武汉市2019-2020学年八年级上学期期末数学试题A卷

合集下载

湖北省武汉市青山区2020-2021学年第一学期期末考试八年级数学试卷(Word版含答案)

湖北省武汉市青山区2020-2021学年第一学期期末考试八年级数学试卷(Word版含答案)

青山区2020—2021学年度第一学期期末质量检测八年级数学试卷青山区教育局教研室命制 2021年1月本试卷满分为120分 考试用时120分钟一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上,将对应的答案标号涂黑.1.下列垃圾分类标识的图案中,不是轴对称图形的是 A . B .C .D .2.要使分式2+1x 有意义,则x 的取值应满足 A .x≠1B .x≠-1C .x=1D .x=-13.点A(-3,2)关于x 轴对称的点的坐标是 A .(3,2)B .(-2,3)C .(-3,-2)D .(2,-3)4.下列各式从左到右的变形,是因式分解的是 A .2(1)x x x x B .222+1(1)xx xC .2+34(+3)4x x x x D .21()yy y yy5.下列计算正确的是A .a3•a3=2a3B .a6÷a3=a2C .(-3)-2=-9D .(3a3)2=9a66. 若一个多边形的外角和与它的内角和相等,则这个多边形是 A .六边形 B .五边形 C .四边形 D .三角形7. 下列各式与a a b相等的是A. 22a ab () B. 22()a ab a b C .33a a b D .+aa b8. 如图,在△ABC 中,∠B=74°,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB+BD=BC ,则∠BAC 的度数为 A .74°B .69°C .65°D .60°9.如图, Rt △ABC 中,∠ACB =90°,CA=CB ,∠BAD =∠ADE =60°,DE=3,AB=10,CE 平分∠ACB ,DE 与CE 相交于点E ,则AD 的长为A .4B .13C .6.5D .710.对于正数x ,规定f(x)=1+x x ,例如:f(3)=31+3=34,则f(12020)+f(12019)+…+f(12)+f(1)+ f(2)+ …+ f(2019)+ f(2020)的值为A .2021B .2020C .2019.5D .2020.5二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置. 11.若分式22+1x x 的值为0,则x= . 12.数0.000 02用科学记数法表示为: .第9题图第8题图13.计算:312+12+1m m m m ________.14.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =5cm ,P 为BC 边的垂直平分线DE 上一个动点,则△ACP 周长的最小值为________ cm .15.如图,用四个大小、形状完全相同的小长方形围成了一个大正方形,如果大正方形的面积为3,且m=3n ,那么图中阴影部分的面积是 .16.如图,在四边形ABCD 中,AB=BC ,点E 为对角线AC 与BD 的交点, ∠AEB =70°,若∠ABC=2∠ADB=4∠CBD ,则∠ACD= °. 三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.计算:(每小题4分,共8分)(1)(4)(+1)a a ; (2)222ay axy ax ++. 18.分解因式:(每小题4分,共8分) (1)29x ; (2)22+2ax axy ay .19.(本题满分8分)先化简,再求值:xx x x --•-++342)252( ,其中x=5.20.(本题满分8分) 如图,在7×5的网格中,横、纵坐标均为整数的点叫做格点,如A (2,3)、B (2,第14题图第16题图EAB第15题图-1)、C (5,3)都是格点,且BC=5,请用无刻度直尺在给定网格中画出下列图形,并保留作图痕迹.(画图过程用虚线表示,画图结果用实线表示) (1)①画△ABC 的角平分线AE ;②画△ABC 的中线AD ; (2)画△ABC 的角平分线CF ; (3)画到直线AB ,BC ,AC 的距离相等的格点P ,并写出点P 坐标 .21.(本题满分8分)已知,在△ABC 中,∠BAC=2∠B ,E 是AB 上一点,AE=AC ,AD ⊥CE ,垂足为D ,交BC 于点F .(1)如图1,若∠BCE=30°,试判断△ABC 的形状,并说明理由; (2)如图2,若AD=4,求BC 的长.22.(本题满分10分) 某工厂制作A 、B 两种产品,已知用8千克原材料制成A 种产品的个数比制成B 种产品的个数少1个,且制成一个A 种产品比制成一个B 种产品需要多用60% 的原材料. (1)求制作每个A 种产品、B 种产品各用多少千克原材料?第21题图1第21题图2D FECBAABCEFD(2)如果制作A 、B 两种产品的原材料共270千克,要求制作B 种产品的数量不少于A 种产品数量的2倍,求应最多安排多少千克原材料制作A 种产品?(不计材料损耗).23.(本题满分10分)已知,在△ABC 中,∠BAC=90°,∠BCA=30°,AB=5, D 为直线BC 上一动点,以AD 为边作等边△ADE (A ,D ,E 三点逆时针排列),连接CE . (1)如图1,若D 为BC 中点,求证:AE=CE ;(2)如图2,试探究AE 与CE 的数量关系,并证明你的结论;(3)连接BE .在D 点运动的过程中,当BE 最小时,则线段CD 的长为________.24.(本题满分12分) 如图,在平面直角坐标系中, A ,B 两点的坐标分别是点A (0,a ),点B (b ,0),且a ,b 满足:2123660aa b .(1)求∠ABO 的度数;(2)点M 为AB 的中点,等腰Rt △ODC 的腰CD 经过点M ,∠OCD=90°,连接AD . ① 如图1,求证:AD ⊥OD ;② 如图2,取BO 的中点N ,延长AD 交NC 于点P ,若点P 的横坐标为t ,请用含t 的式子表示四边形ADCO 的面积.第23题图1第23题图2第23题备图EDCB A ED CBAAB C第24题图2N y xPM D CBAO y OABCD Mx第24题图12020~2021学年度第一学期期末质量检测八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11. 2 ; 12.5210 ; 13. 1 ; 14. 15 ; 15. 34; 16.80°.三、解答题:(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.解:(1)原式=24+4aa a ………… (2分)=234aa ………… (4分)(2)原式=3210………… (8分)18.解:(1)原式=(3)(3)x x ………… (4分)(2)原式=22+2a x xyy ()………… (6分)=2(+)a x y ………… (8分)19.解:=(3)(3)2223x x x x x()………… (4分)题号 1 2 3 4 5 6 7 8 9 10 答案 ABCBDCBBDC(2)(2)52(2)223x x x x x x=26x ………… (6分) 当5x时原式=16 ………… (8分)20.解:(1)如图,①△ABC 的角平分线AE 即为所求;………… (2分)②△ABC 的中线AD 即为所求;………… (4分)(2)△ABC 的角平分线CF 即为所求;………… (6分)(3)如图,到直线AB ,BC ,AC 的距离相等的格点P 有两个,是P1 和 P2,其坐标分别是P1 (3,2)和P2 (-1,0).………… (8分)(1个点1分,共2分) 注:本题几问其它解法参照评分.21.证:(1)△ABC 为直角三角形,理由如下: 如图1, ∵AE=AC ,AD ⊥CE ∴∠ADC=∠CDF=90°∠BAC=2∠EAD=2∠CAD………… (1分) 又∵∠BAC=2∠B∴∠BAD=∠CAD=∠B………… (2分) ∵∠BCE=30°,∠CDF=90° ∴∠AFC=∠B +∠BAF =60°∴∠BAF=∠B =∠CAD =30°………… (3分) ∵∠ADC=90° ∴∠ACD=60°第20题图图1∴∠BCA=90°即△ABC 为直角三角形………… (4分)(2)如图2,过C 作CG ∥AB 交AD 的延长线于点G . 则:∠B =∠BCG ,∠BAF =∠CAF =∠G 又∵∠BAF=∠B ∴∠BCG=∠G∴CA=CG ,FA=FB ,FC=FG ∴AG=BC………… (6分) 在△ACG 中 CA=CG ,AG ⊥CD∴AG=2AD=2DG………… (7分) ∴BC=2AD ∵AD=4∴BC=2AD=8.………… (8分) 注:本题几问其它解法参照评分.22.解:(1)设制作1个B 种产品需要x 千克原材料,则制作1个A 种产品需要+60%x (1)千克原材料依题意有:8811.6x x………… (2分) 解得: 3x ………… (3分)经检验3x为原方程的解,且合乎题意 ………… (4分)制作1个A 种产品需要千克原材料为:+60%=4.8x (1)………… (5分)图2答:制作1个B 种产品需要3千克原材料,则制作1个A 种产品需要4.8千克原材料; (2)设应安排y 千克原材料制作A 种产品,安排(270)y 克原材料制作B 种产品.则有:27023 4.8y y≥.………… (8分) 解得:120y ≤………… (9分)答:应最多安排120千克原材料制作A 种产品,安排150克原材料制作B 种产品.…………(10分)23.解:(1)∵∠BAC=90°,∠ACB= 30°∴∠ABC= 60°,BA=12BC=5…………(1分)∴BC=10又∵D 为BC 的中点∴BD=CD=BA=12BC=5∴△ABD 为等边三角形 ∴AD=BD=CD…………(2分) 又∵△ADE 为等边三角形 ∴∠ADE=∠ADB=∠EDC=60° ∴DE 垂直平分AC…………(3分) ∴AE=CE…………(4分)(2)如图2,取BC 的中点F ,连接AF ,EF . 由(1)得:△ABF 为等边三角形∴AB=AF=BF=FC ,∠BAF=∠B=∠AFB=60°…………(5分) 又∵△ADE 为等边三角形图1∴AD=AE ,∠DAE=60°∴∠BAD=∠FAE在 △BAD 和△FAE 中∵ABAF BAD FAE AD AE△BAD ≌△FAE (SAS )∴∠B=∠AFE=60°…………(6分)又∵∠AFB=60°,AF=FC∴ ∠CFE =∠AFE=60°∴EF 垂直平分AC…………(7分)∴AE=CE…………(8分)(3)△BCG 的面积为 12.5 .…………(10分) 注:本题几问其它解法参照评分.24.(1)∵2123660aa b ∴2(6)60a b …………(1分) 又∵2(6)0a ≥,60b ≥ ∴2(6)0a ,60b ∴6a ,6b …………(2分)∴OA=OB又∵∠AOB=90°∴∠ABO=∠OAB=45°…………(3分)(2)连接OM,过点M作MH⊥CD交OD于点H.∵△AOB为等腰Rt△∵M为AB中点∴OM⊥AB,OM=AM=BM ………… (4分)∵△ODC为等腰Rt△,∠OCD=90°又∵MH⊥CD∴∠DMH=90°则∠MDH=∠MHD=45°∴MD=MH,∠MHO=135°∴∠DMA=∠HMO………… (5分)在△ADM和△OHM中∵MD MH AMD OMH MA MO∴△ADM≌△OHM(AAS)∴∠ADM=∠OHM=135°………… (6分)又∵∠MDH=45°∴∠ADO=90°∴AD⊥OD…………(7分)(3)在OC上截取OQ=CM,连接QN,OM,MN,OP.在等腰Rt△OMB中∵N为BC中点∴MN⊥OB,MN=ON=BNQNyxPMDCBAO∴∠MNO=∠DCO=90°∴∠NOQ=∠NMC…………(8分)在△NOQ和△NMC中∵OQ MC NOQ NMC ON MN∴△ONQ≌△MNC(SAS)∴QN=CN,∠ONQ=∠MNC∴∠ONM=∠QNC=90°…………(9分)∴∠NQC=∠NCQ=45°,∠OQN=∠MCN=∠ADM=135°∴∠NQC=∠CDP=∠DCP=45°∴∠NPA=∠ODA =90°∴OD∥NP…………(10分)∴S△DCO=S△DPO∴S四边形ADCO=S△APO…………(11分)又∵点P的横坐标为t,OA=6∴S四边形ADCO=162t=3t…………(12分)注:本题几问其它解法参照评分.。

湖北省武汉市硚口区2021-2022学年八年级(上)期末数学试卷及答案解析

湖北省武汉市硚口区2021-2022学年八年级(上)期末数学试卷及答案解析

2021-2022学年湖北省武汉市硚口区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)在美术字中,有些阿拉伯数字是轴对称,下面4个数字中,可以看作是轴对称图形的是()A.2B.3C.4D.52.(3分)新冠病毒的直径大小在60~140纳米左右,呈圆形或者椭圆形,主要通过呼吸道进行传播.已知140纳米=0.00000014米,0.00000014用科学记数法表示是()A.1.4×10﹣6B.1.4×10﹣5C.1.4×10﹣7D.140×10﹣9 3.(3分)若分式的值为0,则x的值是()A.2B.﹣1C.2或﹣1D.﹣24.(3分)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,这里运用了全等三角形的判定和性质,判定三角形全等的依据是()A.SSS B.SAS C.ASA D.HL5.(3分)一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是()A.4B.6C.7D.96.(3分)下列运算正确的是()A.3a3•2a2=6a6B.a6÷a2=a3C.(﹣2a3)4=8a12D.2a+2a=2a+17.(3分)下列各式从左到右的变形,不正确的是()A.B.C.D.8.(3分)计算(x+2y﹣3)(x﹣2y+3)的结果是()A.x2﹣4y2+12y﹣9B.﹣x2+4y2﹣12y+9C.x2﹣4y2+9D.x2﹣4y2﹣12y﹣99.(3分)如图,在△ABC中,∠B=2∠C,AD、AE分别是△ABC的高和角平分线,下列两个结论:①AB+BD=DC;②AB+BE=AC,其中正确的是()A.只有①对B.只有②对C.①②都对D.①②都不对10.(3分)已知x2﹣2x﹣1=0,则2x3﹣6x2+2x+1=()A.﹣1B.5C.﹣3D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)使分式有意义的x的取值范围是.12.(3分)用一根长18cm的细绳围成一个边长为4cm的等腰三角形,则腰长是cm.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值为.14.(3分)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作MN∥BC,MN 分别与AB、AC相交于点M、N.若△ABC的周长为18,△AMN的周长为12,则BC =.15.(3分)如图,“丰收1号”小麦的试验田是边长为a米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)米的正方形,两块试验田的小麦都收获了m千克.则高的单位面积产量比低的单位面积产量多几分之几?多的这个值是.16.(3分)在△ABC中,∠A=α(α<60°),点E、F分别为AC和AB上的动点,BE与CF相交于G点,且BE+EF+CF的值最小.①如图1,若AB=AC,α=40°,则∠ABE=°;②如图2,∠BGC=.(用含α的式子表示)三、解答题(共8题,共72分)17.(8分)解分式方程:(1)=;(2)=+1.18.(8分)如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.19.(8分)因式分解:(1)x2y﹣4y;(2)﹣2x2+8xy﹣8y2;(3)(x﹣2)(x+3)﹣6x.20.(8分)(1)计算:[6x2•(﹣x)2+(﹣2x)3]÷(﹣2x2).(2)先化简,再求值:(m+2+)÷,其中m=﹣.21.(8分)如图是由小正方形组成的6×6网格.每个小正方形的顶点叫做格点,点A,B,C均是格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示).(1)在图1中,画一个以AB为腰的等腰△ABD;(2)①在图2中,画一个以AB为腰,以A为直角顶点的等腰Rt△ABE;②在图2中,画AB延长线上的点F,使得∠CFA=45°.(3)在图3中,画AB的垂直平分线.22.(10分)在“乡村振兴”行动中,某村办企业以A、B两种农作物为原料开发了一种产品.已知A原料每千克的费用是B原料每千克的费用的1.5倍,若用900元收购A原料比用900元收购B原料少100kg.(1)求A原料和B原料每千克的费用;(2)生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.①直接写出每盒产品的成本(成本=原料费+其他成本);②该企业请甲、乙两位主播进行直播销售,每盒销售价格为40元,每个月共销售18000盒,要求:甲主播销售量不低于乙主播销售量的一半,且不高于乙主播销售量的两倍.已知甲主播每盒提成0.5元,企业每个月还需要另付2000元给甲主播;乙主播每盒提成0.8元,问该企业应该如何将这18000盒产品分配给甲、乙两位主播直播销售,才能使该企业的每月总收益最大?23.(10分)在等腰△ABC中,AB=AC=nBC,点D和点E分别为AC和BC边上的点,AD=CE,AE与BD相交于点F.(1)当n=1时,①如图1,求证:AE=BD;②如图1,求∠AFD的度数;③如图2,若AF=2BF,作AG⊥BD,垂足为G点,连接CG,求证:GF=GC.(2)当n=时,如图3,若AE+BD取得最小值,直接写出的值.24.(12分)在平面直角坐标系中,已知A点坐标为(0,4),B点坐标为(m,0)(﹣4<m<0),点C为第四象限内一点,∠BAC=45°,连接BC.(1)当AB⊥BC时,①如图1,若m=﹣2,请直接写出C点坐标;②如图2,D为AC的中点,连接OD,求∠AOD的度数.(2)如图3,BC与y轴交于E点.若EA=EC,求C点的横坐标.2021-2022学年湖北省武汉市硚口区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.利用轴对称图形的定义进行判断即可.【解答】解:“3”能找到这样的一条直线,使其沿一条直线折叠,直线两旁的部分能够互相重合,可以看作是轴对称图形,“2”、“4”、“5”不能找到这样的一条直线,使其沿一条直线折叠,直线两旁的部分能够互相重合,不可以看作是轴对称图形,故选:B.【点评】此题主要考查了轴对称图形的定义,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000014=1.4×10﹣7.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据分式值为零的条件是分子等于零且分母不等于零列式计算即可.【解答】解:由题意得:3x﹣6=0且x+1≠0,解得:x=2,故选:A.【点评】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.【分析】根据全等三角形的判定和性质即可得到结论.【解答】解:在△ACB与△DCE中,,∴△ACB≌△DCE(SAS),∴AB=CD,故选:B.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定和性质定理是解题的关键.5.【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.【解答】解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,过多边形的一个顶点的对角线的条数=边数﹣3.6.【分析】直接利用单项式乘单项式以及合并同类项法则、积的乘方运算法则、同底数幂的除法运算法则分别计算,进而得出答案.【解答】解:A.3a3•2a2=6a5,故此选项不合题意;B.a6÷a2=a4,故此选项不合题意;C.(﹣2a3)4=16a12,故此选项不合题意;D.2a+2a=2a+1,故此选项符合题意.故选:D.【点评】此题主要考查了单项式乘单项式以及合并同类项、积的乘方运算、同底数幂的除法运算,正确掌握相关运算法则是解题关键.7.【分析】根据分式的基本性质判断即可.【解答】解:A.∵c≠0,∴=,故A不符合题意;B.﹣=,故B不符合题意;C.∵x+3≠0,∴=,故C不符合题意;D.=,故D符合题意;故选:D.【点评】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.8.【分析】将各多项式分组,利用平方差公式计算即可.【解答】解:原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9,故选:A.【点评】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9.【分析】在AC上截取AF=AB,连接EF,由“SAS”可证△ABE≌△AFE,可得BE=EF,∠ABC=∠AFE,由外角的性质可得∠C=∠FEC,可得EF=CF=BE,可得AB+BE=AC,故②正确;在DC上截取DM=BD,连接AM,由线段的垂直平分线的性质可得AB=AM,由等腰三角形的性质和外角的性质可得∠C=∠MAC,可得AM=MC=AB,可得AB+BD =DC,故①正确,即可求解.【解答】解:如图,在AC上截取AF=AB,连接EF,∵AE平分∠BAC,∴∠BAE=∠CAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),∴BE=EF,∠ABC=∠AFE,∵∠ABC=2∠C,∴∠AFE=2∠C=∠C+∠FEC,∴∠C=∠FEC,∴EF=CF=BE,∴AC=AF+FC=AB+BE,故②正确,如图,在DC上截取DM=BD,连接AM,∵AD⊥BC,BD=DM,∴AB=AM,∴∠ABC=∠AMB,∵∠ABC=2∠C,∴∠AMB=2∠C=∠C+∠MAC,∴∠C=∠MAC,∴AM=MC=AB,∴AB+BD=AM+DM=CM+DM=DC,故①正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,添加恰当辅助线构造全等三角形是解题的关键.10.【分析】原式变形后,分解因式,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,原式=2x3﹣4x2﹣2x2+2x+1=2x(x2﹣2x)﹣2x2+2x+1=2x﹣2x2+2x+1=﹣2x2+4x+1=﹣2(x2﹣2x)+1=﹣2+1=﹣1.故选:A.【点评】此题考查了因式分解的应用,利用了整体代入的思想,熟练掌握因式分解的方法是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的是分式有意义的条件,即分式的分母不为0.12.【分析】分两种情况:4cm为腰长和底边长计算可求解.【解答】解:当4cm为腰长时,腰长为4cm,∵18﹣4﹣4=10,4+4<10,∴三角形不存在;当4cm为底边长时,腰长为=7cm,∵4+7>7,∴三角形存在.∴等腰三角形的腰长为7cm,故答案为:7.【点评】本题主要考查等腰三角形的性质,分类讨论是解题的关键.13.【分析】根据完全平方公式即可求出答案.【解答】解:x2+2(m﹣3)x+16=(x±4)2=x2±8x+16,∴2(m﹣3)=±8,∴m=7或﹣1.故答案为:7或﹣1.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.14.【分析】根据BO平分∠ABC,CO平分∠ACB,且MN∥BC,结合等腰三角形的判定可证得MO=MC,NO=NB,得到三角形AMN的周长=AB+AC,根据△ABC的周长即可求得BC.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵△ABC的周长为18,∴AB+AC+BC=18,∵△AMN的周长为12,∴AM+MN+AN=AM+MO+AN+ON=AM+MB+AN+NC=AB+AC=12,∴BC=18﹣(AB+AC)=18﹣12=6.故答案为:6.【点评】本题考查了等腰三角形的判定和性质以及平行线的性质,根据角平分线的定义即平行线的性质证得MO=MC,NO=NB是解决问题的关键.15.【分析】先用含a的式子表示出两块试验田的面积,再由高产量的减去低产量,从而可求解.【解答】解:由题意得:“丰收1号”的单位面积产量为:,“丰收2号”的单位面积产量为:,∴====,==,即高的单位面积产量比低的单位面积产量多,故答案为:.【点评】本题主要考查分式的混合运算,解答的关键是理解清楚题意列出正确的式子求解.16.【分析】①先找到BE+EF+CF的值最小隐藏的条件,EF的长受BE,CF长度影响,BE,CF最短时,EG,FG最短,在△EFG中,EF<EG+FG,所以EG,FG最短时,EF也最短,根据垂线段最短即可解决问题;②结合①的思想,即可解决问题.【解答】解:①如图过点B,C分别作BM⊥AC,CN⊥AB于点M,N,因为点E、F分别为AC和AB上的动点,当E与M重合时,即BE⊥AC时,BE最短,同理当F与N重合时,即CF⊥AB时,CF最短,此时,BE+EF+CF的值最小.∵∠A=α=40°,∴∠ABE=90°﹣40°=50°,故答案为:50;②∵BE⊥AC,CF⊥AB,∴∠AEB=∠BFC=90°,∴∠A+∠ABE=90°,∴∠ABE=90°﹣α,∴∠BGC=∠FBG+∠BFG=90°﹣α+90°=180°﹣α.故答案为:180°﹣α.【点评】本题考查了轴对称﹣最短路线问题,解决本题的关键是将BE+EF+CF的值最小的隐藏条件找出.三、解答题(共8题,共72分)17.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=4x,解得:x=1,检验:把x=1代入得:2x(x+3)≠0,∴分式方程的解为x=1;(2)去分母得:3x=2x﹣1+3x+3,解得:x=﹣1,检验:把x=﹣1代入得:3(x+1)=0,∴x=﹣1是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【分析】只需证明△ACB与△DBC全等即可.【解答】证明:∵AC⊥CB,DB⊥CB,∴△ACB与△DBC均为直角三角形,在Rt△ACB与Rt△DBC中,,∴Rt△ACB≌Rt△DBC(HL),∴∠A=∠D,【点评】本题考查全等全角三角形的判定与性质,是基础题.注意本题是对两个直角三角形全等的判定,熟悉“HL”定理是解答的关键.19.【分析】(1)先提取公因式,再根据平方差公式进行因式分解即可;(2)先提取公因式,再根据完全平方公式进行因式分解即可;(3)先计算多项式的乘法,再利用十字相乘法因式分解即可.【解答】解:(1)原式=y(x2﹣4)=y(x+2)(x﹣2);(2)原式=﹣2(x2﹣4xy+4y2)=﹣2(x﹣2y)2;(3)原式=x2+x﹣6﹣6x=x2﹣5x﹣6=(x﹣6)(x+1).【点评】此题考查的是因式分解,掌握因式分解的方法是解决此题关键.20.【分析】(1)先计算幂的乘方和积的乘方,再计算同底数幂的乘法,最后计算多项式除以单项式即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算即可.【解答】解:(1)原式=(6x2•x2﹣8x3)÷(﹣2x2)=(6x4﹣8x3)÷(﹣2x2)=﹣3x2+4x;(2)原式=(﹣)•=•=﹣3(m+3)=﹣3m﹣9,当m=﹣时,原式=﹣3×(﹣)﹣9=2﹣9=﹣7.【点评】本题主要考查整式的混合运算和分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.【分析】(1)根据等腰三角形的定义画出图形即可;(2)①根据等腰直角三角形的定义画出图形即可;②取格点T,连接CT交AB的延长线于点F,∠AFC即为所求;(3)取格点M,N,连接MN,交格线于点P,取AB的中点Q,作直线PQ即可.【解答】解:(1)如图1中,△ABC即为所求;(2)①如图2中,△ABE即为所求;②如图2中,∠AFC即为所求;(3)如图,直线PQ即为所求.【点评】本题考查作图﹣应用与设计作图,线段的垂直平分线的性质,等腰三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.【分析】(1)设B原料每千克的费用为x元,则A原料每千克的费用为1.5x元,利用数量=总价÷单价,结合用900元收购A原料比用900元收购B原料少100kg,即可得出关于x的分式方程,解之经检验后即可得出B原料的单价,再将其代入1.5x中即可求出A原料的单价;(2)①利用成本=原料费+其他成本,即可求出每盒产品的成本;②设该企业应将m盒产品分配给甲主播销售,则应将(18000﹣m)盒产品分配给乙主播销售,根据“甲主播销售量不低于乙主播销售量的一半,且不高于乙主播销售量的两倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设该企业每月总收益为w元,利用该企业每月的总收益=每盒的销售利润×销售数量﹣支付给甲主播的费用﹣支付给乙主播的费用,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设B原料每千克的费用为x元,则A原料每千克的费用为1.5x元,依题意得:﹣=100,解得:x=3,经检验,x=3是原方程的解,且符合题意,∴1.5x=1.5×3=4.5.答:A原料每千克的费用为4.5元,B原料每千克的费用为3元.(2)①4.5×2+3×4+9=9+12+9=30(元).答:每盒产品的成本为30元.②设该企业应将m盒产品分配给甲主播销售,则应将(18000﹣m)盒产品分配给乙主播销售,依题意得:,解得:6000≤m≤12000.设该企业每月总收益为w元,则w=(40﹣30)×18000﹣(0.5m+2000)﹣0.8(18000﹣m)=0.3m+163600,∵0.3>0,∴w随m的增大而增大,∴当m=12000时,w取得最大值,此时18000﹣m=18000﹣12000=6000.答:该企业应该将12000盒产品分配给甲主播销售,将6000盒产品分配给乙主播销售,才能使该企业的每月总收益最大.【点评】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用成本=原料费+其他成本,求出每盒产品的成本;②根据各数量之间的关系,找出关于m的一元一次不等式组.23.【分析】(1)①当n=1时,△ABC时等边三角形,得到AB=AC=BC,∠BAD=∠ACE=60°,然后结合AD=CE得证△BAD≌△ACE,进而得到BD=AE;②由△BAD≌△ACE得到∠BDA=∠AEC,然后结合∠AEC+∠EAC=120°得到∠BDA+∠EAC=120°,从而得到∠AFD=60°;③先由∠AFG=60°、∠AGF=90°得到∠FAG=30°,进而得到AF=2FG,再结合AF =2BF得到BF=FG,即可得到AF=BG,再结合△BAD≌△ACE得到∠ABD=∠CAE,进而得到∠CBG=∠BAF,最后结合AB=BC得证△ABF≌△BCG,从而得到BF=CG,进而得证FG=CG.(2)过点B作BP⊥AC于点P,过点A作AG⊥BC于点G,然后通过勾股定理求得BP、AG的长,再设CE=AD=m,用含有m的式子表示AE+BD的长,然后利用两点间的距离公式和轴对称的性质求得AE+BD的最小值,最后求得BE:EC的值.【解答】(1)证明:①当n=1时,AB=AC=BC,∴△ABC是等边三角形,∴∠C=∠BAD=60°,∵AD=CE,AC=BA,∴△BAD≌△ACE(SAS),∴AE=BD;②解:∵△BAD≌△ACE,∴∠ADB=∠CEA,∵∠CAE=∠CAE,∴△ADF∽△AEC,∴∠AFD=∠ACB=60°;③证明:∵∠AFD=60°,AG⊥BD,∴FG=AF,∵BF=AF,∴BG=BF+FG=AF,∵∠BAF+∠FAD=∠BAD=60°,∠CBG+∠ABG=∠CBA=60°,∠FAD=∠ABG,∴∠BAF=∠CBG,∵AB=BC,∴△AFB≌△BGC(SAS),∴GC=FB,∵FG=FB,∴GC=FG,∴GF=GC;(2)解:如图3,过点B作BP⊥AC于点P,过点A作AG⊥BC于点G,则∠AGC=∠BPC=∠BPA=90°,BG=CG,∵n=,∴AB=AC=BC,令AB=AC=3,BC=2,则BG=CG=1,设AP=x,则CP=AC﹣AP=3﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,即32﹣x2=22﹣(3﹣x)2,解得:x=,∴AP=,CP=3﹣=,∴BP==,AG==2,∵AD=CE,0≤CE≤2,∴点D始终在线段AP上,设CE=AD=m(0≤m≤2),则GE=|m﹣1|,DP=﹣m,∴AE=,BD=,∴AE+BD=,∴AE+BD的长为点(m,0)到点M(1,2)和点N(,)的距离之和,如图4,建立平面直角坐标系,作点N关于x轴对称的点N'(,﹣),连接MN',此时MN'=(AE+BD),最小值设直线MN'的解析式为y=kx+b,则,解得:,∴直线MN'的解析式为y=﹣x+,当y=0时,﹣x+=0,解得:x=,∴m=,即CE=,∴BE=2﹣CE=2﹣=,∴=.【点评】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、含30°角的直角三角形三边关系、轴对称的性质、勾股定理,解题的关键是熟练应用两点之间的距离公式建立平面直角坐标系结合轴对称的性质求得AE+BD的最小值.24.【分析】(1)①过C作CM⊥x轴于M,证△CBM≌BAO(AAS),得BM=AO=4,CM =BO=2,则OM=BM﹣OB=2,即可得出答案;②过C作CM⊥x轴于M,过D作DN⊥OA于N,同①得△CBM≌BAO(AAS),则BM=AO=4,CM=BO=|m|=﹣m,得OM=BM﹣BO=4+m,再求出D(,),则DN=ON,得△ODN是等腰直角三角形,即可得出结论;(2)过C作CG⊥AB于G,交y轴于P,CH⊥y轴于H,证△PCE≌△BAE(ASA),得CP=AB,再证△CHP≌△AOB(AAS),得CH=AO=4,即可得出答案.【解答】解:(1)①过C作CM⊥x轴于M,如图1所示:则∠BMC=90°,∵A点坐标为(0,4),B点坐标为(m,0),m=﹣2,∴OA=4,OB=2,∵AB⊥BC,∴∠ABC=90°,即∠ABO+∠CBM=90°,∵∠AOB=90°,∴∠ABO+∠BAO=90°,∴∠CBM=∠BAO,∵∠BAC=45°,∴△ABC是等腰直角三角形,∴AB=BC,∴△CBM≌BAO(AAS),∴BM=AO=4,CM=BO=2,∴OM=BM﹣OB=2,∴C点坐标为(2,﹣2);②过C作CM⊥x轴于M,过D作DN⊥OA于N,如图2所示:则∠BMC=∠DNO=90°,同①得:△CBM≌BAO(AAS),∴BM=AO=4,CM=BO=|m|=﹣m,∴OM=BM﹣BO=4+m,∴C点坐标为(4+m,m),∵A点坐标为(0,4),D为AC的中点,∴D的坐标为(,),即D(,),∴DN=ON,∴△ODN是等腰直角三角形,∴∠AOD=45°;(2)过C作CG⊥AB于G,交y轴于P,CH⊥y轴于H,如图3所示:则∠AGC=90°,∵∠BAC=45°,∴△AGC是等腰直角三角形,∴∠ACG=45°=∠BAC,∵EA=EC,∴∠EAC=∠ECA,∴∠ACG﹣∠ECA=∠BAC﹣∠EAC,即∠PCE=∠BAE,又∵∠CEP=∠AEB,∴△PCE≌△BAE(ASA),∴CP=AB,∵∠CHP=∠AGC,∴∠PCH+∠CPH=∠BAO+∠APG=90°,∠CPH=∠APG,∴∠PCH=∠BAO,∴△CHP≌△AOB(AAS),∴CH=AO=4,即C点的横坐标为4.【点评】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、坐标与图形性质、直角三角形的性质等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.。

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)

2020-2021学年湖北省武汉市江汉区八年级上学期期末考试数学试卷( 含答案)
考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
12.1.6×10-5
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
设∠BAD=∠BDA=x,∠E=∠CAE=y,
∴∠ABC=∠BAD+∠BDA=2x,∠ACB=∠E+∠CAE=2y,
∵∠ABC+∠ACB+∠BAC=180°,
∴2x+2y+50°=180°,
∴x+y=65°,
∴∠DAE=∠DAB+∠CAE+∠BAC=65°+50°=115°.
故答案为:115°.
【点评】
(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.
24.(1)先化简,再求值: ,其中a=2020;
(2)解方程: .
25.如图,所有的网格都是由边长为1的小正方形构成,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形, ABC为格点三角形.
(1)如图,图1,图2,图3都是6×6的正方形网格,点M,点N都是格点,请分别按要求在网格中作图:
解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,
∴能证明△ABC≌△EDC最直接的依据是ASA.
故选:C.
【点评】
本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷解析版

2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷解析版

2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)1.(3分)下列手机APP图案中,属于轴对称的是()A.B.C.D.2.(3分)若分式有意义,则x应满足的条件是()A.x≠0B.x≠﹣1C.x≠1D.x≥13.(3分)如图,在△ABC中,BD⊥AC交AC的延长线于点D,则AC边上的高是()A.CD B.AD C.BC D.BD4.(3分)下列计算正确的是()A.b3•b3=2b3B.(a5)2=a7C.x7÷x5=x2D.(﹣2a)2=﹣4a25.(3分)如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠ABC的度数,∠ABC的度数为()A.36°B.72°C.100°D.108°6.(3分)工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点C的射线OC便是∠AOB角平分线.在证明△MOC≌△NOC时运用的判定定理是()A.SSS B.SAS C.ASA D.AAS7.(3分)下列因式分解错误的是()A.2ax﹣a=a(2x﹣1)B.x2﹣2x+1=(x﹣1)2C.4ax2﹣a=a(2x﹣1)2D.ax2+2ax﹣3a=a(x﹣1)(x+3)8.(3分)如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩余阴影部分面积为()A.B.C.D.9.(3分)我们在过去的学习中已经发现了如下的运算规律:(1)15×15=1×2×100+25=225;(2)25×25=2×3×100+25=625;(3)35×35=3×4×100+25=1225;……按照这种规律,第n个式子可以表示为()A.n×n=×(+1)×100+25=n2B.n×n=×(+1)×100+25=n2C.(n+5)×(n+5)=n×(n+1)×100+25=n2+10n+25D.(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+2510.(3分)如图,四边形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=α,则∠BDC的度数为()A.2αB.45°+αC.90°﹣αD.180°﹣3α二、填空题:(共6小题,每小题3分,共18分)11.(3分)计算:2x2•3xy=.12.(3分)在平面直角坐标系内,点(﹣2,1)关于x轴对称的点的坐标是.13.(3分)用科学记数法表示:0.0012=.14.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为.15.(3分)在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线CP,点A关于直线CP的对称点为D,连接AD.若∠ACP=15°,则∠BAD的度数为.16.(3分)如图,在△ABC中,AB=AC,BD⊥AC于D,E为BD延长线上一点,∠E=∠C,∠BAC的平分线交BD于F.若=,则的值为.三、解答题:(共8小题,72分)17.(8分)解方程(1)=(2)﹣=118.(8分)如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC,△A'B'C'的对应边上的高.求证:AD=A'D'.19.(8分)因式分解(1)ax2﹣4a(2)(p﹣3)(p﹣1)+1.20.(8分)计算(1)(2)(﹣)÷21.(8分)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(l,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).22.(10分)某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面m2(用含x的式子表示);(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要名二级技工(直接写出结果).23.(10分)如图,在△ABC中,∠BAC=60°,D为AB上一点,连接CD.(1)如图1,若∠BCA=90°,CD⊥AB,则=(直接写出结果).(2)如图2,若BD=AC,E为CD的中点,AE与BC存在怎样的数量关系,判断并说明理由;(3)如图3,CD平分∠ACB,BF平分∠ABC,交CD于F.若BF=AC,求∠ACD的度数.24.(12分)在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接P A,PB,若P A=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)2018-2019学年湖北省武汉市黄陂区八年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)1.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:B.2.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义;故选:C.3.【解答】解:如图,∵在△ABC中,BD⊥AC交AC的延长线于点D,∴AC边上的高是BD.故选:D.4.【解答】解:b3•b3=b6,故选项A不合题意;(a5)2=a10,故选项B不合题意;x7÷x5=x2,正确,故选项C符合题意;(﹣2a)2=4a2,故选项D不合题意.故选:C.5.【解答】解:∵∠A=36°,∠ADB=∠ABD,∴∠ADB=∠ABD==72°,∴∠ABC=180°﹣72°=108°.故选:D.6.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.7.【解答】解:A、原式=a(2x﹣1),不符合题意;B、原式=(x﹣1)2,不符合题意;C、原式=a(4x2﹣1)=a(2x+1)(2x﹣1),符合题意;D、原式=a(x2+2x﹣3)=a(x﹣1)(x+3),不符合题意,故选:C.8.【解答】解:根据题意得:S阴影=()2π﹣()2π﹣()2π=.故选:C.9.【解答】解:由上面的计算可发现:个位数是5的两个两位数相乘,所得的积等于把十位数乘以比它大1的数扩大100倍后加上25.所以(10n+5)×(10n+5)=n×(n+l)×l00+25=100n2+100n+25.故选:D.10.【解答】解:作∠MBA=∠DBA,交CA延长线于M.如图所示:∵AB=AD,∠ABD=∠BAC=α,∴∠ABD=∠ADB=α,∠BAC=2α,∴∠CAD=180°﹣4α,∴∠BAM=180°﹣2α,∠BAD=180°﹣2α,∴∠BAM=∠BAD,在△BAM和△BAD中,,∴△BAM≌△BAD(ASA),∴∠M=∠ADB=α,BM=BD=BC,∴AB=AM,∠ACB=∠M=α,∴∠ABM=∠M=α,∵BC=BD,∴∠BCD=∠BDC,设∠ACD=x,则∠BDC=x+α,由八字形得:∠ACD+∠BDC=∠M+∠DBM,即x+(x+α)=α+α+α,∴x=α,∴∠BDC=2α;故选:A.二、填空题:(共6小题,每小题3分,共18分)11.【解答】解:2x2•3xy=2×3x2•x•y=6x3y.12.【解答】解:点(﹣2,1)关于x轴对称的点的坐标是(﹣2,﹣1).13.【解答】解:0.0012=1.2×10﹣3.故答案为:1.2×10﹣3.14.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,依题意,得:=.故答案为:=.15.【解答】解:如图1中,当射线CP在∠ACB内部时,∵A,D关于CP对称,∴∠ACP=∠DCP=15°,∴∠ACD=30°,∵CA=CD,∴∠CAD=∠ADC=(180°﹣30°)=75°,∵CA=CB,∠ACB=90°,∴∠CAB=45°,∴∠BAD=∠CAD﹣∠CAB=75°﹣45°=30°.如图2中,当射线CP在∠ACB外部时,同法可得∠CAD=75°,∠BAD=∠CAB+∠CAD=45°+75°=120°.故答案为30°或120°16.【解答】解:延长AF交BC于M,过F作FN⊥AB,由∠F AD+∠C=∠EAD+∠E=90°,∴∠F AD=∠EAD,∴DF=DE,设DE=4x,则DF=4x,BF=5x,∴==,∴=,∴==,∵AB=AC,∴=4.故答案为:4.三、解答题:(共8小题,72分)17.【解答】解:(1)去分母,得x﹣3=2x,解得x=﹣3,经检验x=﹣3是原方程的解;(2)去分母,得x(x+1)﹣3(x﹣1)=x2﹣1,解得x=2,经检验x=2是原方程的解.18.【解答】证明:依题意∠ADB=∠A'D'B'=90°,∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B',在△ABD和△A'D'B'中,∴△ABD≌△A'D'B'(AAS),∴AD=A'D'.19.【解答】解:(1)原式=a(x2﹣4)=a(x+2)(x﹣2);(2)原式=p2﹣4p+4=(p﹣2)2.20.【解答】解:(1)原式=4ab;(2)原式=•﹣•=﹣=.21.【解答】解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.22.【解答】解:(1)由题意得,每名二级技工一天粉刷墙面(x﹣3)m2;故答案为:(x﹣3)(2)依题意列方程:=;解得x=15,经检验x=15是原方程的解,即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;(3)设需要m名一级技工,需要n名二级技工,根据题意得,,解得:,答:至少需要5名二级技工,故答案为:5.23.【解答】解:(1)如图1中,设AD=x.∵CD⊥AB,∴∠ADC=90°,∵∠BAC=60°,∴∠ACD=30°,∴AC=2AD=2x,∵∠ACB=90°,∴∠B=30°,∴AB=2AC=4x,∴BD=AB﹣AD=3x,∴=,故答案为.(2)如图2中,结论:BC=2AE.理由:延长AE至F,使EF=AE,连接BF,CF,DF,∵AE=EF,∠AEC=∠DEF,DE=CE,∴△AEC≌△FED(SAS),∴DF=AC=BD,∠EAC=∠EFD,∴DF∥AC,∴∠BDF=∠BAC=60°,△BDF为等边三角形,∴∠DBF=∠BAC=60°,∵AB=BA,AC=BF,∴△ABF≌△BAC(SAS),∴AF=BC,∴BC=2AE.(3)如图3中,在AB上取点G,使AG=AC,连接CG.∵AG=AC,∠A=60°,∴△ACG为等边三角形,∴GC=AC=BF,∠AGC=60°,∴∠BFD=∠AGC=60°,∵∠CDG=∠BDF,∴△DGC≌△DFB(AAS),∴DB=DC,∴∠DBC=∠DCB=∠ACD,∴∠ACD==40°.24.【解答】解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作点C关于GN的对称点H,连接OH,NH,CH.则ON+CN的最小值即为OH的长.由(2)PB=PO,∠BPC=30°,∴∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵CH⊥GN,∴OC⊥CH,∴∠OCH=90°,∴∠OHC=∠ACH=30°,∴OH=2OC=2t,即ON+CN的最小值为2t.。

2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)

2019-2020学年武汉市汉阳区八年级上期中数学试卷(有答案)

.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A .B .C .D .2.(3分)下列四个图形中,线段BE 是△ABC 的高的是(的高的是( )A .B .C .D .3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( ) A .1,2,3 B .1,,3 C .3,4,8 D .4,5,6 4.(3分)一定能确定△ABC ≌△DEF 的条件是(的条件是( ) A .∠A=∠D ,AB=DE ,∠B=∠E B .∠A=∠E ,AB=EF ,∠B=∠D C .AB=DE ,BC=EF ,∠A=∠DD .∠A=∠D ,∠B=∠E ,∠C=∠F5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17 7.(3分)如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A .40°B .45°C .60°D .70°8.(3分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40,24,则AB 为(为( )A .8B .12C .16D .20 9.(3分)如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC +PB 最小,则点P 应该满足(应该满足( )A .PB=PCB .PA=PDC .∠BPC=90°D .∠APB=∠DPC10.(3分)在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是(的个数是( ) A .6B .7C .8D .9二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 . 12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 . 16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实:.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.24.(12分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.;个性质是①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.2019-2020学年湖北省武汉市汉阳区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是(中,属于轴对称图形的是( )A. B. C. D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)下列四个图形中,线段BE是△ABC的高的是(的高的是( )A. B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选D.3.(3分)下列长度的三条线段能组成三角形的是(分)下列长度的三条线段能组成三角形的是( )A .1,2,3 B.1,,3 C.3,4,8 D.4,5,6【解答】解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.故选D.4.(3分)一定能确定△ABC≌△DEF的条件是(的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【解答】解:A 、根据ASA 即可推出△ABC ≌△DEF ,故本选项正确;B 、根据∠A=∠E ,∠B=∠D ,AB=DE 才能推出△ABC ≌△DEF ,故本选项错误; C 、根据AB=DE ,BC=EF ,∠B=∠E 才能推出△ABC ≌△DEF ,故本选项错误;D 、根据AAA 不能推出△ABC ≌△DEF ,故本选项错误; 故选A .5.(3分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是(书本上完全一样的三角形,那么聪聪画图的依据是( )A .SSSB .SASC .ASAD .AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形. 故选:C .6.(3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(,则这个等腰三角形的周长为( ) A .11 B .16 C .17 D .16或17【解答】解:①6是腰长时,三角形的三边分别为6、6、5, 能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5, 能组成三角形, 周长=6+5+5=16.综上所述,三角形的周长为16或17. 故选D .7.(3分)如图,在△ABC 中,A B=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为(的度数为( )A.40° B.45° C.60° D.70°【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.8.(3分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若)为(△ABC与△EBC的周长分别是40,24,则AB为(A.8 B.12 C.16 D.20【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.9.(3分)如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,)应该满足(要使PC+PB最小,则点P应该满足(A.PB=PC B.PA=PD C.∠BPC=90° D.∠APB=∠DPC【解答】解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.10.(3分)在平面直角坐标系中,已知A(0,2),B(2,0),若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()的个数是(A.6 B.7 C.8 D.9【解答】解:如图所示:当AB=AC时,符合条件的点有3个;当BA=BC时,符合条件的点有3个;当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有7个.故选:B .二、填空题(每题3分,共18分)11.(3分)已知点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是的坐标是 (2,﹣1) . 【解答】解:点P 关于x 轴的对称点P 1的坐标是(2,1),则点P 的坐标是(2,﹣1), 故答案为:(2,﹣1).12.(3分)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3的度数是度数是 20° .【解答】解:由题意得:∠4=∠2=40°; 由三角形外角的性质得:∠4=∠1+∠3, ∴∠3=∠4﹣∠1=40°﹣20°20°=20°=20°, 故答案为:20°.13.(3分)如图,在△ABC 中,AB=AC ,AE ⊥AB 交BC 于点E ,∠BAC=120°,AE=3,则BC 的长是长是 9 .【解答】解:过点A 作AF ⊥BC 交BC 于F ,∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,BC=2BF , 在Rt △BAE 中, AB=AE•cot30°=3×=3,在Rt △AF B 中,BF BF=AB•cos30°=3=AB•cos30°=3×=, ∴BC=2BF=2×=9, 故答案为:9.14.(3分)如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数度数 15°或75° .【解答】解:解:(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD=AB ,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°, 底角为15°.故答案为:15°或75°.15.(3分)在△ABC 中,AB=2cm ,AC=4cm ,则BC 边上的中线AD 的取值范围是的取值范围是 1cm <AD <3cm .【解答】解:延长AD 到E ,使AD=DE ,连接BE , ∵AD 是△ABC 的中线, ∴BD=CD ,在△ADC 与△EDB 中, ∵,∴△ADC ≌△EDB , ∴EB=AC ,根据三角形的三边关系定理:4cm ﹣2cm <AE <4cm +2cm , ∴1cm <AD <3cm ,故答案为:1cm <AD <3cm .16.(3分)请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:点到三边距离的数学事实: 等边三角形内任意一点到三边的距离之和等于该等边三角形的高 .【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.三、解答题(共8道小题,共72分)17.(8分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形? 【解答】解:设这个多边形的边数为n ,∴(n ﹣2)•180•180°°=2×360°, 解得:n=6.故这个多边形是六边形.18.(8分)如图,点B 、E 、C 、F 在同一直线上,BE=CF ,AB=DE ,AC=DF . 求证:AB ∥DE .【解答】证明:∵BE=CF , ∴BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (SSS ), ∴∠B=∠DEF , ∴AB ∥DE .19.(8分)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F . (1)∠ABC=40°,∠A=60°,求∠BFD 的度数; (2)直接写出∠A 与∠BFD 的数量关系.【解答】解:(1)∵∠ABC=40°,∠A=60°, ∴∠ACB=180°﹣40°﹣60°60°=80°=80°, ∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=20°+40°40°=60°=60°.(2)∵∠B 、∠C 的平分线BE ,CD 相交于点F ,∴∠BFD=∠FBC +∠FCB=∠ABC +∠ACB=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A .20.(8分)如图,在平面直角坐标系中,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)在图中作出△ABC 关于直线m (直线m 上各点的横坐标都为﹣2)对称的图形△A 1B 1C 1;(2)线段BC 上有一点P (﹣,),直接写出点P 关于直线m 对称的点的坐标; (3)线段BC 上有一点M (a ,b ),直接写出点M 关于直线m 对称的点的坐标.【解答】解:(1)如图所示,(2)线段BC 上有一点P (﹣,),点P 关于直线m 对称的点的坐标是(﹣,), (3)线段BC 上有一点M (a ,b ),点M 关于直线m 对称的点的坐标是(﹣4﹣a ,b ).21.(8分)如图△ABC是等边三角形.(1)请按要求完成图形,分别作∠ABC,∠ACB的平分线,交点为O;再分别作OB,OC的垂直平分线分别交BC于点D,E;(2)在(1)的条件下,判断△ODE的形状,并证明你的结论.【解答】解:(1)如图,(2)△ODE为等边三角形.理由如下:∵△ABC是等边三角形.∴∠ABC=∠ACB=60°,∵OB平分∠ABC,OC平分∠AC B,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=30°,∵OB,OC的垂直平分线分别交BC于点D,E,∴DB=DO,EC=EO,∴∠ODB=∠DBO=30°,∠EOC=∠ECO=30°,∴∠ODE=∠ODB+∠DBO=60°,∠OED=∠EOC+∠ECO=60°,∴△ODE为等边三角形.22.(10分)如图,在△ABC中,∠ACB=90°,∠A=30°.(1)教材中有这样的结论:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.请结合图1,证明该结论;(2)若将图2分割成三个全等的三角形,请你画出图形,并简单描述辅助线的作法.【解答】解:(1)证法一:如答图所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=AB,即BC=AB.证法二:如答图所示,取AB的中点D,连接DC,有CD=AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=AB,即BC=AB.证法三:如答图所示,在AB 上取一点D ,使BD=BC , ∵∠B=60°,∴△BDC 为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°60°=30°=30°=30°==∠A .∴DC=DA ,即有BC=BD=DA=AB ,∴BC=AB .证法四:如图所示,作△ABC 的外接圆⊙D ,∠C=90°,AB 为⊙O 的直径, 连DC 有DB=DC ,∠BDC=2∠A=2×30°=60°, ∴△DBC 为等边三角形,∴BC=DB=DA=AB ,即BC=AB .(2)如图2,作∠ACB 平分线交AC 于点D ,作DE ⊥AB 于点E , 则△ADE ≌△BDE ≌△BDC由作图知∠DBC=∠DBE=∠A=30°,∠AED=∠BED=∠C=90°, ∴AD=BD ,∴AE=BE=AB , 又∵BC=AB , ∴AE=BE=BC ,在△ADE 、△BDE 、△BDC 中,∵,∴△ADE≌△BDE≌△BDC.23.(10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时, ∵2x +x=30°+30°, ∴x=20°; ②当AD=DE 时, ∵30°+30°+2x +x=180°, ∴x=40°;综上所述,∠C 为20°或40°的角.24.(12分)(1)问题解决:如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°﹣α,BD 平分∠ABC .①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD ,这个性质是,这个性质是 角平分线上的点到角的两边距离相等点到角的两边距离相等 ; ②在图2中,求证AD=CD ;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证BD +AD=BC .【解答】解:(1)①根据角平分线的性质定理可知AD=CD . 所以这个性质是角平分线上的点到角的两边距离相等. 故答案为角平分线上的点到角的两边距离相等. ②如图2中,作DE ⊥BA 于E ,DF ⊥BC 于F .∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC时截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.。

2019-2020学年八年级数学上学期《第12章全等三角形》测试卷及答案解析

2019-2020学年八年级数学上学期《第12章全等三角形》测试卷及答案解析
D、全等图形的周长、面积相等,故本选项正确;
故选:D.
【点评】本题考查的是全等形的概念:能够完全重合的两个图形叫做全等形.所谓完全重合是指形状相同,大小相等.熟记定义是解题的关键.同时考查了全等图形的性质:全等图形的周长、面积相等.
3.如图,若△ABC≌△CDA,则下列结论错误的是( )
A.∠2=∠1B.AC=CAC.∠B=∠DD.BC=DC
【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
2.下列说法中,正确的是( )
A.全等图形是形状相同的两个图形
B.全等三角形是指面积相同的两个三角形
C.等边三角形都是全等三角形
D.全等图形的周长、面积都相等
(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
【分析】根据全等形是ห้องสมุดไป่ตู้够完全重合的两个图形进行分析判断.
【解答】解:A、两个图形能够完全重合,故本选项正确.
18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.
19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.
20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(上)月考数学试卷(10月份) 含解析

湖北省武汉市江岸区七一华源中学2019-2020学年八年级(上)月考数学试卷(10月份) 含解析

2019-2020学年八年级(上)月考数学试卷一.选择题(共10小题)1.下列长度的三条线段,其中能组成三角形的是()A.4,5,6 B.3,3,6 C.1,3,5 D.2,4,82.六边形的内角和等于()A.180°B.360°C.540°D.720°3.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.5.如图所示,AB=AC,AD=AE,图中全等三角形有()对.A.1对B.2对C.3对D.4对6.如图,已知AB∥FE且AB=FE,要证明△ABC≌△EFD,需补充条件()A.BC=FD B.AD=CE C.CD=DO D.AE=EA7.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是BC的中点,则BE+CF与EF的大小关系是()A.BE+CF>EF B.BE+CF=EF C.BE+CF<EF D.无法确定8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.6 C.8 D.109.将点P(2,3)向右平移3个单位长至点Q,点Q沿y轴折至点M,则()A.M(﹣5,﹣3)B.M(5,3)C.M(0,3)D.M(﹣5,3)10.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④二.填空题(共6小题)11.五边形的对角线一共有条.12.若等腰三角形两边长分别为3和5,则它的周长是.13.一个汽车牌在水中的倒影为,则该车牌照号码.14.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.15.如图,∠ACB=90°,AC=BC,点C(2,4)、A(﹣4,0),则点B的坐标是.16.如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF 折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是.三.解答题(共8小题)17.如图,AB=AC,AD=AE.求证:∠B=∠C.18.在△ABC中,∠B=∠A+20°,∠C=30,求△ABC各内角的度数.19.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E,AD=25m,DE=17m.求BE 的长.20.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).(2)直接写出A′,B′,C'三点的坐标:A' ,B' ,C' ;(3)△ABC的面积为.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PO的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M.求证:BN=CM.22.已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC 的延长线于F,交AC于H.(1)求证:AH+BD=AB;(2)求证:PF=PA.23.如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC(1)求证:AB=AC;(2)若AB=3,AE=5,求的值;(3)若=,=m,则=.24.(1)已知:点P(a,b),P点坐标满足+|3a﹣2b﹣4|=0将45°角的三角板,直角顶点放在P处,两边与坐标轴交于A、B两点,如图1,求a、b的值.(2)将三角板绕P点,顺时针旋转,两边与x轴交于B点,与y轴交于A点,求|OA﹣OB|的值.(3)如图3,若Q是线段AB上一动点,C为AQ中点,PR⊥PQ且PR=PQ,连BR,请同学们判断线段BR与PC之间的关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.下列长度的三条线段,其中能组成三角形的是()A.4,5,6 B.3,3,6 C.1,3,5 D.2,4,8【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、4+5>6,能够组成三角形,符合题意B、3+3=6,不能够组成三角形,不符合题意;C、1+3<5,不能够组成三角形,不符合题意;D、2+4<8,不能组成三角形,不符合题意;故选:A.2.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.【解答】解:六边形的内角和是(6﹣2)×180°=720度.故选:D.3.△ABC中,如果∠A+∠B=∠C,那么△ABC形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,∴△ABC是直角三角形.故选:B.4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.5.如图所示,AB=AC,AD=AE,图中全等三角形有()对.A.1对B.2对C.3对D.4对【分析】首选根据SAS证明△ABD≌△ACE,进而得到∠B=∠C,再证明EB=DC,再根据AAS证明△EBF≌△DCF.【解答】解:∵在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C,∵AB=AC,AD=AE,∴AB﹣AE=AC﹣AD,即EB=DC,在△EBF和△DCF中,,∴△EBF≌△DCF(AAS),故选:B.6.如图,已知AB∥FE且AB=FE,要证明△ABC≌△EFD,需补充条件()A.BC=FD B.AD=CE C.CD=DO D.AE=EA【分析】根据全等三角形的判定解决问题即可.【解答】解:∵AB∥EF,∴∠A=∠E,∵AB=EF,∴添加AD=CE,可得AC=DE,∴△ABC≌△EFD(SAS),故选:B.7.如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是BC的中点,则BE+CF与EF的大小关系是()A.BE+CF>EF B.BE+CF=EF C.BE+CF<EF D.无法确定【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】解:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,在△CFP中,CP+CF=BE+CF>FP=EF.故选:A.8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.6 C.8 D.10【分析】显然,关键是求CF的长.根据两次折叠后的图形中△ABF∽△ECF得比例线段求解.【解答】解:由图可知经过两次折叠后(最右边的图形中),AB=AD﹣BD=AD﹣(10﹣AD)=2,BD=EC=10﹣AD=4.∵AD∥EC,∴△AFB∽△EFC.∴.∵AB=2,EC=4,∴FC=2BF.∵BC=BF+CF=6,∴CF=4.S△EFC=EC×CF÷2=8.故选:C.9.将点P(2,3)向右平移3个单位长至点Q,点Q沿y轴折至点M,则()A.M(﹣5,﹣3)B.M(5,3)C.M(0,3)D.M(﹣5,3)【分析】根据点P(2,3)向右平移3个单位长可得点Q坐标,再根据关于y轴对称的点横坐标互为相反数,纵坐标不变即可得点M坐标.【解答】解:∵点P(2,3)向右平移3个单位长至点Q,∴点Q坐标为(5,3),∵点Q沿y轴折至点M,∴点M坐标为(﹣5,3).故选:D.10.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.二.填空题(共6小题)11.五边形的对角线一共有 5 条.【分析】利用n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n ﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n﹣3)(n≥3,且n为整数)计算.【解答】解:五边形的对角线共有=5;故答案为:512.若等腰三角形两边长分别为3和5,则它的周长是11或13 .【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.13.一个汽车牌在水中的倒影为,则该车牌照号码M17936 .【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【解答】解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣M 1 7 9 3 6∴该车的牌照号码是M17936.故答案为:M17936.14.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是3<AB<13 .【分析】作出图形,延长AD至E,使DE=AD,然后利用“边角边”证明△ABD和△ECD 全等,根据全等三角形对应边相等可得AB=CE,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE的取值范围,即为AB的取值范围.【解答】解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=4,∴AE=4+4=8,∵8+5=13,8﹣5=3,∴3<CE<13,即3<AB<13.故答案为:3<AB<13.15.如图,∠ACB=90°,AC=BC,点C(2,4)、A(﹣4,0),则点B的坐标是(6,﹣2).【分析】如图,过点C作CF⊥AO,过点B作BE⊥CF,通过证明△ACF≌△CBE,可得BE =CF=4,CE=AF=6,即可求解.【解答】解:如图,过点C作CF⊥AO,过点B作BE⊥CF,∵点C(2,4)、A(﹣4,0),∴CF=4,OF=2,AO=4,AF=6,∵∠ACB=90°,∴∠ACF+∠BCF=90°,且∠ACF+∠CAF=90°,∴∠BCF=∠CAF,且AC=BC,∠AFC=∠CEB=90°,∴△ACF≌△CBE(AAS)∴BE=CF=4,CE=AF=6,∴EF=2,∴点B(6,﹣2),故答案为:(6,﹣2).16.如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF 折叠后与点O重合.若∠CEF=50°,则∠AOF的度数是105°.【分析】由折叠的性质可得OE=CE,∠CEF=∠OEF=50°,OF=FC,可求∠OCE=∠COE=40°,由等腰三角形的性质和线段垂直平分线的性质可求OAB=∠OBA=∠OAC=∠OCA =25°,由三角形内角和定理可求∠AOC=130°,即可求∠AOF的度数.【解答】解:如图,连接OB,∵点C与点O恰好重合,∴OE=CE,∠CEF=∠OEF=50°,OF=FC,∴∠OCE=∠COE=40°∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∠OAB=∠OAC,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴AO=BO=CO,∴∠OBC=∠OCB=40°,∠OAB=∠OBA=∠OAC=∠OCA,∵∠OAB+∠OAC+∠ABO+∠ACO+∠OBC+∠OCB=180°∴∠OAB=∠OBA=∠OAC=∠OCA=25°,∵OF=FC∴∠FOC=∠ACO=25°在△AOC中,∠AOC=180°﹣∠OAC﹣∠OCA=130°∴∠AOF=∠AOC﹣∠FOC=130°﹣25°=105°故答案为:105°三.解答题(共8小题)17.如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】欲证明∠B=∠C,只要证明△AEB≌△ADC.【解答】证明:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS)∴∠B=∠C.18.在△ABC中,∠B=∠A+20°,∠C=30,求△ABC各内角的度数.【分析】利用三角形的内角和定理构建方程组即可解决问题.【解答】解:由题意:,∴.19.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CE于E,AD=25m,DE=17m.求BE 的长.【分析】先证明△ACD≌△CBE,再求出EC的长,解决问题.【解答】解:∵BE⊥CE于E,AD⊥CE于D,∴∠E=∠ADC=90°,∵∠BCE+∠ACE=∠DAC+∠ACE=90°,∴∠BCE=∠DAC,∵AC=BC,∴△ACD≌△CBE(AAS)∴CE=AD=25m,BE=CD∴BE=CE﹣DE=25﹣17=8(m).20.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法).(2)直接写出A′,B′,C'三点的坐标:A' (2,3),B' (3,1),C' (﹣1,﹣2);(3)△ABC的面积为 5.5 .【分析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的△A'B'C';(2)依据A',B',C'的位置,即可得到其坐标;(3)依据割补法进行计算,即可得到△ABC的面积.【解答】解:(1)如图所示,△A'B'C'即为所求;(2)由题可得,A'(2,3),B'(3,1),C'(﹣1,﹣2);故答案为:(2,3),(3,1),(﹣1,﹣2);(3)△ABC的面积为:4×5﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为:5.5.21.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PO的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M.求证:BN=CM.【分析】证明Rt△PNB≌Rt△PMC(HL)即可解决问题.【解答】证明:∵PA平分∠BAC,PM⊥AC,PN⊥AB,∴PM=PN,∠N=∠PMC=90°,∵PQ垂直平分线段BC,∴PB=PC,∴Rt△PNB≌Rt△PMC(HL),∴BN=MC.22.已知R△ABDC中,∠C=90°,AD、BE是角平分线,它们相交于P,PF⊥AD于P交BC 的延长线于F,交AC于H.(1)求证:AH+BD=AB;(2)求证:PF=PA.【分析】(1)首先计算出∠APB=135°,进而得到∠BPD=45°,然后再计算出∠FPB=135°,然后证明△ABP≌△FBP,得∠F=∠CAD,然后证明△APH≌△FPD,进而得到AH =FD,再利用等量代换可得结论.(2)由△ABP≌△FBP可得PA=PF.【解答】(1)证明:∵∠ACB=90°,∴∠CAB+∠CBA=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠CAB+∠CBA)=45°,∴∠APB=135°,∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠F,∵∠BAP=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.(2)证明:由(1)可知△ABP≌△FBP,∴PA=PF,23.如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC(1)求证:AB=AC;(2)若AB=3,AE=5,求的值;(3)若=,=m,则=.【分析】(1)由∠PDB=∠PDC,根据邻补角的定义得到∠ADB=∠ADC,推出△ABD≌△ACD,由全等三角形的性质即可得到结论;(2)先证明AP为∠BAE的平分线,然后,利用面积法可得到===;(3)先求得的值,然后再依据条件求得=,设BP=3,PE=4,则EF=3m﹣4,PF=3m,从而可求得问题答案.【解答】证明:(1)∵∠PDB=∠PDC∴∠ADB=∠ADC在△ADB和△ADC中,∴△ADB≌△ADC.∴AB=AC(2)由△ADB≌△ADC可知,∠BAP=∠EAP,即AP平分∠BAE∴P点到AB、AE的距离相等∴===.(3)∵=,且AB=AC∴=.∴=.∵=m,且BD=CD∴=∴=.设BP=3,PE=4,则EF=3m﹣4,PF=3m,∴=.故答案为:.24.(1)已知:点P(a,b),P点坐标满足+|3a﹣2b﹣4|=0将45°角的三角板,直角顶点放在P处,两边与坐标轴交于A、B两点,如图1,求a、b的值.(2)将三角板绕P点,顺时针旋转,两边与x轴交于B点,与y轴交于A点,求|OA﹣OB|的值.(3)如图3,若Q是线段AB上一动点,C为AQ中点,PR⊥PQ且PR=PQ,连BR,请同学们判断线段BR与PC之间的关系,并加以证明.【分析】(1)利用非负数的性质解决问题即可.(2)如图2中,作PE⊥OB于E,PF⊥OA于F.证明△AFP≌△BEP(ASA),推出AF=BE 即可解决问题.(3)结论:BR=2PC,PC⊥BR.如图3中,延长PC到G,使得CG=PC,连接AG,GQ,设PG交BR于J.证明△GAP≌△RPB(SAS)即可解决问题.【解答】解:(1)∵+|3a﹣2b﹣4|=0,∴,解得::;(2)如图2中,作PE⊥OB于E,PF⊥OA于F.∵P(4,4),∴PE=PF=4,四边形OEPF是正方形,∴∠EPF=∠QPB=90°,OF=OE=PE=PF=4,∴∠APF=∠BPE,在△AFP和△BEP中,,∴△AFP≌△BEP(ASA),∴AF=BE,∴|AO﹣OB=|OF+AF﹣(BE﹣OE)|=OF+OE=8.(3)结论:BR=2PC,PC⊥BR.理由如下:如图3中,延长PC到G,使得CG=PC,连接AG,GQ,设PG交BR于J.∵AC=CQ,PC=CG,∴四边形AGQP是平行四边形,∴AG=PQ=PR,AG∥PQ,∴∠GAP+∠APQ=180°,∵∠APB=∠RPQ=90°,∴∠APR+∠APQ+∠APQ+∠BPQ=180°,∴∠RPB+∠APQ=180°,∴∠GAP=∠BPQ,在△GAP和△RPB中,,∴△GAP≌△RPB(SAS),∴PG=BR,∠APG=∠PBR,∵∠APG+∠JPB=90°,∴∠JPB+∠PBR=90°,∴∠PJB=90°,∴PC⊥BR,BR=2PC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市2019-2020学年八年级上学期期末数学试题A卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图所示,直线,点B.C分别在直线n和m上,,边BC与直线n所夹的角为,则的度数为().
A.B.C.D.
2 . 以下关于直线的说法正确的是()
A.直线与x轴的交点的坐标为(0,-4)
B.坐标为(3,3)的点不在直线上
C.直线不经过第四象限
D.函数的值随x的增大而减小
3 . 下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()
A.3、4、5B.6、8、10C.5、12、13D.5、5、7
4 . 工程队进行河道清淤时,清理长度y(米)与清理时间x(时)之间关系的图象如图所示,下列说法不正确的是()
A.该工程队共清理了6小时B.河道总长为50米
C.该工程队用2小时清理了30米D.该工程队清理了30米之后加快了速度
5 . 下列说法错误的有()
①1的平方根是1;
②1的立方根是1;
③-1的立方根是-1;
④27的立方根是±3;
⑤的立方根是+4;
⑥(-1)2的立方根是-1.
A.3个B.4个C.5个D.6个
6 . 用一副三角尺画角,不能画出的角的度数()
A.15ºB.75ºC.145ºD.165º
7 . 若﹣2amb4与5an+2b2m+n可以合并成一项,则m-n的值是()
A.2B.0C.-1D.1
8 . 某同学的座位号为(2,4)那么该同学的位置是()
A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定
9 . 下列说法正确的是()
A.商家卖鞋,最关心的是鞋码的中位数
B.365人中必有两人阳历生日相同
C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法
D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别为S甲2=5,S乙2=12,说明乙的成绩较为稳定
10 . 如图,平面直角坐标系上,A,B两点对应的坐标为(0,3),(0,-3),C为x正半轴上一点,AC=BC=4,则C的坐标为()
A.(5,0)B.(2.5,0)C.(,0)D.(3.5,0)
二、填空题
11 . 某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为______________.
12 . 已知△ABC的内角满足=__________度.
13 . 一个立方体的体积是216 cm3,则这个立方体的棱长是__________cm.
14 . 如图,等腰△ABC中,AB=AC,∠A =54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是
_______°.
三、解答题
15 . 计算
(1)
(2)解方程组
16 . (1).如图①,已知AB∥CD,求证:∠A+∠C=∠E
(2)直接写出当点E的位置分别如图②、图③、图④的情形时∠A、∠C、∠AEC之间的关系.
②中∠C、∠A、∠AEC之间的关系为;
③中∠C、∠A、∠AEC之间的关系为;
④中∠C、∠A、∠AEC之间的关系为;
(3)在(2)中的3中情形中任选一种进行证明.
17 . 商场对每个营业员在当月某种商品销售件数统计如下:
解答下列问题
(1)设营业员的月销售件数为x(单位:件),商场规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.试求出优秀营业员人数所占百分比;
(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数;
(3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励.如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述其理由.
18 . 为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.
(1)求A,B两种型号的污水处理设备的单价各是多少?
(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.
19 . 已知是a+b+36的算术平方根,B=a-2b是27的立方根,求:A+B的平方根.
20 . 甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式.
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).
21 . 如图,在直角坐标系中,点A(-2,0),B(4,0),现同时将点A、B分别向上平移4个单位,再向右平移2个单位,得到点A、B的对应点C、D,连接AC,CD、B
A.
(1)直接写出点C、D的坐标,求四边形ABDC的面积;
(2)动点P从点C出发,以每秒1个单位的速度,沿射线CO运动.设点P运动时间为t秒.连结PA,设三角形AOP的面积为S ,求S与t之间的关系式;
(3)如图,在(2)的条件下,在线段BO上取一点E,使2BE=OB,连接PB、CE相交于点F,当三角形AOP的面积是四边形ABDC的时,求点F的坐标.
22 . 如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=
MN.
23 . 如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线为什么和离开潜望镜的光线m是平行的?
理由:
24 . 计算:
(1)×.
(2).
25 . 在4×4的方格纸中,△ABC的三个顶点都在格点上.
(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);
(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.。

相关文档
最新文档