数学物理方法习题及解答
物理数学物理法题20套(带答案)

(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(3)当滑动变阻器接入电路的阻值为多大时,电源的输出功率最大,最大功率是多少。
【答案】(1)2 W。(2)2.5 W。(3)3.125 W。
解得
所以第一次速度为零时所处的y轴坐标为0。
6.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为 d,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求A沿倾斜轨道下滑的加速度与碰后沿轨道上滑的加速度大小之比;
(2)若倾斜轨道与水平面的夹角为θ,求A与倾斜轨道间的动摩擦因数μ;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B在此碰上。求改变前后动摩擦因数的比值。
【答案】(1) ;(2) ;(3) 或者
【解析】
【详解】
(1)速度为 的粒子沿 轴正向发射,打在薄板的最远处,其在磁场中运动的半径为 ,由牛顿第二定律
①
②
联立,解得
③
(2)如图a所示
速度为 的粒子与 轴正向成 角射出,恰好穿过小孔,在磁场中运动时,由牛顿第二定律
④
而
⑤
粒子沿 轴方向的分速度
⑥
联立,解得
由圆周运动向心力公式,有
Fmax-mg=
得
Fmax= mg
(2)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
【物理】物理数学物理法题20套(带答案)

【物理】物理数学物理法题20套(带答案)一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。
一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。
光线恰能从Q 点射出。
(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。
【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。
则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。
D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得312DQ a -=2.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。
有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。
【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=①根据几何知识可得3sin OA R θ==② 90αθ+=︒ ③联立解得3n =④玻璃的折射率为3。
(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。
数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
数学物理法练习题含答案及解析

数学物理法练习题含答案及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='=【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F的表达式,讨论F取最小值的条件.4.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端拴着质量分别为m、2m的小球A和小物块B,开始时B先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B对地面的压力恰好为零,A在水平面内做匀速圆周运动.已知重力加速度为g,不计一切阻力.(1)求A做匀速圆周运动时绳与竖直方向夹角θ;(2)求摇动细管过程中手所做的功;(3)轻摇细管可使B在管口下的任意位置处于平衡,当B在某一位置平衡时,管内一触发装置使绳断开,求A做平抛运动的最大水平距离.【答案】(1)θ=45°;(2)2(1)4mgl-;(3) 2l。
物理数学物理法练习全集含解析

物理数学物理法练习全集含解析一、数学物理法1.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
【答案】(1)30N ; (2)125V ; (3)0~127︒︒ 【解析】 【分析】 【详解】(1)小球到B 点时速度为v ,A 到B 由动能定理21()2mg qE L mv +=2()v F mg qE m L-+=解得42/v m s =F=30N(2)高AC 高度为h AC ,C 点速度为v 1152m/s sin v v θ==211()2AC mg qE h mv +=U =Eh AC解得U =125V(3)加恒力后,小球做匀速直线运动或者匀加速直线运动,设F 与竖直方向夹角为α,当小球匀速直线运动时α=0,当小球匀加速直线运动时,F 的最小值为F 1,F 没有最大值1()sin 8N F mg qE θ=+=F 与竖直方向的最大夹角为180127αθ=︒-=︒ 0127α≤≤︒F ≥8N2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。
物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek ae z i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数212⎛⎫+ ⎪ ⎪⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223i i i e r ππππππθπ⎛⎫==+=+==- ⎪⎝⎭⎝⎭=-===+=±±L原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i i i i i eeeei k e e e e i k i e eeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±===L L 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+L3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.11c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.112c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.1122c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
2z z + ()()()11001211211121121,12233331311,313,3nnn n n n z z z z z z z z ∞∞++==--⎛⎫=-=-⋅⋅=-=+- ⎪-++-⎝⎭---<-<-<-∑∑解:其中,即此为级数的收敛范围。
1. 把()()z z z f -=11展开成在下列区域收敛的罗朗(或泰勒)级数(1) ,11<+z (2) ,211<+<z (3).21>+z (1);,11<+z()()()()().112121211211121111111110100∑∑∑∞=+∞=∞=+⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+++-=+-⋅++--=-+=-=n nn n nn nz z z z z z z z z z f 解:(2);,211<+<z()()()().21112121111121112111111111111010100∑∑∑∑∞=+∞=+∞=∞=+++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+-⋅++-⋅+=-+=-=n n n n n n n n n z z z z z z z z z z z z z f 解:(7).21>+z()()()().12111211111112111111111111111010100∑∑∑∑∞=+∞=+∞=∞=+-+=⎪⎭⎫ ⎝⎛+⋅+-+⎪⎭⎫ ⎝⎛++=+-⋅+-++-⋅+=-+=-=n n n n n n nn nz z z z z z z z z z z z z z z f 解:2、计算积分 11sin z dz z z =⎰Ñ解:()zz z f sin 1=的奇点为),2,1,0(Λ±±==n n z π 在01==z z 内只有一个奇点200200020001011sin sin 0()1Re ()limlim ()sin sin sin cos cos cos sin lim lim sin 2sin cos lim 02cos 12Re ()0sin lim lim z z z z z z z z z z zz z z z z f z d d z s f z z dz z z dz z z z z z z z z z z zzz dz i s f z z z π→→→→=→→→==⋅==∴=⎡⎤=⋅=⎢⎥⎣⎦--+=====⎰Q Ñ 为的二阶极点 =3.求解定解问题2(0,0)(0,)0,(,)0(0)(,0)sin ,(,0)sin(0)tt xx t u a u x l t u t u l t t x xu x u x x l l lππ-<<>==≥==≤≤=0 解:122221222211(,)()sin()()sin 0()()0()cos sin (,)cos sin sin (,0)sin sin 1,0n n n n n n n n n nn n n n n n x u x t T t ln a n x T t T t l l n a n at n atT t T t T t A B l l l n at n at n x u x t A B l l l n x xu x A A A l l πππππππππππ∞=∞=∞==⎛⎫''+= ⎪⎝⎭''+==+⎡⎤=+⎢⎥⎣⎦=⋅=⇒==∑∑∑ 1111(1)(,0)sin sin 1,0(1)(,)(cos sin )sinn t n n n n n a n x x a lu x B B B B n l l l l a at l at xu x t l a l lπππππππππ∞=∞=≠=⋅=⇒=⇒==≠∴=+∑∑ 1.试用分离变量法求解定解问题(0,0)(0,),(,)0(0)(,0)0,(,0)0(0)tt xx t u u x l t u t E u l t t u x u x x l -<<>==≥==≤≤=0 其中E 为已知常数。
解(,)(,)(,)(,)(1)(0,)(0,)(0,)(0,)0(1,)(1,)(1,)0(1,)0(,0)(,0)(,0)0(,0)(1)(,0)(,0)(,0tt tt tt tt xx xx xx xxt t t v x t u x t w x t w x t x E v u w u v u w u v t u t w t E u t v t u t w t u t v x u x w x u x x E v x u x w x =+=-=+==+==+=⇒==+=⇒==+=⇒=--=+ , (0)()0(1)()0)0(,0)0(0,)0,(1,)0(,0)(1)(,0)0(,)()()(,)()()(,)()()0102t tt xxt xx tt X T t X T t u x u u u t u t u x x E u x u x t X x T t u x t X x T t u x t X x T t T X T X X T T XX X T T X λλλ===⇒=====-=''''===''''''''='''' ==-+= ()+= (){12121212(0)0,(1)0310()(0)00 X(1)000()02)0()X X x C c e X C C C C e C C X x X x Ax Bλλ===+=⇒=⇒+====+ ())< += = =0B A B =+= 0)(X 0B A =⇒x ==222220()(0)0(1)0()0,0sin 0(1,2,3,)()sin 0()cos sin (,)(cos sin )sin 1,2,3,n n n n n n n X x A B X A X B X x B n n n X x B xT a n T T t C n at D n atu x t C n at D n at n x n λπλππππππππ>=+====≠≠====''+==+=+=L L = ()11(,)(cos sin )sin (,0)sin 00n n n t n n n u x t C n at D n at n xu x n aD n x D πππππ∞=∞==+==⇒=∑∑ 1(,0)sin (1)n n u x C n x x E π∞===-∑1101100102222(1)sin (1)cos 22(1)cos cos 222sin n E C x E n xdx x d n x n E E x n n xdx n n E E E n x n n n πππππππππππ=-=--=--+=-+=-⎰⎰⎰112(,)()cos sin 2(,)()cos sin (1)n n Eu x t n at n x n Ev x t n at n x x E n ππππππ∞=∞==-=-+-∑∑ 2.求解定解问题20(0,0)(0,)0,(,)0(0)(,0)(0)t xx u a u x l t u t u l t t u xu x x l l=<<>==≥=≤≤ 解:22212(,)()()(,)()()(,)()()0(1)0(2)(0,)(0)()0(0)0,()0(3)(,)()()01)0,()(0xx t u x t X x T t u x t X x T t u x t X x T t T X T X a X T a T XX X T a T u t X T t X X l u l t X l T t X x C C e X λλλλ'''===''''''===-''='+===⎧==⎨==⎩<=+ + 12121212112121212222)00()000()02)0()0()003)0()sin (0)0,()0()0,0,sin 0(1,2,3,)C C X l C C e C C X x X x C x C C C C X x C C X x C C X C X l C X x C n n n λλππλ=⇒+==⇒+=≡==+=⎫⇒=≡⎬+=⎭>=+====≠≠====L == , 2222222222222211()sin ()()0()(,)sin(,0)sin n a tl n n n n n a tl n n n n ln xX x C l n aT t T t T t A e ln xu x t A el u n x u x A xl l ππππππ-∞-=∞=='+=====∑∑ 22220020000001100002210122sin cos 22cos cos 222(1)sin (1)2(,)(1)sinl l n l l n l n n a tn l n u u n x l n xA x dx xd l l l l n l u u n x n x x dx n l l n l lu u u n x n n l n un x u x t en lππππππππππππππ++∞-+===-⋅=-+=-+=-=-⎰⎰⎰∑3.有一两端无界的枢轴,其初始温度为1(1)(,0)0(1)x u x x ⎧<⎪=⎨≥⎪⎩ 试求在枢轴上的温度分布为222sin (,)(cos )a t u x t x e d μμμμπμ∞-=⎰解:定解问题为21(1)(,0)()0(1)t xx u a u x u x x x ϕ=⎧<⎪==⎨≥⎪⎩ 设 (,)()i x u x t T t e d μμμ∞-∞=⎰2222222211()()()()0()(,)C()1(1)(,0)()0(1)11()(,0)22112()i xa t a t i x i i i i T t a T t e T t a T t T t Ce u x t e e d x u x x x C u x e d e d e e i μμμμμμμμμμξμξμμμμμμϕμξξπππμ∞-∞-∞--∞∞---∞--'⎡⎤+⎣⎦'+==∴=⎧<⎪==⎨≥⎪⎩==⎡=⋅-⎣-⎰⎰⎰⎰ 利用初始条件 得 222201sin 1sin 2sin (,)(cos )a t i x a t u x t e e d x e d μμμμπμμμμμμπμπμ∞∞---∞⎤=⋅⎦∴==⎰⎰4. 复数231i -的三角形式为3,3sin 3cos πππi e i --5.复数5cos 5sin ππi +的三角形式为103,103sin 103cos πππi e i +,其指数形式为6. 复数的实部u =,虚部v =,模r =,幅角θ=.1,2u v ==,1,2(0,1,2,)3r k k πθπ==+=±±L7. 复数22i +-的实部=u ,虚部=v ,模=r ,幅角=θ . 2,2=-=v u , ),2,1,0(243,2Λ±±=+==k k r ππθ8. 014=--i z 的解为3,2,1,0(,24284==+k ez k ik ππ9、数c x ie x e z f y y ++=cos sin )(10.试证下列函数在z 平面上解析,并分别求其导数.y ie y e z f xx cos sin )(-=证明: y e y x u x sin ),(=, y e y x v xcos ),(-=y e yuy e xux x cos ,sin =∂∂=∂∂, y e yvy e xvx x sin ,cos =∂∂-=∂∂ 平面上解析在平面上可微在平面上连续在z z f z y x v y x u z yv x v y u x u x v y u y v x u )(),(),,(,,,,∴∴∂∂∂∂∂∂∂∂∂∂-=∂∂∂∂=∂∂∴Θ z x x x ie y y i ie y ie y e xvi x u z f -=+-=-=∂∂+∂∂=')cos sin (cos sin )(4 6. 积分⎰==13cos z zdz z7. 积分=⎰badz z z 2cos )sin (sin 2122a b -积分=⎰10sin zdz z 9.积分=⎰202sin πdz z z10.计算232|2:|,1=-+⎰i z c dz z e c izπe 1 4. 幂级数n n n z ∑∞=121的收敛半径幂级数∑∞=-1)1(n nn z 的收敛半径为幂级数121nz n n =∞∑的收敛半径为幂级数n n n z ∑∞=131的收敛半径为8. 函数zz f -=11)(在2|1|<+z 上展成)1(+z 的泰勒级数为 n n n z )1(2101∑∞=++9.把f z z z ()()()=--123展为展为z 的泰勒级数,并给出收敛半径。