盐城市中考)中考数学工作室17.计算:23﹣+(﹣π)0.【考点】实数的运算;零指数幂.【解答】解:原式=8﹣2+1=7.18:(2020年江苏省盐城市中考)中考数学工作室18.解不等式组:.【考点】解一元一次不等式组.【解答】解:解不等式≥1,得:x≥,解不等式4x﹣5<3x+2,得:x<7,则不等式组的解集为≤x<7.19:(2020年江苏省盐城市中考)中考数学工作室19.先化简,再求值:÷(1+),其中m=﹣2.【考点】分式的化简求值.【解答】解:原式=÷(+)=÷=•=,当m=﹣2时,原式==1.20.如图,在△ABC中,∠C=90°,tan A=,∠ABC的平分线BD交AC于点D,CD=,求AB的长?【考点】角平分线的性质;解直角三角形.【解答】解:在Rt△ABC中,∠C=90°,tan A=,∴∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,又∵CD=,∴BC==3,在Rt△ABC中,∠C=90°,∠A=30°,∴AB==6.答:AB的长为6.21:(2020年江苏省盐城市中考)中考数学工作室21.如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.【考点】全等三角形的判定与性质;正方形的性质;作图—复杂作图.【解答】解:(1)如图所示,点E即为所求.(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.【考点】条形统计图;折线统计图;方差.【解答】解:(1)41﹣28=13(人),故答案为:41,13;(2)分别计算A地区一周每一天的“新增确诊人数”为:14,13,16,17,14,10;绘制的折线统计图如图所示:(3)A地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10人以上,变化不明显,而B地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位.23.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.【考点】列表法与树状图法.【解答】解:(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4;(2)画树状图如下:共有16种等可能结果,故答案为:16;(3)由图①得:当n=1时,21=2,由图④得:当n=2时,22×22=16,∴n=3时,23×23×23=512,∵16<492<512,∴n的最小值为3,故答案为:3.24:(2020年江苏省盐城市中考)中考数学工作室24.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.【考点】等腰三角形的判定;圆周角定理;三角形的外接圆与外心;切线的判定与性质.【解答】证明:(1)连接OC,∵OC=OA,∴∠OCA=∠A,∵AB是⊙O的直径,∴∠BCA=90°,∴∠A+∠B=90°,∵∠DCA=∠B,∴∠OCA+∠DCA=∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠OCA+∠DCA=90°,∠OCA=∠A,∴∠A+∠DCA=90°,∵DE⊥AB,∴∠A+∠EFA=90°,∴∠DCA=∠EFA,∵∠EFA=∠DFC,∴∠DCA=∠DFC,∴△DCF是等腰三角形.25:(2020年江苏省盐城市中考)中考数学工作室25.若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.【考点】一次函数图象上点的坐标特征;待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点;等腰直角三角形.【解答】解:(1)如图,如二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).∴抛物线开口向上,故答案为:上;(2)①若∠ACN=90°,则C与O重合,直线l与抛物线交于A点,因为直线l与该函数的图象交于点B(异于点A),所以不合题意,舍去;②若∠ANC=90°,则C在x轴的下方,与题意不符,舍去;③若∠CAN=90°,则∠ACN=∠ANC=45°,AO=CO=NO=2,∴C(﹣2,0),N(2,0),设直线l为y=kx+b,将A(0,2)C(﹣2,0)代入得,解得,∴直线l相应的函数表达式为y=x+2;(3)过B点作BH⊥x轴于H,S1=,S2=,∵S2=S1,∴OA=BH,∵OA=2,∴BH=5,即B点的纵坐标为5,代入y=x+2中,得x=3,∴B(3,5),将A、B、N三点的坐标代入y=ax2+bx+c得,解得,∴抛物线的解析式为y=2x2﹣5x+2.26:(2020年江苏省盐城市中考)中考数学工作室26.木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.【考点】四边形综合题.【解答】解:(1)如图①,过点P作PE⊥CD于点E,∵点P是边长为30厘米的正方形雕刻模具的中心,∴PE=15cm,同理:A′B′与AB之间的距离为15cm,A′D′与AD之间的距离为15cm,B′C′与BC之间的距离为15cm,∴A′B′=C′D′=200﹣15﹣15=170(cm),B′C′=A′D′=100﹣15﹣15=70(cm),=(170+70)×2=480cm,∴C四边形A′B′C′D′答:图案的周长为480cm;(2)连接PE、PF、PG,过点P作PQ⊥CD于点Q,如图②∵P点是边长为30cm的等边三角形模具的中心,∴PE=PG=PF,∠PGF=30°,∵PQ⊥GF,∴GQ=FQ=15cm,∴PQ=GQ•tan30°=15cm,PG==30cm,当△EFG向上平移至点G与点D重合时,由题意可得,△E′F′G′绕点D顺时针旋转30°,使得E′G′与AD边重合,∴DP′绕点D顺时针旋转30°到DP″,∴,同理可得其余三个角均为弧长为5πcm的圆弧,∴=600﹣120+20π(cm),答:雕刻所得图案的周长为(600﹣120)cm.27:(2020年江苏省盐城市中考)中考数学工作室27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.32 1.50.4BC0.40.8 1.2 1.62 2.4 2.8 AC+BC 3.2 3.5 3.8 3.94 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=____时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=____时,AC+BC最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B﹣﹣E﹣﹣F﹣﹣G﹣﹣A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米.∠E=∠F=∠G=90°.平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区域,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.【考点】三角形综合题.【解答】解:问题1:函数图象如图所示:问题2:(Ⅲ)观察图象可知,x=2时,y有最大值.(Ⅳ)猜想:BC=a.故答案为:2,BC=a.问题3:设BC=x,AC+BC=y,在Rt△ABC中,∵∠C=90°∴AC==,∴y=x+,∴y﹣x=,∴y2﹣2xy+x2=4a2﹣x2,∴2x2﹣2xy+y2﹣4a2=0,∵关于x的一元二次方程有实数根,∴△=4y2﹣4×2×(y2﹣4a2)≥0,∴y2≤8a2,∵y>0,a>0,∴y≤2a,当y=2a时,2x2﹣4ax+4a2=0∴(x﹣2a)2=0,∴x1=x2=a,∴当BC=a时,y有最大值.问题4:延长AM交EF的延长线于C,过点A作AH⊥EF于H,过点B作BK⊥GF于K 交AH于Q.在Rt△BNE中,∠E=90°,∠BNE=60°,BE=1cm,∴tan∠BNE=,∴NE=(cm),∵AM∥BN,∴∠C=60°,∵∠GFE=90°,∴∠CMF=30°,∴∠AMG=30°,∵∠G=90°,AG=1cm,∠AMG=30°,∴在Rt△AGM中,tan∠AMG=,∴GM=(cm),∵∠G=∠GFH=90°,∠AHF=90°,∴四边形AGFH为矩形,∴AH=FG,∵∠GFH=∠E=90°,∠BKF=90°∴四边形BKFE是矩形,∴BK=FE,∵FN+FM=EF+FG﹣EN﹣GM=BK+AH﹣﹣=BQ+AQ+KQ+QH﹣=BQ+AQ+2﹣,在Rt△ABQ中,AB=4cm,由问题3可知,当BQ=AQ=2cm时,AQ+BQ的值最大,∴BQ=AQ=2时,FN+FM的最大值为(4+2﹣)cm.。
2022年江苏省盐城市中考数学真题(解析版)
【点睛】本题主要考查了测量距离,正确理解“跳眼法”测物距是解答本题的关键.
二、填空题 (本大题共有 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请将答案直接 写在答题卡的相应位置上)
9. 使
有意义的x 的取值范围是_______.
【答案】 x开1
【详解】解:A . a、a2 不是同类项,不能合并,选项错误,不符合题意;
B . (a2 )3 = a6 ,选项正确,符合题意;
C . a2 . a3 = a5 ,选项错误,不符合题意;
D . a6 a3 = a3 ,选项错误,不符合题意;
故选 B. 【 点 睛 】 此 题 考 查 了 合 并 同 类 项 , 幂 的 乘 方 以 及 同 底 数 幂 的 乘 除 法 , 掌 握 它 们 的 运 算 法 则 是 解 题 的 关键. 3. 下列四幅照片中,主体建筑的构图不对称的是 ( )
变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同,当原数绝对值≥10 时, n 是正数, 当原数的绝对值<1 时, n 是负数.
【详解】解: 1600000 = 1.6 106 .
故选:C. 【点睛】本题主要考查了科学记数法的表示方法,科学记数法的表示形式为 a 10 n 的形式,其中
如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为 4 米,则汽车到观测 点的距离约为 ( )
A. 40 米 【答案】C
B. 60 米
C. 80 米
D. 100 米
【解析】 【分析】参照题目中所给的“跳眼法”的方法估测出距离即可. 【详解】 由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的 10 倍. 观察图形,横向距离大约是汽车长度的 2 倍,为 8 米,
江苏盐城中考数学试题解析版
江苏盐城中考数学试题解析版Revised by Jack on December 14,2020江苏省盐城市二○一一年高中阶段教育招生统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.) 1.-2的绝对值是A .-2B .- 12C .2D .12 【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6 C .x 6÷x 2= x 3 D .( x 2)3 = x 8 【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5 【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴ 两圆相交。
6.对于反比例函数y =1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是A .平均数为30B .众数为29C .中位数为31D .极差为5 【答案】B 。
【考点】平均数、众数、中位数、极差。
2022年江苏省盐城市中考数学试卷B卷附解析
2022年江苏省盐城市中考数学试卷B 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知PA 是⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10cm ,PB =5cm ,则⊙O 的半径长为( ) A .15cmB .10 cmC .7.5 cmD .5 cm2.福彩“五位数”玩法规定所购彩票的 5 位数与开奖结果的 5 位数顺序与大小均相同, 则中一等奖,问购一张彩票中一等奖的概率是( ) A .15B .5110C .6110D .10153.如图,EF 过□ABCD 对角线的交点O ,分别交AD 于E ,交BC 于点F ,若OE=5,四边形CDEF 的周长为25,则□ABCD 的周长为( ) A .20B .30C .40D .504.不能判定四边形ABCD 为平行四边形的题设是 ( )A .AB=CD ,AD=BCB .AB=CD ,AB ∥CDC .AB=CD ,AD ∥BC D .A ∥CD ,AD ∥BC5.如图所示,P 为□ABCD 内任意一点,分别记△PAB ,△PBC ,△PCD ,△PDA 的面积为S 1,S 2,S 3,S 4,则有 ( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对6.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( ) A .众数B .方差C .平均数D .中位数7.下列多项式中,含有因式1y +的多项式是( ) A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +-- D . 2(1)2(1)1y y ++++ 8.如果分式-23x -的值为负,则x 的取值范围是( ) A .x>2B .x>3C .x<3D .x<29.下列说法中正确的是( )A .从所有的质数中任取一个数是偶数是不可能事件B .如果一件事不是必然发生,那么它就不可能发生C .抛掷四枚普通硬币,掷得四个正面朝上和掷得四个反面朝上的概率一样大D .投掷一枚普通正方体骰子,“掷得的数是奇数”是必然发生的,因为骰子上有奇数 10.12-的绝对值是( ) A .2-B .12-C .2D .1211.关于单项式3222x y z -的系数、次数,下列说法中,正确的是( )A .系数为-2,次数为 8B .系数为-8,次数为 5C .系数为-23,次数为 4D .系数为-2,次数为 7二、填空题12.对于函数y=-1x ,当x>0时,y随x的增大而 .13.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)14.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________.15.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.16.对某中学同年级70名女生的身高进行了测量,得到一组数据,最大值是l69 cm ,最小值是145 cm ,对这组数据进行整理时,确定它的组距为2.3 cm ,则应分 组. 17.把直线y=-2x 一2向上平移3个单位的直线是 .18.如图,截去立方体一角变成一个多面体,这个多面体有 个面, 条棱, 顶点.19.如图是一个以点 0为旋转中心的旋转对称图形.能使旋转后的图形与原图形重合的旋转角是 .20.如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE= cm.三、解答题21.已知二次函数y =ax 2 +bx-1的图象经过点 (2,-1),且这个函数有最小值-3 ,求这个函数的关系式. y =2x 2 -4x-1.22.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量 , 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):身高(人数(个)181512 9 6 30 145.5 149.5 153.5 157.5 161.5 165.5 169.5根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.23.在四边形ABCD 中,∠A+∠C=180°,∠B :∠C :∠D=1:2:3,求这个四边形四个内角的度数.24.如图①,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN,MC交于点E,直线CN,MB交于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图②中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).25.如图,在△ABC中,AB=AC,点P是边BC的中点,PD⊥AB,PE⊥AC,垂足分别为点D、E,说明PD=PE.26.如图所示,正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,试判断BE与EF的关系,并作出说明.27.如图,已知DE∥ BC,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC的度数.28.如图,直线AB与 CD交于点 0,由点 0引射线OG、OE、OF,使OC平分∠EOG. 若∠AOG=∠FOE,∠BOD=56°,求∠FOC的度数.29.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(l)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.30.如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米.工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).⑴请直接写出AB、AC的长;⑵画出.......,并求出该路径的长度(精确到0.1米)..在搬动此物体的整个过程中A.点所经过的路径【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.C5.C6.B7.C8.B9.C10.D11.B二、填空题12.增大13.< 014.1215.2216.1117.y=-2x+118.7,12,719.120°20.3三、解答题21.22.(1)60,6,1,0.3;(2)略.23.90°,45°,90°,135°24.(1)证△CAN≌△MCB;(2)证△ECN≌△FCB;(3)(1)的结论成立,(2)的结论不成立25.连接AP.说明AP是角平分线,再利用角平分上的点到角两边的距离相等26.BE⊥EF.说明BE2+EP2=BF227.∠EDC=25°,∠BDC=85°28.因为 OC 平分∠EOG ,∴∠COG=∠COE. 又∵∠AOG =∠FOB , ∴∠AOG +∠COG =∠FOE + ∠COE ,即∠AOC=∠FOC. ∵∠AOC =∠BOD(对顶角相等), ∴∠FOC=∠BOD.∵∠BOD =56°,∴∠FOC = 56°29.(1):1 2 3 4 4 8 12 551015(2)P (甲)=31;P (乙)=32.30.(1)AB=2(米),AC=3(米); (2)画出A 点经过的路径:经过的路径长4π/3+3≈5.9(米).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城市二○一一年高中阶段教育招生统一考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.) 1.-2的绝对值是A .-2B .- 12C .2D .12【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2 = x 6 C .x 6÷x 2= x 3 D .( x 2)3 = x 8【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴Q 两圆相交。
6.对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29 C .中位数为31 D .极差为5 【答案】B 。
【考点】平均数、众数、中位数、极差。
【分析】282931293229.8,29,29,5++++=平均数=众数是中位数是极差是32-28=4。
8.小亮从家步行到公交车站台,等公交车去学校. 图中的 折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 【答案】D 。
A B C D s /kmt /min30161081O【考点】二次函数。
【分析】从图可知,他离家8km 共用了30min ,他等公交车时间为16-10=6min ,他步行的速度是1m 1000m10min 10mink ==100m/min ,公交车的速度是()()81m 7000m 5003016min 14mink -==-m/min 。
二、填空题(本大题共有10小题,每小题3分,共30分) 9.27的立方根为 ▲ . 【答案】3。
【考点】立方根。
【分析】根据立方根的定义,直接得出结果。
10.某服装原价为a 元,降价10%后的价格为 ▲ 元. 【答案】0.9a 。
【考点】用字母表示数。
【分析】降价10%后的价格为a (1-10%)=0.9a 。
11.“任意打开一本200页的数学书,正好是第35页”,这是 ▲ 事件(选填“随机” 或“必然”). 【答案】随机。
【考点】概率。
【分析】根据概率的定义,直接得出结果。
12.据报道,今年全国高考计划招生675万人.675万这个数用科学记数法可表示为 ▲ .【答案】12.6.75×106。
【考点】科学记数法。
【分析】根据用科学记数法表示数的方法,直接得出结果。
13.化简:x 2 - 9x - 3= ▲ .【答案】3x +。
【考点】分式计算,平方差公式。
【分析】()()2339333x x x x x x +--==+--。
14.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4). 将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是 ▲ . 【答案】(3,1)。
【考点】对称,直角坐标系。
【分析】根据图象知,点C 的坐标是(-3,1),则点C 的对应点C ′的坐标是(3,1)。
15.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线 得到四边形ABCD ,则四边形ABCD 的形状是 ▲ . 【答案】等腰梯形。
【考点】矩形的性质,内错角,相似三角形的性质,等腰梯形的判定。
【分析】根据矩形的性质,有AD BC DCB ⇒∠∥等于三角板较大锐角(内错角相等),等于ABC ∠(相似三角形对应角相等),从而得证四边形ABCD 的形状是等腰梯形。
16.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5, 则AB 的长为 ▲ . 【答案】10。
【考点】等腰梯形的性质,三角形中位线定理。
【分析】∵AB =AC ,AD ⊥BC ∴D 是BC 的中点。
又∵E 是AC 的中点. ∴DE 是△ABC 的中位线,∴AB 的=2DE=10。
17.如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路长为 ▲ cm .【答案】132π。
【考点】旋转变形,,扇形弧长。
【分析】当△ADE 按顺时针方向旋转到△ABF 时,点E 所经过的路长是一个以点A 为圆心,AE 为半径,圆心角为900的。
而222512513AE AD DE =+=+=,故点E 所经过的路长为90132133602ππ⋅⋅=。
18.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是 ▲ .111122663263323第1排第2排第3排第4排第5排【答案】23。
【考点】分类、归纳思想,根式计算。
【分析】(5,4)从右侧可见为2。
下面求(15,7)是几:首先看(15,7)是整个排列的第几个数,从排列方式看第1排1个数,第2排2个数,……第m 排m 个数,所以前14排一共的数目是1+2+……+14=(1+14)+(2+13)+……+(7+8)=7×15=105,因此(15,7)是第105+7=112个数。
第二看第112个数是哪个数,因为112/4商余0,所以(15,7)=6。
则(5,4)与(15,7)表示的两数之积是2×6=22。
三、解答题(本大题共有10小题,共96分.) 19.(本题满分8分)(1)计算:(3)0- (12)-2 +tan45°;【答案】解:原式=1-4+1=-2.【考点】零次幂,负指数幂,特殊角直角三角形值。
【分析】根据零次幂、负指数幂定义和特殊角直角三角形值直接求解。
(2)解方程:x x -1 - 31-x= 2.【答案】解:去分母,得 x +3=2(x -1) . 解之,得x =5. 经检验,x =5是原方程的解. 【考点】分式方程。
【分析】根据分式方程的求解方法直接求解 。
20.(本题满分8分)解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来.【答案】解:解不等式x +23<1,得x <1;解不等式2(1-x )≤5,得x ≥-32;∴原不等式组的解集是- 32≤x <1.解集在数轴上表示为 【考点】一元一次不等式组,数轴。
【分析】根据一元一次不等式组的求解方法直接求解 。
21.(本题满分8分)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为 白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有 可能的结果,并求取出红色水笔和白色橡皮配套的概率. 【答案】解:解法一:画树状图:P (红色水笔和白色橡皮配套)= 16.解法二:用列表法:开始 红 蓝 黑 结果 白 灰 橡皮水笔 白 灰 白 灰 (红,白) (红,灰) (蓝,白) (蓝,灰) (黑,白) (黑,灰)白 灰 红 (红,白) (红,灰) 蓝 (蓝,白) (蓝,灰) 黑(黑,白)(黑,灰)P (红色水笔和白色橡皮配套)= 6.【考点】概率,树状图或列表法。
【分析】用树状图或列表法列举出所有情况,并找取出红色水笔和白色橡皮配套的情况数,求出概率. 22.(本题满分8分)为迎接建党90周年,某校组织了以“党在我心中”为主题的电子 小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?【答案】解:(1)∵24÷20%=120(份),∴本次抽取了120份作品.70分20%80分35%90分30%100分 10%60分 5%4262436123648成绩/分份数补全两幅统计图(2)∵900×(30%+10%)=360(份);∴估计该校学生比赛成绩达到90分以上(含90分)的作品有360份. 【考点】统计图表分析。
【分析】统计图表的分析。
23.(本题满分10分)已知二次函数y = -12x 2-x +32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y< 0时,x 的取值范围; (3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对 应的函数关系式.【答案】解:(1)画图(如图); (2)当y< 0时,x 的取值范围是x <-3或x >1; (3)平移后图象所对应的函数关系式为y =- 12(x -2)2+2【考点】二次函数,平移。
【分析】(1)∵y = -12x 2-x +32=- 12(x +1)2+2;y=0,x=-2,1。
∴这个函数的图象顶点在(-1,2),对称轴是x=-1,与x 轴的两个交点是(-2,0),(1,0)。
据此作品成绩扇形统计60分 %100分 10%90分30%80分%70分20%作品份数条形统计份数成绩/分48362412100908070601236246xyO橡皮水笔结果 11O y x可画出这个函数的图象。
(2)根据图象,y< 0时图象在x 轴下方,此时对应的x 的取值范围是x <-3或x >1。
(3)若将此图象沿x 轴向右平移3个单位,只要考虑图象顶点(-1,2)向右平移3个单位得到(3,2),从而由y =- 12(x +1)2+2变为y =- 12(x -2)2+2。
24.(本题满分10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)FGD CBA30°60°【答案】解:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin 30°= 30×12 =15.在Rt △ABG 中,∠BAG =60°,∴BG =AB ·sin 60°= 40×32= 20 3. ∴CE =CF +FD +DE =15+203+2=17+203≈51.64≈51.6(cm )cm.答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm. 【考点】解直角三角形,特殊角直角三角形值,矩形性质。