数学物理方法试题

合集下载

数学物理方法试卷

数学物理方法试卷

数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。

本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。

一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。

2. 请用微分方程求解y'' + 4y = 0,并给出其特解。

3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。

本试卷针对数学物理方法的知识进行了全面的考察。

选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

数学物理法练习题含答案及解析

数学物理法练习题含答案及解析

数学物理法练习题含答案及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='=【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F的表达式,讨论F取最小值的条件.4.如图所示,长为3l的不可伸长的轻绳,穿过一长为l的竖直轻质细管,两端拴着质量分别为m、2m的小球A和小物块B,开始时B先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B对地面的压力恰好为零,A在水平面内做匀速圆周运动.已知重力加速度为g,不计一切阻力.(1)求A做匀速圆周运动时绳与竖直方向夹角θ;(2)求摇动细管过程中手所做的功;(3)轻摇细管可使B在管口下的任意位置处于平衡,当B在某一位置平衡时,管内一触发装置使绳断开,求A做平抛运动的最大水平距离.【答案】(1)θ=45°;(2)2(1)4mgl-;(3) 2l。

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析
赛车飞出C后有:
解得:
所以当
R=0.3m
时x最大
xmax=1.2m
7.如图所示,半圆形玻璃砖的半径为R,圆心为O。一束单色光由玻璃砖上的P点垂直于半圆底面射入玻璃砖,其折射光线射向底面的Q点(图中未画出),折射率为 ,测得P点与半圆底面的距离为 。计算确定Q点的位置。
【答案】
【解析】
【详解】
如图所示
上的亮斑刚消失设紫光的临界角为 ,画出光路图
则有
当 时, 面上反射角 ,反射光线垂直射到 面上后入射到 上,则
解得
9.如图所示,木板B放在水平地面上,在木板B上放一重300N的A物体,物体A与木板B间,木板与地间的摩擦因数均为 ,木板B重力为1200N,当水平拉力F将木板B匀速拉出,绳与水平方向成30°时,问绳的拉力T多大?水平拉力多大?
【答案】(1) ;(2)
【解析】
【详解】
(1)如图甲,由几何关系知P点的折射角为30°。
则有
(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P点后的折射光线分布在CQB范围内,设在D点全反射,则DQ范围无光线射出。
D点有
解得
由几何关系知
, ,
解得
4.图示为直角三角形棱镜的截面, , ,AB边长为20cm,D点到A点的距离为7cm,一束细单色光平行AC边从D点射入棱镜中,经AC边反射后从BC边上的F点射出,出射光线与BC边的夹角为 ,求:
(1)棱镜的折射率;
(2)F点到C点的距离。
【答案】(1) ;(2)
【解析】
【详解】
(1)由几何知识可知,光束从 点入射的入射角 ,做出光路图:
设对应折射角为 ,则光束在 边的入射角为
在 边上的入射角

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

高中物理数学物理法题20套(带答案)及解析

高中物理数学物理法题20套(带答案)及解析
【答案】(1)600m
(2)8s
【解析】
试题分析:(1)轰炸机投下的炸弹在空中做平抛运动,时间为t,由
t=12s
炸弹从投下到击中汽车,水平位移为l
l= v0t
解得l =600m
(2)从发现汽车到击中汽车,炸弹在水平方向的位移为s
s= v0(△t+t)
汽车的位移为s'
s0+ s'=s
解得△t =8s
考点:平抛运动、匀变速直线运动的规律.
(1)物块运动初速度 的大小;
(2)物块与斜面间的动摩擦因数及最小上滑位移对应的斜面倾角 (可用反三角函数表示)。
【答案】(1) ;(2) ,
【解析】
【详解】
(1)物块沿斜面向上滑动时,由牛顿第二定律得
垂直斜面方向,由平衡条件得

三式联立解得物块的加速度大小为

解得



时,x有最小值,且
由 关系图象可知

即能打到收集板上的粒子数占总粒数的比值
2.如图所示,身高h=1.7 m的人以v=1 m/s的速度沿平直路面远离路灯而去,某时刻人的影长L1=1.3 m,2 s后人的影长L2=1.8 m.
(1)求路灯悬吊的高度H.
(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动?
(3)在影长L1=1.3 m和L2=1.8 m时,影子顶端的速度各是多大?
a′=μg
根据 ,得
从C点做平抛运动,击中挡板所需时间为t′,则有
在竖直方向获得的速度为vy=gt′,击中挡板的速度为
当且仅当 ,v″取最小值,解得

10.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q,从容器A下方的小孔S不断飘入电压为U的加速电场,经过S正下方的小孔O后,沿SO方向垂直进入磁感应强度为B、方向垂直纸面向外的匀强磁场中,最后打在相机底片D上并被吸收。已知D与O在同一平面内,其中碳12在底片D上的落点到O的距离为x,不考虑粒子重力和粒子在小孔S处的初速度。

(物理)数学物理法练习题含答案含解析

(物理)数学物理法练习题含答案含解析
(1)木星探测器在上述圆形轨道上运行时的轨道半径;
(2)木星的第一宇宙速度。
【答案】(1) ;(2)
【解析】
【详解】
(1)设木星探测器在圆形轨道运行时,轨道半径为 ,由 可得
由题意可知
联立解得
(2)探测器在圆形轨道上运行时,设木星的质量为 ,探测器的质量为 ,万有引力提供向心力得
设木星的第一宇宙速度为 ,则有
轴方向粒子做匀加速直线运动,有
代入数据得,匀强电场的场强大小
11.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q,从容器A下方的小孔S不断飘入电压为U的加速电场,经过S正下方的小孔O后,沿SO方向垂直进入磁感应强度为B、方向垂直纸面向外的匀强磁场中,最后打在相机底片D上并被吸收。已知D与O在同一平面内,其中碳12在底片D上的落点到O的距离为x,不考虑粒子重力和粒子在小孔S处的初速度。
(1)求绳断时球的速度大小v1和球落地时的速度大小v2
(2)问绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
【答案】(1)v1= ,v2= ;(2)T= mg;(3)当l= 时,x有极大值xmax= d
【答案】(1) , ;(2) ,
【解析】
【分析】
【详解】
(1)根据全反射定律可知
解得 、 的临界角分别为
进入玻璃砖后, 光在 边发生折射, 光恰好在 边发生全反射,光路图如图:
对 光,根据折射定律
解得
(2) 、 在玻璃砖中传播的速度分别为
、 在玻璃砖中传播的路程

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ;【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.图示为一由直角三角形ABC 和矩形CDEA 组成的玻璃砖截面图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法试卷
一、选择题(每题4分,共20分)
1.柯西问题指的是( )
A .微分方程和边界条件. B. 微分方程和初始条件.
C .微分方程和初始边界条件. D. 以上都不正确.
2.定解问题的适定性指定解问题的解具有( )
A .存在性和唯一性. B. 唯一性和稳定性.
C. 存在性和稳定性.
D. 存在性、唯一性和稳定性.
3.牛曼内问题 ⎪⎩⎪⎨⎧=∂∂=∇Γ
f n u u ,02 有解的必要条件是( )
A .0=f .
B .0=Γu .
C .0=⎰ΓdS f .
D .0=⎰Γ
dS u . 4.用分离变量法求解偏微分方程中,特征值问题⎩⎨⎧==<<=+0
)()0(0 ,0)()(''l X X l x x X x X λ
的解是( )
A .) cos , (2x l n l n ππ⎪⎭⎫ ⎝⎛.
B .) sin , (2
x l n l n ππ⎪⎭
⎫ ⎝⎛. C .) 2)12(cos ,2)12( (2x l n l n ππ-⎪⎭⎫ ⎝⎛-. D .) 2)12(sin ,2)12( (2x l n l n ππ-⎪⎭
⎫ ⎝⎛-. 5.指出下列微分方程哪个是双曲型的( )
A .0254=++++y x yy xy xx u u u u u .
B .044=+-yy xy xx u u u .
C .02222=++++y x yy xy xx u y xyu u y xyu u x .
D .023=+-yy xy xx u u u .
二、填空题(每题4分,共20分)
1.求定解问题⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤≤==>-==><<=∂∂-∂∂====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程
0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx
其特征方程为( ).
3.二阶常微分方程0)()4341()(1)(2'''=-++
x y x x y x x y 的任一特解=y ( ).
4.二维拉普拉斯方程的基本解为( r 1ln
),三维拉普拉斯方程的基本解为( ).
5.已知x x x J x x x J cos 2)( ,sin 2)(2
121ππ==
-,利用Bessel 函数递推公式求 =)(2
3x J ( ). 三、(20分)用分离变量法求解如下定解问题
222220
000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====⎧∂∂-=<<>⎪∂∂⎪∂∂⎪==>⎨∂∂⎪⎪==≤≤⎪⎩
解:
四、(20分)用行波法求解下列问题 ⎪⎪⎩
⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<∞->=∂∂-∂∂∂+∂∂==. ,0 ,3 , ,0 ,03202022222x y u x u x y y u y x u x u y y 解:
五、(20分)用Laplace 变换法求解定解问题:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧<<=>==><<∂∂=∂∂===.20 ,sin ,0 ,0,0 ,20 ,02022x x u t u u t x x u t u t x x π 解:。

相关文档
最新文档