数学物理方法姚端正CH作业解答.doc
数学物理方法课后答案 (2)

2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数学物理方法习题及解答1

数学物理方法习题及解答1试题1一、单项选择题1.复通区域柯西定理()(A )0)(=?dz z f l(B )0)(1=∑?=n i l idz z f (C )0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 也是逆时针方向)(D)0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 是顺时针方向)2.周期偶函数:,cos)(10为其中k k k a lxk a a x f ∑∞=+=π:()(A )?=lk d l k f l a 0cos )(1ξπξξ (B )?-=ll k d l k f l a ξπξξcos )(1(C ) ?=lk k d l k f l a 0cos )(1ξπξξδ (D )?lkk d lk f l a 0cos)(2ξπξξδ 3.柯西公式为:()(A )ξξξπd z f i n z f l ?-=)(2!)( (B) ξξξπd z f i z f l ?-=)(21)( (C) ξξξπd z f i z f l n ?-=)()(21)( (D) ξξξπd z f i n z f l n ?-=)()(2!)( 4.在00=z 的邻域上把()=z f 2zz )(sin 展开为()(A )+-+-!6!4!21642z z z(B) +-+-!7!5!31642z z z (C) +-+-6421642z z z(D) +-+-!7!5!31864z z z5.求()z z f sin 1=在z 0=πn 的留数为()(A )!1n (B )n (C )n )1(- (D )16.以下那一个是第一类边界条件()(A ))(),(t f t x u ax == (B ))(,()t f t x u ax n == (C ))()(t f H u ax n u =+= (D )lx ttlx xu Mg t x u ==-=),(7.下列公式正确的为:(A ))()()(0x f dx x x f t =-?+∞∞-δ (B )0)()(0=-?+∞∞-dx x x f t δ (C )∞=-?+∞∞-dx x x f t )()(0δ (D ))()()(0t t f dx x x f =-?+∞∞-δ8.勒让德方程为(A )0)1(2)1(222=++--y l l dx dy x dx yd x(B )0]1)1([2)1(22222=--++--y x m l l dx dy x dx y d x(C )0)(22222=-++y dx dy x dx ym x d x(D )0)(22222=+-+y dxdy x dx y m x d x9.m 阶贝塞尔方程为:(A )0)(22222=--+R m x dx dR x dx R d x (B )0)(22222=-++R m x dx dR x dx R d x (C )0)(22222=+-+R m x dxdR x dx R d x (D )0)(2222=-++R m x dxdR x dx R d x 上 10Z 0是方程W ‘’+P (Z )W ‘+Q (Z )W=0的正则奇点,用级数解法求解时,这个方程的“判定方程“为(A )0)1(21=++---q sp s s (B )0)1(21=++--q sp s s (C )0)1(11=++---q sp s s (D )0)1(22=++---q sp s s二、填空题1、已知解析函数22),()(y x y x u z f -=的实部,则这个解析函数为。
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1u x ∂=∂,0v y ∂=∂,u v x y∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v v x y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*000lim lim lim()0z z z z z z z zz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i ze zθ-∆=∆与趋向有关,则上式中**1z z z z ∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()332222220,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩,332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法姚端正CH1作业解答[1]
![数学物理方法姚端正CH1作业解答[1]](https://img.taocdn.com/s3/m/3e8faec4a1c7aa00b52acbf9.png)
π F这时F 2 = −e
i π 6
=e
i
7π 6
= −(cos
π π 3 1 + i sin ) = −( + i) 6 6 2 2
5
10.(4)IJ& Ln(1 + i ) /& Ln(1 + i) = Ln[ 2e
π i ( + 2 kπ ) 4
] = ln 2 + i (
G f ( z ) = 2( x − 1) y + i (2 x − x 2 + y 2 − 1) = −i(1 − z ) 2
P22 习题 1.4
6.(2)/KL& e z = 1 + i 3 /&@A e z 写成C45DE& e z = 2e G z = Ln[2e
π i ( + 2 kπ ) 3 π i ( + 2 kπ ) 3
π + 2kπ ) 4
(k = 0,±1,±2...)
6
1 2
G f ( z ) = x 2 − y 2 + xy + i (2 xy −
⑧
(2) u = 2( x − 1) y F
f (2) = −i
3
/&采 v=∫
jg积M法& ①
∂v dx + g ( y ) ∂x
而} C-R z{F
∂v ∂u =− = −2 x + 2 ∂x ∂y
② ③
a以 v = ∫ (2 − 2 x)dx + g ( y ) = 2 x − x 2 + g ( y ) 再A v O y 1偏导& 一K,F} C-R z{F ∂v ∂u = = 2y F ∂y ∂x ∂v dg = ∂y dy ④
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法课后答案 (1)

充分性。设任给ε > 0,存在N(ε ) > 0,使当n>N时,zn+ p − z0 < ε成立。由
xn+ p − xn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε
yn+ p − yn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε
②
将①式与②式相除,易见 c 3 = 1,即 c = 1,由此得证。
8.试利用 Re z = x ≤ x2 + y2 = z 证明 z1 + z2 ≥ z1 + z2 , z1 − z2 ≥ z1 − z2
证 将第一个不等式两边平方,则不等式右边的式子为
z1 + z 2 2 = ( z1 + z 2 )( z1 + z 2 )∗ = z1 z1∗ + z 2 z 2∗ + z1 z 2∗ + z1∗ z 2
4x ≥ 0
x≥0
3 见课上例题
4. 求在ω = 1 下,直线 Re z = c (常数)映射为什么图形?
z
μ ν 解:在ω = 1 的映射下, 与 满足什么方程? z
右半平面(包括 y 轴)
由c = Re z = Re 1 w
= Re 1 μ + iν
=
μ μ2 +ν 2
∴c(μ 2 +ν 2 ) = μ
25(x2 − 6x + 9) + 25 y2 = 625 −150x + 9x2
16x2 + 25 y2 = (20)2 ,点集为椭圆: ( x )2 + ( y )2 = 1 54
数学物理方法姚端正CH7作业解答

uΙ =
1 x+t sin αdα = sin x sin t 2 ∫x − t 1 t 2 ∫0
t 0
由无界纯强迫振动解的公式,得
u ΙΙ =
∫
x + ( t −τ )
x − ( t −τ )
τ sin αdαdτ =
1 t {cos[ x − (t − τ )] − cos[ x + (t − τ )]}τdτ 2 ∫0
t 0
= ∫ sin x sin( t − τ )τdτ = sin x ∫ sin( t − τ )τdτ = t sin x − sin x sin t
(上式最后一步用了分部积分法) 则 u = u + u = t sin x
Ι ΙΙ
3
utt − a 2u xx = x (3) u ( x,0) = 0 u ( x,0) = 3 t
① ② ③
① 即 f1 ( x) − f 2 ( x) = −ϕ ( x) ②
解:方程 utt = u xx 的通解为: u ( x, t ) = f1 ( x + t ) + f 2 ( x − t ) 将④式代入定解条件②得: f1 (0) + f 2 (2 x) = ϕ ( x )
④
⑤
1
将④式代入定解条件③得:
2
u xx − u yy = 8 (2) u ( x,0) = 0 u ( x,0) = 0 y 解:由冲量原理,原定解问题可转化为以下定解问题: v yy − vxx = 0 v( x,τ ) = 0 v ( x,τ ) = −8 y 由 D ' Alembert 公式,该问题的解为: v( x, y;τ ) = 1 x + a ( y −τ ) − 8dα =8τ − 8 y 2 ∫x − a ( y −τ )
数学物理方法姚端正CH3 作业解答

k →∞
k →∞
所以,所求收敛半径为 R
P55 习题 3.3
1
1.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围: (1) 1 (1 − z ) 2
解:解法之一:利用多项式的乘法: 已知
∞ 1 = ∑ zk 1 − z k =0
| z |< 1 ,
∞ ∞ 1 k = ( z ) ⋅ ( zk ) ∑ ∑ 2 (1 − z ) k =0 k =0
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|
收敛范围: | (5)
a z |< 1 b
即 | z |<|
b | a
1 1 + z + z2 1 1− z 1 z 解: = − = 2 3 3 1+ z + z 1− z 1 − z 1 − z3 令 t = z 3 ,则
∞ 1 = ∑t k , 1 − t k =0
故
2
∞ 1 = ∑ z 3k 1 − z3 k =0
数理方法 CH3 作业解答 P51 习题 3.2
1. 确定下列级数的收敛半径: (2) ∑ k k z k k =1 2 k k z k k =1 2 ak k k +1 2k |= lim | k /( k +1 ) |= lim =2 k →∞ k + 1 a k +1 k → ∞ 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理方法CH3 作业解答P51习题3.21. 确定下列级数的收敛半径:∞kk(2)∑kz=12k∞(4)∑(k =0k + a )k z kk z k∞kk解:(2)∑kz k=12a k k +1 2k收敛半径为:R lim | | lim | /( ) | lim 2k= = = =k k+1→a 2 2 k +1→∞k ∞k →k ∞ k+1 ∞(4)∑(kk= 0 + a ) k z kk z kka k + ak解:收敛半径为:R lim | | lim | |若|a |≤1,则= = k+1k →a (k +1) + a∞k→∞k +1kk a+lim |→k∞+k (k 1) a+|1=+1若| a |> 1,则k k 1 k - 2-罗比塔法则k a 1 ka k(k 1)a 1罗比塔法则+ + -lim | | lim | | lim | |= =k =k k→∞k +1 k k ka k - 1 a(k 1) a 1 (k 1)a ( 1) |→∞+ + ++→∞+|∞k2.∑akz 的收敛半径为R (0 ≤R < ∞) ,确定下列级数的收敛半径:k=1∞(1)∑kk= 0 n a zkknk a k a k ak n k n k解:) | lim | |收敛半径为:lim | ) |= lim | ( ) | ?| |= lim | ( ?nk (k 1) a k +1 a k 1 a+ + k →∞k k →∞→∞k →∞k+1 k +1 +1kn 而lim |( ) |=1k k +1→∞limk→∞|akak+1|= R所以,所求收敛半径为RP55习题3.311.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围:(1)(1- 1 z)2解 : 解法之一 : 利用多项式的乘法 :1∞k已知 ∑= z1- z 0k=| z |< 1,(1 1 - 2 z)=∞ ∞kz k(∑0) ?∑z (k = k =0)= 1+ 2z +2 + 3+ + + k+ 3z 4z ... (k 1)z...=∞(∑k= 0k k+1)z解法之二:逐项求导: (1 1 1 = ( )' 2 z - z) 1- 1 则 = 2(1- z)( ∞ ∞ k kz k- 12+ 3 + + k - 1 +z )' 1 2 3 4 ... ...= ∑ = = + z + z z kz∑k =0 k =1由于(1- 1 2 z)在复平面内有唯一的奇点 z =1 ,它与展开中心的距离为1,故该级 数的收敛范围为| z |< 1 (2) 1 az+b k1 a1 1 ∞a ∞ k k k z k解: ∑ ∑= = (- 1) ( z) = (- 1)a k +1 az +b b b 0 b b(1+ z) bk =0 k =a 收敛范围:|z|<1bb 即|z|<||a(5)1+1z+ 2z解:1+11-z1z==-213133 z+z1-z-z-z令1∞3t=z,则∑=t1-t0k=k,故211 ∞3k= z∑3- z 0k =z31- z= ∞3kz∑k= 0+11∞∞3k 3k+1所以,= z ∑- z 收敛范围为| z|<11+ + zz ∑2k =0 k =02. 将下列函数按(z- 1) 的幂展开,并指明其收敛范围:(1)cosz解:cosz = cos[(z - 1) +1] = cos(z - 1) cos1 - sin(z - 1) sin 1=k 2k k 2k∞(- 1) (z - 1) ∞- z 1)( 1) ( -cos1 - sin1∑∑= (2k )! (2k + 1)!k 0 k =0+1收敛范围:| z- 1 |< ∞3.应用泰勒级数求下列积分:sinz (3)=∫Siz0 z zdz解:利用正弦函数的泰勒展开式:sink 2k +1∞(- 1) zz = ,得到∑(2k + 1)!k =0sinzz=k 2k∞(- 1) z∑= (2k + 1)!k 0则k 2k k 2k k 2k +1sin z (- 1) z (- 1) z (- 1) z∞∞∞z z zdz = dz= dz=∫∫∑∑∫∑0 z )! (2 1)!(2 1)0 = ( + 1)! ( k k + k +2k 0 2 +1k 0 k =0 k= 04.函数α(1+ z) 在α不等于整数时是多值函数,试证明普遍的二项式定理:(1( - 1) ( )( 2)2 + - 1 - +αααααααα3+ z) =1 [1+ z+ z z1! 2! 3!...]式中,α为任意复数;αe iαkπ21 =解:(1 + z)α= α( 1+Ln 1 eα[ln( + + e e+ = 1 z 2kπ] = ?z ) i α) iα2 ln(kπez)下面将α在z < 1中作泰勒展开:ln(1+ z)e∞α+z = a z ,其中,ln( 1 ) k记∑f (z) = ekk= 0 ak=f (k ) (0)k!f '(z) = αα+ αln(1 z) f ze = ( )1+ z 1+ z①? f ' (0) = α同时由①式有:(1+ z) f '(z) = αf (z) ②将②式两边再对z求导:(1+ z) f ''( z) + f '( z) = αf ' (z) 得到(1+ z) f ''(z) = (α- 1) f '( z) ③3得f '' (0) = α(α- 1)将③式两边再对z求导得:(1 ( z f z f z ( z f z3) 3)+ z) f ( ) + ''( ) = (α- 1) ''( ) 得到(1+ z) f ( ) = (α- 2) ''( )( 3 = αα- α-)得(0) ( 1) ( 2)f( k =αα- α- α- k +)以此类推,得(0) ( 1)( 2)...( 1)f( k)f (0) 1= = ( - 1) ( - 2)...( - k +1)则akααααk! k!所以∞∞∞1ln( z a z a z1 ) k kα+ = = ke ∑∑( 1) ( 2)...( k 1)z= ∑αα- α- α- + k k k!k 0 k 0 k =0= =∞则kαiα2kπ1+ ∑= αααα(1 z) e ( - 1)( - 2)...( - k +1)zk!k=0( - 1) ( 1)( 2)2 + - - + αααααα3αz <1 = 1 [1+ z+ z z ...]1! 2! 3!5.将Ln(1+ z)在z = 0 的邻域内展开为泰勒级数。
解:Ln(1+ z) = ln(1 + z) + i 2kπ将ln(1 + z) 展开时,既可用泰勒定理直接展开,也可用逐项积分法。
下面用逐项积分法:ln(1 + z) =k +11 z∞∞∞z z kzk k k kdz = (- 1) z dz = (- 1) z dz= (- 1)∫k0 1+ z +1k =0 k= 0 k= 0∫∑∑∫∑0 0则Ln(1 + z) = ln(1+ z) + i 2kπ= 2kπi +k+1∞zk(- 1)∑kk =0 +1P61习题3.43.将函数(1z- a) ( z- b) (0 < a < b ), 在z = 0 ,z= a 的邻域内以及在圆环a < z <b 内展开为洛朗级数。
1 1 1 1解:f (z) ( )= = -(z- a)( z- b) a - b z- a z- b①在z = 0 的邻域,即z < a4z 1111=-()=-(∞∑z-a a a01-ak=za)kz∞1111=-()=-(∑z-b b b0k=1-bzb)k所以11z1z111∞∞∞k k z kf(z)∑∑∑=(-()+())=(-)k+1k+1 a-b a a b b b-a a bk=0k=0k=0②在z=a的邻域,即0<z-a<b-a,zk 11111z a(z a)∞∞--k()=?=∑=--∑=-z ak+1 b(z a)(b a)b a-b a0b a(b a)------=-0-1k k=-b a-所以f (z)=-1z-a∞(z-∑(b-k=0ka)k+1a)=-∞(z∑(bk=0--k-1k+1a)a)③在圆环a<z<b,zk 1111a a∞∞k=∑∑?=()=a+k1 -a z z z0z1k=0k=-zzk 1111z z∞∞k=-()=-()=-∑∑z k+1-b b b b0b1-bk=0k=所以f(z)=1a-b∞(∑k=0kakz+1+kzkb+1)5.将函数f(z)1=在下列区域中展开为级数:z(1-z)(1)0<z<1(4)z-1>1(6)1<z+1<2解:(1)0<z<1f(z)=1z(1-z)=1z∞kz∑k=05(4) z- 1 >1f(z) =1 z(1 -= - z) z 1 - ? 1 z - 1 1+1 = - ( z k1 1 1 (- 1) ∞? = - ?∑ 2 ( 1)k1 2- 1) (z- 1) = z-1 k 0 + z- 1=k +1∞(- 1)∑k +2(z - 1)k =0(6)1< z+1 < 2f 1 1 (z) = = + z(1 - z) 1- z1 z1 1 1 11 1 ∞1 ∞其中,∑ ∑= = ?( ) = =1k zkz (z +1) - 1 z +1 z+1 = 0 (z +1) ( +1)1-k k=0z+1+11kzk1 1 1 1 1 ( z+1) ( +1)∞ ∞= ∑ ∑= ? = ? =z k k 1 +1 +- z 2 - (z +1) 2 2 0 2 0 2 1-k = k=2k∞1 (z+1)f (z) = [ + ]∑k +1 k+1( z+1) 2 k= 0P66习题3.54.求出下列函数的奇点( 包括 z = ∞),确定它们是哪一类的奇点(对于极 点,要 指出它们的阶)。
(2)5z2(1- z)z1- e(4)z1+ e(6) 2 z (7)zz+1ze(8)21+ z解:(2)5z2 (1- z)z =1为二阶极点。
判据之一:f ( z) 在z =1的去心邻域内能表示成f (z) =(z) φ(z - 21)z = ∞为三阶极点。