数学物理方法作业
数学物理方法习题总稿-csy

数学物理方法习题习题一1.把下列复数分别用代数、三角式和指数式表示出来: (1)i -; (2).11ii-+;(3). 1; (4). 1ie+;(5).1cos sin i αα-+; (6) 3()z z x iy =+2、下列式子在复平面上各具有怎样的几何意义?并作图表示出来. (1) ||2z =; (2) ||3z ≤;(3)1Re 2z ≥; (4) ||||z a z b -=- (a b 、皆为复实数); (5) ||Re 1z z +≤; (6) 1||11z z -≤+; (7) 1Re 2z=; (8) 1Im 2z <<;(9) 0arg4z i z i π-<<+; (10) |2||2|5z z ++-=. 3、计算下列各式:(1 (2)ii ;(3 (4(5a b (、皆为实常数); (6)21)(1)nn i i ++-(; (7)cos cos 2cos3cos n ϕϕϕϕ+++⋅⋅⋅+(ϕ为实数)习题二1、设,z x iy =+试证:|sin |z =和|s |co z =2、计算下列各式:(1)sin()a ib +和s()co a ib +(其中a b 、为实数,用三角函数和双曲函数表出结果); (2)22;ch z sh z - (3)(1);Ln - 一1 一(4)cos ix 和sin ix (x 为实数); (5)chix 和shix (x 为实数); (6)sin ||iaz ib z e -(a b 、为实常数)。
3、解方程:(1)sin 2z =; (2) 2.tgz =习题三1、 若一实函数在区域G 内解析,试证该实函数必为实数。
2、 试讨论下列函数的可导性和解析性,并在可导区域求其导数: (1)212;z z ω=-- (2)1zω=(3)Im Re ;z z z ω=- (4)||.w z =3、设函数3222()()f z my mx y i x lxy =+++是全平面上的解析函数,试确定m n l 、、的值。
《数学物理方法》第一章作业参考解答

《数学物理方法》第一章作业参考解答1. 利用复变函数导数的定义式,推导极坐标系下复变函数),(),()(ϕρϕρiv u z f +=的C-R 条件为∂∂−=∂∂∂∂=∂∂ϕρρϕρρu v vu 11 证:由于复变函数)(z f 可导,即沿任何路径,任何方式使0→∆z 时,z z f z z f ∆−∆+)()(的极限都存在且相等,因此,我们可以选择两条特殊路径,(1)沿径向,0→∆=∆ϕρi e z.ϕϕρρϕρρϕρρϕρϕρϕρρϕρρϕρϕρρi i e v i u e iv u iv u z f f −→∆∂∂+∂∂=∆−−∆++∆+=∆−∆+),(),(),(),(),(),(),(),(lim(2)沿半径为ρ的圆周,()()ϕρρρρϕϕϕϕϕ∆≈−=∆=∆∆+i i i i e i e e e zϕϕϕϕϕρϕϕρϕϕρϕρϕρϕρϕϕρϕϕρρϕρϕρϕϕρϕϕρϕρϕϕρi i i i e u i v ie iv u iv u e e iv u iv u zf f −∆→∆∂∂−∂∂=∆−−∆++∆+=−−−∆++∆+=∆−∆+1),(),(),(),(),(),()1(),(),(),(),(),(),(lim以上两式应相等,因而,ϕρρ∂∂=∂∂vu 1 ϕρρ∂∂−=∂∂u v 1 2. 已知一平面静电场的等势线族是双曲线族C xy =,求电场线族,并求此电场的复势(约定复势的实部为电势)。
如果约定复势的虚部为电势,则复势又是什么?解:0)(2=∇xy xy y x u =∴),(由C-R 条件可得C x x b x y u x b x v x b y y x v y x u y v +−=⇒−=∂∂−=′=∂∂+=⇒=∂∂=∂∂2221)()()(21),(C y x y x v +−−=)(21),(22电场线族为:(或者:由 +−=+−=∂∂+∂∂=222121),(y x d ydy xdx dy y v dx x v y x dv ,得C y x y x v +−−=)(21),(22)iC z i i C y x xy +−=+−−+=2222)(21w 复势为:若虚部为电势,则xy y x v =),(同理由C-R 条件可得Cx x A x y v x A x u x A y y x u y x v y u +=⇒=∂∂=′=∂∂+−=⇒−=∂∂−=∂∂2221)()()(21),(C y x y x u +−=)(21),(22C z ixy C y x +=++−=22221)(21w 复势为:3.讨论复变函数||)(xy iy x z f =+=在0=z 的可导性?(提示:选择沿X 轴、Y 轴和Y=aX 直线讨论)解:考虑当函数沿y=ax 趋近z=0时2)(ax z f = )1()1(||||lim )()(lim00+±=+∆−∆+=∆−∆+→∆→∆ia aia x x a x x a z z f z z f x z 可见上式是和a 有关的,不是恒定值所以该函数在z=0处不可导4.判断函数()()111)(2−++=−+=z z z z z z f 的支点,选定一个单值分支)(0z f ,计算)(0x f ?计算)(0i f −的值? 解:可能的支点为∞−=,1,1,0z 。
数学物理方法姚端正CH1作业解答

+
g(
y)
③
再将 v 对 y 求偏导:
一方面,由 C-R 条件, ∂v = ∂u = 2x + y , ④ ∂y ∂x
另一方面,由 ③式得: ∂v = 2x + dg
⑤
∂y
dy
由④⑤两式得 dg = y dy
所以 g = 1 y2 + c 2
所以 v = 2xy − 1 x2 + 1 y2 + c
⑥
∂x
∂y
∂x
∂y
可见, w 的实部和虚部有连续的一阶偏微商,且满足 C-R 条件,
所以, w = z2 在复平面可微,从而在复平面是解析的。
(2) w = z Re z
解:记 z = x + iy , w = u(x, y) + iv(x, y) ;
则 w = z Re z = x2 + ixy
w 的实部 u = x2 ,虚部 v = xy
3
−
i
=
i(−π
2e 6
+ 2kπ
)
,则
z5
= 2 e5
i5(− π + 2kπ ) 6
i (− 5π +10kπ )
= 32e 6
−i 5π
= 32e 6
= 32[cos(− 5π ) + i sin( − 5π )] = −16(
3 + i)
6
6
7.求解方程
(1) z3 − 1 = 0
e0 = 1
所以,函数 z + z + 1 是 2 值的,支点是1, ∞
(6)
i arg z + 2kπ
数学物理方法姚端正CH 作业解答

3
∑ ∑ cos
1 = ∞ (−1)k (
1 )2k z
=
∞
(−1)k z−k
z k =0 (2k )!
k =0 (2k )!
所以 resf (0) = − 1 , resf (∞) = 1
2
2
z −1
的系数为:
C −1
=
−
1 2
2.计算下列围道积分
∫ (2)
zdz
l (z −1)(z − 2)2
iπ
z1 = e 4
f
(z)
= 1+ 1+
z2 z4
的奇点为: z
i (2k +1)π
=e 4
,分别为: z2
z3
i 3π
=e 4
i 5π
=e 4
z4
=
i 7π
e4
其中,上半平面有两个奇点,分别为
z1
=
iπ
e4
和
i 3π
z2 = e 4
,它们都是函数 f (z)
的单极点,由公式 resf (b) = φ(b) ,得函数在这两个奇点的留数分别为: ψ '(b)
a2
是奇函数;
f (z) =
z z2 + a2
,
满
足条件: ①在实轴上无奇点;②在上半平面除有限个奇点外单值解析;③当
z → ∞ 时, f (z) → 0
∫ 所以
∞
0 x2
x +
a2
sin
bxdx
=
π
函数
zeibz z2 + a2
在上半平面的奇点的留数之和
函数
zeibz z2 + a2
《数学物理方法》第八章作业(边界条件)

第八章习题和部分定解问题。
P201:1,2,5,6,11,12,13,16,17,201.长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后突然撇除这力,求解弦的振动。
解:此题的定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T l u =⎧-=<<⎪==⎪⎪-⎧⎪<<⎪⎪⎨=⎨⎪⎪⎪-<<⎪⎩⎪⎪=⎩ )4()3()2()1( 2.求解细杆热传导问题,杆长l ,两端保持为零度,初始温度分布20/)(l x l bx u t -==。
此题的定解问题为220200,()(0),0,()/.t xx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪⎪=-⎪⎩5.长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。
此题的定解问题为20000000,(0),0,0,(,0),(0),0.tt xx x x x l X X t t u a u x l u u F F X u u x dx dx x l x YS YS u ===⎧-=≤≤⎪==⎪⎪∂⎨===≤≤⎪∂⎪=⎪⎩⎰⎰ 6.长为l 的理想传输线,远端开路,先把传输线充电到电位差0u ,然后把近端短路。
求解线上的电压),(t x u 。
此问题的泛定方程为)0(,1,022l x LCa u a u xx tt <<==-, 边界条件为(0,)0,(,)0.x x l u t u l t R L j t ==⎧⎪∂⎨⎛⎫=-+= ⎪⎪∂⎝⎭⎩,初始条件为00(,0),1(,0)0.t x t u x u u x j C ==⎧⎪⎨=-=⎪⎩11.在矩形区域b y a x <<<<0,0上求解拉氏方程0=∆u ,使满足边界条件 00(),0,sin ,0.x x a y y b u Ay b y u x u B u a π====⎧=-=⎪⎨==⎪⎩。
数学物理方法第三版答案

数学物理方法第三版答案【篇一:数学物理方法试卷答案】xt>一、选择题(每题4分,共20分) 1.柯西问题指的是( b ) a.微分方程和边界条件. b. 微分方程和初始条件. c.微分方程和初始边界条件. d. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( d)a.存在性和唯一性. b. 唯一性和稳定性. c. 存在性和稳定性. d. 存在性、唯一性和稳定性.??2u?0,?3.牛曼内问题 ??u 有解的必要条件是( c)??n?f??a.f?0.b.u??0.c.?fds?0. d.?uds?0.???x(x)??x(x)?0,0?x?l4.用分离变量法求解偏微分方程中,特征值问题??x(0)?x(l)?0的解是( b )n?n??n???n??x ).b.( ?x ). a.( ??,cos?,sinllll????(2n?1)?(2n?1)??(2n?1)???(2n?1)??x ).d.( ?x ). c.( ??,cos?,sin2l2l2l2l????22225.指出下列微分方程哪个是双曲型的( d )a.uxx?4uxy?5uyy?ux?2uy?0. b.uxx?4uxy?4uyy?0.c.x2uxx?2xyuxy?y2uyy?xyux?y2uy?0. d.uxx?3uxy?2uyy?0.二、填空题(每题4分,共20分)??2u?2u?2?2?0, 0?x??, t?0?t?x??1.求定解问题?ux?0?2sint, ux????2sint, t?0的解是(2sintcosx).??ut?0?0, utt?0?2cosx, 0?x????2.对于如下的二阶线性偏微分方程a(x,y)uxx?2b(x,y)uxy?c(x,y)uyy?dux?euy?fu?0其特征方程为( a(x,y)(dy)2?2b(x,y)dxdy?c(x,y)(dx)2?0). 3.二阶常微分方程y(x)?或0).4.二维拉普拉斯方程的基本解为( ln1().r1 ),三维拉普拉斯方程的基本解为r113y(x)?(?2)y(x)?0的任一特解y?( jx44x1(x) 3225.已知j1(x)?222sinx, j1(x)?cosx,利用bessel函数递推公式求??x?x23j3(x)?(221221dsinx(sinx?cosx)??x()()). ?xx?xdxx三、(15分)用分离变量法求解如下定解问题2??2u2?u??t2?a?x2?0, 0?x?l, t?0??u??u?0, ?0, t?0 ??xx?l??xx?0?u?x, utt?0?0, 0?x?l.?t?0?解:第一步:分离变量(4分) 设u(x,t)?x(x)t(t),代入方程可得x(x)t(x)x(x)t(t)?ax(x)t(t)??2x(x)at(x)2此式中,左端是关于x的函数,右端是关于t的函数。
李明奇数学物理方法作业

杨立-201122050231-第1次作业-4班习题2.1.2长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。
试写出振动方向的定解条件。
解:由于x=0端固定,可知0|0x u ==,又L 端为自由端,知|0x L u ==。
t=0时刻杆上点的位移0|t b u kx x L===,又t=0时刻的速度为0,即0|0t t u ==。
习题2.2.1一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的均质园杆,如同界面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:如图所示通过两截面而留下的热量=微元段升 温吸热+与侧面交换所留下的热量因为 11[(,)(,)(,)(,)]()2x x t kdt u x dx t s x dx t u x t s x t c sdxu dt k u u rdxdt ρπ++-=+- 其中,k 为进入截面的系数;s 为横截面;x u 为沿轴温度的法向导数;2πrdx 为侧面。
所以 221()t xx u a u b u u -=--,2k a cp =,212k b c r ρ= 习题2.3.3由静电场Gauss 定理 1s V E dS dV ρε⋅=⎰⎰⎰⎰⎰ ,求证:E ρε∇⋅=,并由此导出静电势u 所满足的Poisson 方程。
解:因为 s VE dS EdV ⋅=⎰⎰⎰⎰⎰且 1s VE dS dV ρε⋅=⎰⎰⎰⎰⎰ 比较可得 E ρε∇⋅=即 ()E ερ∇⋅=可令 E u =-∇ 代入上式可得2u u ρε∇=∆=-0 x x+dx L X习题2.4.2求下列方程的通解(2)230xx xy yy u u u +-=;(5)161630xx xy yy u u u ++=;解:(2)230xx xy yy u u u +-=此方程式双曲型的第二标准型,将其化成第一标准型特征方程2230dy dy dx dx ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭解得12dy dx=± 令3x y x yζη=-⎧⎨=+⎩ 可得111212220880a a a a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦10b =;20b =;0c =;0f =可得标准型0u ζη=因此 (3)()u f x y g x y =-++。
数学物理方法姚端正CH3 作业解答

= ∑ ak z k , 其中, ak =
k =0
∞
f ( k ) (0) k!
① ②
f '( z) =
α α ln(1+ z ) α e = f ( z) 1+ z 1+ z
⇒
f ' (0) = α
同时由①式有: (1 + z ) f ' ( z ) = αf ( z ) 将②式两边再对 z 求导: (1 + z ) f ' ' ( z ) + f ' ( z ) = αf ' ( z )
∞ 1 ∞ 1 1 1 1 1 1 = = ⋅( = )= ∑ ∑ k k +1 z ( z + 1) − 1 z + 1 1 − 1 z + 1 k = 0 ( z + 1) k = 0 ( z + 1) z +1
其中,
1 1 1 1 1 ∞ ( z + 1)k ∞ ( z + 1) k = = ⋅ = ⋅∑ = ∑ k +1 1 − z 2 − ( z + 1) 2 1 − z + 1 2 k = 0 2 k k =0 2 2 f ( z) =
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 下列式子在复数平面上各具有怎样的意义?(画图说明)
(1)
(2)
2、计算下列数值
(1)
(2)
(3)
3、解方程
1、设函数2222()()f z x axy by i cx dxy y =+++++问常数a ,b ,c ,d 取何值时, f (z )在复平面内处处解析?
2、如果f '(z )在区域D 处处为零, 证明f (z )在D 内为一常数.
3、(,)23()()0v x y xy x f z f i =+=判断是否可作为解析函数的虚部?为什么?若能,
求出一个解析函数,且满足
2、
1、求1()(12)
z f z e i =-+的全部孤立奇点。
1Re 2z >arg ,Re (,,z a z b a b αβαβ<<<<和为实数)
i i
(13)
Ln i -sin 2z =1、 求下列积分的值 (1)iz d , :i 1;i C e z C z z +=+⎰ (2)2||2d (5)(i)z z z z z =--⎰ (3)431 (1)(3)z z dz z z =-+-⎰
(4)5
cos :1(1)C z dz C z r z π=>-⎰ 2223713,(),'(1).
C C x y f z d z f i ςςςς+++==-+⎰
设表圆周求
2、32382(4)
z z z +=--是的 阶极点。
3、确定下列函数的奇点,并求出函数在各奇点处的留数。
(1)2
(1)(2)z z z -- (2)1
1z e -
4、用留数定理计算下列积分。
(1)431 (1)(3)z z dz z z =-+-⎰
(2)22()(3)z
C e dz z i z i π-+⎰ ,其中C 是|-1|3z =正向圆周.
1、求()=,0t f t e ββ->的傅立叶变换。
2、已知)(t f 的傅氏变换为[]00()()().F i ωπδωωδωω=+--,求)(t f
3、用拉普拉斯变换求解
4、质量为m 的物体挂在弹簧系数为k 的弹簧一端, 外力为f (t ), 物体自平衡位置x =0处开始运动, 求运动规律x (t )(用拉式变换求解)
1、用分离变量法求解混合问题
2、半径为a 的半圆形均匀薄板,板面绝缘,在半圆周的边界上保持恒定的温度0u ,在直径上保持零度,求板内的稳定温度分布。
1、设有两端固定的弦,其初始位移和初始速度为零,求在重力作用下该弦的振动。
22()()()(0)0(())
T t a T t g t T g t ω'⎧+=⎨=⎩已知()()()()20000,0,02,0sin ,0sin 0tt xx u a u x l t u t u l t t
u x x u x x x l l l
ππ⎧⎪-= << , >⎪
⎪⎪= , = 0≤⎨⎪⎪⎪= , = ≤≤⎪⎩。