数学物理方法题目

合集下载

数学物理方法习题

数学物理方法习题

第一章 分离变量法1、求解定解问题:200000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n h l x x l n u h l l x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223) 2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。

[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩= ] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布20|()/t u bx l x l ==-。

[定解问题为220200,()(0),||0,|()/.t xx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230) 4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。

[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩](P-236) 5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。

数学物理方法试题(卷)

数学物理方法试题(卷)

数理方法概论试题及参考答案一、简答题(每小题5分,共20分)1. 写出高斯定理⎰⎰⋅∇=⋅SVdV d A S A2. 在斯托克斯定理()⎰⎰⋅⨯∇=⋅SLd A d S l A中, L 是式中那个量的边界线? 3. 定解问题包含那两部分?在数学上,边界条件和初始条件合称为定解条件,数学物理方程本身(不连带定解条件)叫做泛定方程.定解条件提出具体问题,泛定方程提供解决问题的依据,作为一个整体,叫做定解问题. 4. 边界条件有那几类?1) 直接规定边界上的值.这叫做第一类边界条件.()()t ,z ,y ,x f t ,z ,y ,x u S 000=2) 直接规定梯度在边界上的值.这叫做第二类边界条件.()t ,z ,y ,x f nu S000=∂∂3) 规定了边界上的数值与(外)法向导数在边界上的数值之间的一个线性关系.()t ,z ,y ,x f n u H u S 000=⎪⎭⎫ ⎝⎛∂∂+4) 除上述的边界条件外,在求解物理问题时,一般还会遇到所谓的自然边界条件.自然边界条件一般由物理问题本身提出,由于真实的物理量应该是有限的,而在无穷远或坐标原点处的数学的解往往会包含无穷大的解在内,这时从物理上考虑应该舍去这些解,这就构成了上述的自然边界条件.除此之外还有周期性自然边界条件.二、证明题(每小题20分,共40分)1. 证明 ϕϕ2∇≡∇⋅∇ 证: 2222222x y z x y z x y z ϕϕϕϕ⎛⎫⎛⎫∂∂∂∂∂∂∇⋅∇=++⋅++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂∂=++≡∇ ⎪∂∂∂⎝⎭xy z x y z e e e e e e 2. 证明不同阶的勒让德多项式在区间()11+-,上正交.()()()l k dx x P x P lk≠=⎰+-011证明:设本征函数k P 和l P 分别满足勒让德方程()()()()01101122=++⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡-l l k k P l l dx dP x dx d P k k dx dP x dx d前一式乘以l P ,后一式乘以k P ,然后相减得()()()()[]0111122=+-++⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-l k l k k lP P l l k k dx dP x dx d P dx dP x dx d P 从1-到1+积分得()()()()11221101111k l l k k l dP dP d d P x P x dx k k l l P Pdx dx dx dx dx ++--⎧⎫⎡⎤⎡⎤=---++-+⎡⎤⎨⎬⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ ()()()()1122111111k l l k k l dP dP d x P x P dx k k l l P Pdx dx dx dx ++--⎧⎫=---++-+⎡⎤⎨⎬⎣⎦⎩⎭⎰⎰()()()()()()()()222211111111111111k l k l l k l k x x k l k l dP dP dP dP x P x P x P x P dx dx dx dx k k l l P Pdxk k l l P Pdx==-+-+-⎡⎤⎡⎤=-------⎢⎥⎢⎥⎣⎦⎣⎦++-+⎡⎤⎣⎦=+-+⎡⎤⎣⎦⎰⎰当l k ≠时即有:()110k lP Pdx k l +-=≠⎰三、计算题(每小题20分,共40分)1. 研究矩形波(见图1)1(0,)(2,(21))()1(,0)((21),2)m m f x m m ππππππ++⎧=⎨---⎩于以及于以及的频谱.解:根据()01cos sin k k k k x k x f x a a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑及()1cosln ln n a f d l lπξξξδ-=⎰ ()1sin l n l n b f d l lπξξξ-=⎰这里l π=可以求得:x()()000111(1)10222111cos (cos )cos 0n a f d d d a f n d n d n d ππππππππξξξξπππξξξξξξξπππ----==-+===-+=⎰⎰⎰⎰⎰⎰()[][]00122sin sin cos 22cos 1(1)1n nb f n d n d n n n n n ππππξξξξξξππππππ-===-⎡⎤=-+=--+⎣⎦⎰⎰当 220k n kb == 当 21421(21)k n k b k π+=+=+因此得到该函数的展开式为:04sin(21)()21k k xf x k π∞=+=+∑ 需要注意的是:由于所给函数是奇函数,所以展开式中只有sin 项而没有cos .如果所给函数是偶函数,那么展开式中就只有cos 项而没有sin 项.2. 求0=+''y y λ (0=+''ΦλΦ)满足自然周期条件()()x y x y =+π2 [()()φΦπφΦ=+2]的解.解:方程的系数()()λ==x q ,x p 0在指定的展开中心00=x ,单值函数(),x p 00=和()λ=0x q 是有限的,它们必然是有限的,它们必然在00=x 为解析的.因此,点00=x 是方程的常点.可设() +++++=k k x a x a x a a x y 2210从而()() ++++++='+k k x a k x a x a a x y 123211321()()() +++++⋅+⋅+⋅=''+k k x a k k x a x a a x y 2243212342312把以上的级数代入微分方程.至于()()λ==x q ,x p 0都是只有常数项的泰勒级数,无需再作展开.现在把各个幂次的项分别集合如下令上表各个幂次合并后的系数分别为零,得一系列方程01202=+⋅a a λ 02313=+⋅a a λ03424=+⋅a a λ 04534=+⋅a a λ............... ...............()()0122=++++kk a a k k λ最后一个式子是一般的.所有这些式子指出从kx 项的系数k a 可以推算出2+k x 项的系数2+k a ,因而叫做系数的递推公式.按照递推公式具体进行系数的递推.()()()()()()20312242053122120021112!3!434!545!11112!2!21!kk kkkkkkk k a a a a a a a a a a a a a a a k k k λλλλλλλλ++=-=-=-=+=-=+⋅⋅-=-=-=-=+这样,我们得到方程的解()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡++-+-+-+⎥⎦⎤⎢⎣⎡-+-+-=+ 125312420!1211!51!31!211!41!211k k k kxk x x x a x k x x a x y λλλλλλλλ还需要确定这个级数的收敛半径.其实,上面两个[ ]正是cos θ和sin θ,其收敛半径为无穷大.于是()0y x a =既然1a 是任意常数,λ1a 当然还是任意常数,将λ1a 写成B ,0a 写成A ,则有()y x A B =+这个常微分方程和它的解实际早已知道,这里用级数方法只是为了了解级数解法的步骤.考虑到要满足自然周期条件()()x y x y =+π2则m =λ, 3210,,,m =.所以有解()cos sin y x A mx B mx =+。

数学物理方法习题及解答

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。

由于在平面上可微所以在平面上解析。

()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

高中物理数学物理法题20套(带答案)及解析

高中物理数学物理法题20套(带答案)及解析

高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

数学物理方法期末考试试题

数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。

7. 解释什么是边界层理论,并说明它在流体力学中的重要性。

8. 描述格林函数在求解偏微分方程中的作用。

## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。

10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。

假设\( \rho \) 是常数,求解 \( V(x) \)。

## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。

请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。

数学物理方法习题集

数学物理方法习题集

数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。

(2),iii i 524321-+-+。

(3),5(1)(2)(3)i i i ---。

(4),4(1)i -。

(5),bi a +。

2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。

(2),1(2n+, 4,3,2=n 。

(3),i +1。

(4),3)i -。

(5),231i -。

3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。

4,若21=+Z z θcos ,证明21=+m m zz θm cos 。

5,求下列复数z 的主幅角z arg :(1),iz 312+-=。

(2),6)z i =-。

6,用指数形式证明:(1),(1)2i i -+=+。

(2),i ii2125+=+。

(3),7(1)8(1)i i -+=-+。

(4),1011(12(1)--=-。

7,试解方程44(0)z a a +=>。

8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。

(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。

(3),2121z z z z = ;一般2121z z z z +≠+。

9,证明:(1),2121z z z z +=±。

(2),2121z z z z ⋅=。

(3),1122(z zz z = (02≠z )。

(4),121212122Re()2Re()z z z z z z z z +==。

(5),()z z ≤Re ,()z z ≤Im 。

(6),2121212z z z z z z ≤+。

(7),222121212()()z z z z z z -≤+≤+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法习题一、复变函数部分习题第一章习题1、证明函数()Re f z z =在z 平面上处处不可导。

2、试证()2f z z =仅在原点有导数。

3、设333322()z 0()z=00x y i x y f z x y +++≠ =+,证明()z f 在原点满足C-R 条件,但不可微。

4、若复变函数()z f 在区域D 上解析,并满足下列条件之一,证明其在区域D 上必为常数。

(1)()z f 在区域D 上为实函数; (2)()*z f 在区域D 上解析; (3)()Re z f 在区域D 上是常数。

5、证明2xy 不能成为z 的一个解析函数得实部。

6、若z x iy =+,试证:(1)sin sin cosh cos sinh z x y i x y =+; (2)cos cos cosh sin sinh z x y i x y =−; (3)222sin sin sinh z x y +=; (4)222cos cos sinh zx y =+。

7、试证若函数()f z 和()z ϕ在0z 解析。

()()000f z z ϕ==,()00z ϕ′≠,则()()()()000lim z z z f z f z z ϕϕ→′=′。

(复变函数的洛必达法则) 8、求证:0sin lim1z zz→=。

第二章习题9、利用积分估值,证明a.()22ii x iy dz π−+≤∫,积分路径是联结i −到i 的右半圆周。

b.证明2+212iidz z ≤∫积分路径是直线段。

10、不用计算,证明下列积分之值均为零,其中c 均为圆心在原点,半径为1的单位圆周。

a.cos c dzz ∫ ; b.256z c e dz z z ++∫ 。

11、计算a. ()221:21c z z dzc z z −+=−∫ ; b. ()()2221:21cz z dzc z z −+=−∫。

12、求积分():1z c e dz c z z =∫ ,从而证明()cos 0cos sin e d πθθθπ=∫。

13、由积分2c dz z +∫之值,证明012cos 054cosd πθθ+=+∫,c 为圆心在原点,半径为1的单位圆周。

14、设()264z F z z +=−,证明积分()c F z dz ∫ a.当c 是圆周221x y +=时,等于0; b.当c 是圆周()2221x y −+=时,等于4i π; c.当c 是圆周()2221x y ++=时,等于2i π−。

第三章习题15、求下列级数的收敛半径,并对c 讨论级数在收敛圆周上的敛散情况。

a.11n n n z n ∞=∑;b.1n nn n z ∞=∑; c.0k n n n z ∞=∑(0k >为常数);16、试求下列级数的收敛半径。

a.!0n n z ∞=∑; b.0!nn n n z n ∞=∑;c. ()00,0n n n n z a b a ib ∞=>>+∑。

17、将下列函数按z 的幂展开,并指明收敛范围。

a. 0zz e dz ∫; b. 2cos z 。

18、将下列函数按1z −的幂展开,并指出收敛范围。

a. cos z ;b.2z z +; c. 225zz z −+。

19、将下列函数在指定的环域内展成罗朗级数。

a.21(1)z z z +−,01,1z z <<<<∞;b.()()2225,1221z z z z z −+<<−+。

20、将下列函数在指定点的无心邻域内展成罗朗级数,并指出成立范围。

a.()221,1z i z =+;【()nnn a z i ∞=−∞−∑】 b.()1211,1zz ez −−=。

【()1nn n a z ∞=−∞−∑】 21、把()11f z z=−展成下列级数。

(1)在1z <上展成z 的泰勒级数; (2)在1z >上展成z 的罗朗级数; (3)在12z +<上展成(1)z +的泰勒级数; (4)在12z +>上展成()1z +的罗朗级数。

第四章习题22、确定下列各函数的孤立奇点,并指出它们是什么样的类型(对于极点,要指出它们的阶),对于无穷远点也要加以讨论: (1)()2211z z z −+; (2)1cos z i +; (3)1sin cos z z+。

23、求()11zze f z e −=+在孤立奇点处的留数。

24、求下列函数在指定点处的留数。

(1)()()211zz z −+在1,z =±∞; (2)241ze z −在0,z =∞。

25、求下列函数在其奇点(包括无穷远点)处的留数,(m 是自然数)(1)1sin mz z (m 是自然数); (2)()21z e z −; (3)31sin z e z −。

26、求下列函数在其孤立奇点(包括无穷远点)处的留数。

(1)12z z eα−; (2)()()()1mz z αβαβ≠−−。

27、计算下列积分(1)1sin z dzz z=∫ ; (2)()()1,1,1,,n nz dza b a b n z a z b =<<≠−−∫ 为自然数;(3)222121zz e dz z π=+∫ 。

28、求下列各积分值(1)2201cos d πθθ+∫ ; (2)()2200sin d a a πθθ>+∫。

29、求下列各积分的值(1)()()222014x dx x x ∞++∫ ; (2)()22cos (1)9xdx x x ∞−∞++∫; (3)()44sin 0,0x mxdx m a x a∞>>+∫。

30、从c∫ 出发,其中c 为如图所示之围线,方向沿逆时针方向。

证明00∫∫二、数学物理方程及特殊函数部分习题第五章习题31、弦在阻尼介质中振动,单位长度的弦所受阻力t F Ru =−(比例常数R 叫做阻力系数),试推导弦在这阻尼介质中的振动方程。

32、长为l 柔软均质轻绳,一端(0x =)固定在以匀速ω转动的竖直轴上。

由于惯性离心力的作用,这绳的平衡位置应是水平线。

试推导此绳相对于水平线的横振动方程。

33、长为l 的均匀杆,两端由恒定热流进入,其强度为0q 。

试写出这个热传导问题的边界条件。

34、半径为R 而表面燻黑的金属长圆柱,受到阳光照射,阳光方向垂直于柱轴,热流强度为M 。

设圆柱外界的温度为0u ,试写出这个圆柱的热传导问题的边界条件。

第六章习题35、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后突然撤除这力,求解此弦的振动。

36、研究长为l ,一端固定,另一端自由,初始位移为hx 而初始速度为零的弦的自由振动情况。

37、求解细杆的热传导问题。

杆长为l ,两端温度保持为零度,初始温度分布为()20t bx l x u l =−=。

38、求解细杆的热传导问题。

杆长为l ,初始温度为均匀的0u ,两端温度分别保持为1u 和2u 。

39、长为l 的柱形管,一端封闭,另一端开放。

管外空气中含有某种气体,其浓度为0u ,向管内扩散。

求该气体在管内的浓度(),u x t 。

40、均匀的薄板占据区域0x a <<,0y <<∞。

其边界上的温度为00x u ==,0x a u ==,00y u u ==,lim 0y u →∞=。

求解板的稳定温度分布。

41、试用分离变数法求解定解问题()()()20000,00,000,00tt xx x x x l t t t u a u g t x l u u t u u x l ==== =+><<==> ==<< 。

42、半径为a ,表面燻黑了的均匀长圆柱,在温度为零度的空气中受着阳光的照射,阳光垂直于柱轴,热流强度为q ,试求圆柱内的稳定温度分布。

43、用傅立叶变换求解定解问题()()()()222200,,0,0,y y u ux y x y u x x u x ϕ=→∞ ∂∂+=−∞<<∞> ∂∂=−∞<<∞=−∞<<∞。

第七章习题44、试用平面极坐标系把二维波动方程分离变数。

45、试用平面极坐标系把二维输运方程分离变数。

46、求证()()()11()2l l l l P x P x xP x P x +−′′′=−+,1l ≥。

47、利用上题和()()111()21()()0l l l l P x l xP x lP x +−+−++=,1l ≥, 求证()()()()1121l l l l P x P x P x +−′′+=−,1l ≥。

48、在[]1,1−区间上将2x 用勒让德多项式展开。

49、验证:33123()()55x P x P x =+。

50、证明:()()()10211,0()0,2,1,2,2!1,21,0,1,2,2!1!l k k l P x dx l k k k l k k k k +====−=+= + ∫。

51、求解()()2200,0cos ,0r ar u r a u u θπθθπ=→ ∇=<<< ==<< 有限值。

52、求解()()2200,0cos ,0r a r u r a u u θπθθπ=→ ∇=><< ==<< 有限值。

53、用一层不导电的物质把半径为a 的导体球壳分隔为两个半球壳,使各半球分别充电到电势为1v 和2v ,试计算球壳内外的电势分布。

54、半径为a ,表面燻黑的均匀球,在温度为00的空气中,受着阳光的照射,阳光的热流强度为0q ,求解小球里的稳定温度分布。

55、计算下列积分(1)()30x J x dx ∫;(2)()3J x dx ∫。

56、半径为R 而高为H 的圆柱体下底面和侧面保持零度,上底面温度分布为()2f ρρ=,求柱体内各点的稳恒温度(稳定温度分布)。

57、设半径为R 的无限长圆柱形物体的侧面温度为00,初始温度为22t u R ρ==−,求此物体的温度分布随时间的变化规律。

(无限长→u 与ϕ无关)58、圆柱体半径为R 而高为H ,上底面保持温度1u ,下底面保持温度2u ,侧面温度分布为()()12222u u Hf z z z H z H H=−+−,求解圆柱体内各点的稳恒温度(稳定温度分布)。

相关文档
最新文档