数学八年级上册第11章三角形全章

合集下载

新人教版八年级数学上册第11章全等三角形精品课件ppt

新人教版八年级数学上册第11章全等三角形精品课件ppt

证明:在△ABC和△DEC中,
A
B
CA CD
1
2
1 C
2
CB CE
E
D
∴△ABC≌△DEC(SAS). ∴AB=DE.
从例2可以看出:因为全等三角形的对应边相等,对应角相等,所 以,证明分别属于两个三角形的线段相等或者角相等的问题,常 常通过证明这两个三角形全等来解决.
Copyright 2004-2009 版权所有 盗版必究
Copyright 2004-2009 版权所有 盗版必究
2.提问:由刚才活动得出的结论,满足什么条件的两个 三角形全等? 3.将两边和它们的夹角的数据改换成另一组,再与同 学一起按新数据画三角形.通过对所画三角形的比较, 你能得出什么结论?
Copyright 2004-2009 版权所有 盗版必究
EBCDA12CA′B′DC′EBA
(3).连接B′C′.
E
C
C′
5.总结定理:如果两个三角形的两
边和它们的夹角对应相等,那么这
A
B A′
B′ D
两个三角形全等.这个定理可以简写为“边角边”或“SAS”.
6.注意:有上述活动,我们可以得出“边边角”无法判定两个三
角形全等.
Copyright 2004-2009 版权所有 盗版必究
教学重难点
教学重点:三角形全等的判定定理二. 教学难点:利用三角形全等的判定定理二解题.
Copyright 2004-2009 版权所有 盗版必究
教学过程设计
活动一.动手探索,归纳结论. 1.探究3.学生分组活动:画一个三角形,使它的两条边长分别 是1.5cm,2.5cm,其中一个角是30°. 画好后同桌两人讨论:两个三角形的两条边和其中一边的对 角对应相等时,这两个三角形全等吗? 有的组说全等,有的组说不全等,让各组派代表说说做法,比 较有什么不同,老师总结,有三种做法: (1)两条边长分别是1.5cm,2.5cm,并且长为1.5cm的这条边所 对应的角是 30°,这种做法得出的结论是:不全等. (2)两条边长分别是1.5cm,2.5cm,并且长为2.5cm的这条边所 对应的角是30°,这种做法得出的结论也是:不全等. (3)两条边长分别是1.5cm,2.5cm,这两条边的夹角为30°,这 样做出的两个三角形全等.

人教版八年级上册数学 第11章 三角形 全章重点习题练习课件

人教版八年级上册数学 第11章 三角形 全章重点习题练习课件

7.【2019•金华】若长度分别为a,3,5的三条线段能组 成一个三角形,则a的值可以是( C ) A.1 B.2 C.3 D.8
8.【2019•自贡】已知三角形的两边长分别为1和4,第三 边长为整数,则该三角形的周长为( C ) A.7 B.8 C.9 D.10
【解析】设第三边长为x,根据三角形的三边关系,得 4-1<x<4+1,即3<x<5.因为x为整数,所以x的值 为4.所以三角形的周长为1+4+4=9.
(3)你能说明上述结论为什么成立吗? 解:延长BP交AC于点D. 在△ABD中,AB+AD>BP+PD①, 在△PDC中,PD+DC>PC②. ①+②,得AB+AD+PD+DC>BP+PD+PC, 即AB+AC>PB+PC.
15.小明和小红在一本数学资料书上看到这样一道竞 赛题:“已知△ABC的三边长分别为a,b,c,且 |b+c-2a|+(b+c-5)2=0,求b的取值范围.”
②若 n+2<3n<n+8,则
n+2<3n, 3n<n+8, n+2+3n>n+8,
n>1, 解得n<4,即 2<n<4,
n>2,
∴正整数 n 有 1 个,即 3;
③若
3n

n

2

n

8


3n≤n+2, 3n+n+2>n+8,


nn≤ >12, ,不等式组无解;
综上所述,满足条件的 n 的值有 7 个.故选 D.
(2)在能做成三角形支架的情况下,选择哪一种规格的木 棒最省钱? 选择规格为3 m的木棒最省钱.
14.如图,P是△ABC内部的一点. (1)度量AB,AC,PB,PC的长,根据度量结果比较 AB+AC与PB+PC的大小. 解:度量结果略.AB+AC>PB+PC. (2)改变点P的位置,上述结论还成立吗? 成立.

人教版八年级上册数学第11章《三角形》(全)共9课时

人教版八年级上册数学第11章《三角形》(全)共9课时

C
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
△ABC 记法:三角形ABC用符号表示________.
பைடு நூலகம்
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
c, a , b 示为________.
3.三角形三边有怎样的不等关系? 通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1:判断下列长度的三条线段能否拼成三角形?为什么? (1)3cm、8cm、4cm; (2)5cm、6cm、11cm; (3)5cm、6cm、10cm.
3.如图,在△ACE中,∠CEA的对边是 AC A

B
C
D
E
F
19cm 4.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的周长为 __________.
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm;
(3)能,因为5cm+6cm>10cm.
归纳
判断三条线段是否可以组成三角形,只需说明两条较短线段之和大于第
三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4的木棒能和它们拼成三角形吗? 长度为11的木棒呢?若不能拼成,则第三条边应在什么范围呢?
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
5个,它们分别是△ABE,△ABC, △BEC,△BCD,△ECD. (2)以AB为边的三角形有哪些? △ABC、△ABE.

人教版数学八年级上第11章三角形全章测试含答案

人教版数学八年级上第11章三角形全章测试含答案

第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)E DA CB二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是 _______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 .18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。

2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题

2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题

数学:第11章全等三角形全章检测题(人教新课标八年级上)一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5.所对的角的关系是( )A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所示,BE ⊥AC 于点D ,且AD =CD ,A.25° B.27° C.30°A D A CB O DC B AA B C E F A BC D F EO 8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则( )A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题(每小题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).12.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB .13.如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .DOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.17.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.21.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′ D C E量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?A D E CB F G G D F AC B E GD FA CB E F E DC B AG参考答案:一、选择题1.A2.D3.C 提示:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和面积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E .∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C二、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟一三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt △BEC 中,A EBC ACD E CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩公共角∴△OAD ≌△OBE(ASA),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE . A G F C B D E 图1 图2。

数学八年级上册三角形全章课件

数学八年级上册三角形全章课件

从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线, 垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。
A
高与垂线不同,高是
线段,垂线是直线。
B
C
D
从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线, 垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。
A
B
D CB
(2)如图(2),AD,BE,CF是△ABC的三条角平分线,则 ∠ 1 _ _ _ _ _ ,∠ 3 1 _ _ _ _ _ ,∠ A C B 2 _ _ _ _ _ . 2
阶段小结
1、三角形的高、中线、角平分线的概念和画法。 从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线,
垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。 连结△ ABC 的顶点A 和它的对边BC 的中点D,所得线段AD
正三角形
正方形
正五边形
正六边形
各个角都相等,各条边都相等的多边形叫做正多边形。
课堂练习
在书21页画一画
课堂练习
2.四边形的一条对角线将四边形分成几个三角形?从五 边形的一个顶点出发,可以画出几条对角线?它们 将五边形分成几个三角形?
阶段小结
1.多边形的相关概念
在平面内,由不在同一条直线上的一些线段首尾顺次相接组成 的封闭图形叫做多边形。
按照三个内角的大小分类
锐角三角形 三角形直角三角形
钝角三角形
三边都相等的三角形叫做等边三角形 有两条边相等的三角形叫做等腰三角形
A
顶角
A


B
CB
底角
C
B
底边
底角
A C

(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (5)

(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (5)
∵ ∠ACD是△ABC的一个外角.
∴ ∠ACD= ∠A+ ∠B.
B
C
D
巩固练习
1.说出下列图形中∠1和∠2的度数:
A
80 °
60 °
50 °
1
B
(1)
2
C
1
D
∠1=40 °, ∠2=140 °
A
2
32 °(
C
B
(2)
∠1=18 °, ∠2=130 °
探究新知
素养考点 1
利用三角形外角的性质求角的度数
从A前进到C处,然后再折回到B处截住懒羊羊返回羊村的去路,红
太狼则直接在A处拦截懒羊羊,已来自∠BAC=40° , ∠ABC=70°.灰
太狼从C处要转多少度角才能直达B处?
D
C


●70 °●
B
O
40 °

A
探究新知
利用“三角形的内角和为180°”来求∠BCD,你会吗?
D
C


●70 °●
B
O
40 °
三角形的外角
A
C
相邻的内角
D
∠BCD与∠ACB互补.
探究新知
如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,
∠B)有什么关系?
B
不相邻的内角
你能用作平行线的
方法证明此结论吗?
三角形的外角
A
C
D
相邻的内角
∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°,
∴∠A+∠B=∠BCD.
探究新知
人教版 数学 八年级 上册
11.2 与三角形有关的角

人教版八年级上册数学第十一章三角形全章课件

人教版八年级上册数学第十一章三角形全章课件

B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4+2x=18 解得x=7 ②如果长为4 ㎝的边为腰,设底边长为x ㎝,则
“有一边的长为4 ㎝”是什么意思?
2× 4+x=18
解得x=10
因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4
㎝的等腰三角形。
由以上讨论可知,可以围成底边长是4 ㎝的等腰三角形。
课堂练习 1.图中有几个三角形?用符号表示这些三角形。
解得x=3.6
x+2x+2x=18
为x ㎝,则腰长是 多少?
所以,三边长分别为3.6 ㎝, 7.2 ㎝, 7.2 ㎝。
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?
.
(2)①如果长为4 ㎝的边为底边,设腰长为x ㎝,则
(2)如图(2),AD,BE,CF是△ABC的三条角平分线,则 ∠ 1 _ _ _ _ _ ,∠ 3 1 _ _ _ _ _ ,∠ A C B 2 _ _ _ _ _ . 2
.
阶段小结
1、三角形的高、中线、角平分线的概念和画法。 从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线,
三角形的三条中线的交点、三条角平分线的交点在三角形 的内部。
锐三角形的三条高的交点在三角形的内部,直角三角形三 条高的交点在直角顶点,钝角三角形的三条高的交点在三 角形的外部。
工程建筑中经常采用三角形的结构,如屋 顶钢架,其中的道理是什么?
盖房子时,在窗框未安装之前, 木工师傅常常先在窗框上斜钉 一根木条,为什么要这样做呢?
垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。 连结△ ABC 的顶点A 和它的对边BC 的中点D,所得线段AD
叫做△ ABC 的边BC 上的中线。 画∠ A 的平分线AD ,交∠ A 所对的边BC 于点D,所得线段
AD 叫做△ ABC的角平分线。
2、三角形的三条高、三条中线、三条角平分线及交点的位 置规律。
三边都不相 等的三角形
等腰三角形
等边三 角形
.
探究
任意画一个△ ABC,假设有一只小虫要从B 点出发, 沿三角形的边爬到C点。 (1)它有几种路线可以选择? (2)各条路线的长有什么关系?为什么?
A BA CB C A CB CA B
A
两点之间线段最短
A BB CA CB
C
三角形两边的和大于第三边
A
.
B
A CB CA B
移项
A BB CA C
C
B CA BA C B CA CA B
三角形两边的差小于第三边
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?
.
解:(1)设底边长为x ㎝,则腰长2x ㎝等特。腰点三 ?角若形设有底什边么长
.
探究
扭动它,它的形状会改变吗?
.
三角形具有稳定性,而四边形不具有稳定性。
三角形的稳定性有广泛的应用。
.
四边形的不稳定性也有广泛的应用。
.
课堂练习 1.下列图形中哪些具有稳定性?
.
课堂练习 2.要使下列木架不变形,分别至少要再钉上几根木条?
第十一章 三角形
.
.
11.1与三角形有关的线段
.
.
由不在同一条直线上的三条线段首尾顺次相接所组成的 图形叫做三角形。
.
•组成三角形的线段叫做三角形的边。
c •相邻两边所组成的角叫做三角形的内角,简称角。
•相邻两边的公共端点是三角形的顶点。
B
A b
a
C
顶点是A,B,C的三角形,记作△ABC,读作“三 角形ABC”。
.
按照三个内角的大小分类
锐角三角形 三角形 直角三角形
钝角三角形
三边都相等的三角形叫做等边三角形 有两条边相等的三角形叫做等腰三角形
A
顶角
A


B
CB
底角
C
B
底边
底角
A C
.
.
按边的相等关系分类
三 边 都 不 相 等 的 三 角 形 三 角 形 等 腰 三 角 形 底 等 边 边 和 三 腰 角 不 形 相 等 的 等 腰 三 角 形
如图, 画∠ A 的平分线AD ,交∠ A 所对的边BC 于点 D,所得线段AD 叫做△ ABC的角平分线。
.
你能画出另两条角平
A
分线吗?
F
E
B
C
D
三角形的三条角平分线相交于一点。
.
课堂练习 填空: (1)如图(1),AD,BE,CF是△ABC的三条中线,则
A B 2 _ _ _ _ _ ,B D _ _ _ _ _ ,A E 1_ _ _ _ _ . 2
D CB
A C(D) B
A CD
.
你能画出另两条边上 的高吗?
三角形的三条高所在的直线相交于一点。
A
A
A
B
D CB
C(D) B
CD
连接△ ABC 的顶点A 和它的对边BC 的中点D,所得线 段AD 叫做△ ABC 的边BC 上的中线。
.
你能画出另两条边上
A
的中线吗?
FEBຫໍສະໝຸດ CD三角形的三条中线相交于一点。 三角形三条中线的交点叫做三角形的重心。
.
从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线, 垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。
A
高与垂线不同,高是
线段,垂线是直线。
B
C
D
.
从△ ABC 的顶点A 向它所对的边BC 所在的直线画垂线, 垂足为D,所得线段AD 叫做△ ABC 的边BC 上的高。
A
B
.
A
c
b
B
C
a
阶段小结
11.1.1 三角形的边
II. 三角形的分类
锐角三角形 三角形 直角三角形
钝角三角形
三 边 都 不 相 等 的 三 角 形 三 角 形 等 腰 三 角 形 底 等 边 边 和 三 腰 角 不 形 相 等 的 等 腰 三 角 形
.
III. 三角形三边之间的大小关系
三角形两边的和大于第三边 三角形两边的差小于第三边
.
D A
E
B
C
.
课堂练习 2. 下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10.
阶段小结
11.1.1 三角形的边
I. 三角形及相关概念
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 组成三角形的线段叫做三角形的边。 相邻两边所组成的角叫做三角形的内角,简称角。 相邻两边的公共端点是三角形的顶点。 顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”。
相关文档
最新文档