【最最最最最新】数学物理方法试卷(附答案)
高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)一、数学物理法1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.2.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。
有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。
【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=① 根据几何知识可得3sin 2OA R θ==② 90αθ+=︒ ③联立解得3n =3(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。
物理数学物理法题20套(带答案)

(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(3)当滑动变阻器接入电路的阻值为多大时,电源的输出功率最大,最大功率是多少。
【答案】(1)2 W。(2)2.5 W。(3)3.125 W。
解得
所以第一次速度为零时所处的y轴坐标为0。
6.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为 d,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求A沿倾斜轨道下滑的加速度与碰后沿轨道上滑的加速度大小之比;
(2)若倾斜轨道与水平面的夹角为θ,求A与倾斜轨道间的动摩擦因数μ;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B在此碰上。求改变前后动摩擦因数的比值。
【答案】(1) ;(2) ;(3) 或者
【解析】
【详解】
(1)速度为 的粒子沿 轴正向发射,打在薄板的最远处,其在磁场中运动的半径为 ,由牛顿第二定律
①
②
联立,解得
③
(2)如图a所示
速度为 的粒子与 轴正向成 角射出,恰好穿过小孔,在磁场中运动时,由牛顿第二定律
④
而
⑤
粒子沿 轴方向的分速度
⑥
联立,解得
由圆周运动向心力公式,有
Fmax-mg=
得
Fmax= mg
(2)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有
高考物理数学物理法题20套(带答案)

(1)对A受力分析,根据平条件有
得
(2)对B受力分析,根据平衡条件有
得
7.如图所示,已知电源电动势E=5 V,内阻r=2Ω,定值电阻R1=0.5Ω,滑动变阻器R2的阻值范围为0~10Ω。求:
(1)当滑动变阻器R2接入电路的阻值为多大时,电阻R1消耗的功率最大,最大功率是多少。
(2)当滑动变阻器接入电路的阻值为多大时,滑动变阻器消耗的功率最大,最大功率是多少。
(2)将定值电阻R1看做电源内阻的一部分,则电源的等效内阻:
r'=R1+r=2.5 Ω
故当滑动变阻器接入电路的阻值R2=r'=2.5 Ω时
滑动变阻器消耗的功率最大,最大功率为:
P2m= =2.5W
(3)由电源的输出功率与外电阻的关系可知,当R1+R2'=r,即:
R2'=r-R1=(2-0.5) Ω=1.5 Ω
2r1max 2r2mincosα
联立解得ΔU应满足的条件
答:(1)碳12的比荷为 ;(2)碳12在底片D上的落点到O的距离的范围为 ;(3)若要使这两种粒子的落点区域不重叠,则 U应满足 。
【点睛】
本题考查带电粒子在复合场中的运动,加速场运用动能定理,粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力结合几何关系,第三问难点在于找出粒子不重叠的条件,即:打中底片时离O点的距离应需满足:碳14的最近距离大于碳12的最远距离。
(1)这束入射光线的入射角多大?
(2)该束光线第一次从棱镜出射时的折射角.
【答案】(1)这束入射光线的入射角为48.6°;
(2)该束光线第一次从棱镜出射时的折射角为48.6°
【解析】
试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°,
【物理】物理数学物理法题20套(带答案)

【物理】物理数学物理法题20套(带答案)一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。
一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。
光线恰能从Q 点射出。
(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。
【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。
则有sin 452sin 30n ==o o(2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。
D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得312DQ a -=2.如图,在长方体玻璃砖内部有一半球形气泡,球心为O ,半径为R ,其平面部分与玻璃砖表面平行,球面部分与玻璃砖相切于O '点。
有-束单色光垂直玻璃砖下表面入射到气泡上的A 点,发现有一束光线垂直气泡平面从C 点射出,已知OA =32R ,光线进入气泡后第一次反射和折射的光线相互垂直,气泡内近似为真空,真空中光速为c ,求: (i )玻璃的折射率n ;(ii )光线从A 在气泡中多次反射到C 的时间。
【答案】(i )3n =;(ii )3t R c=【解析】 【分析】 【详解】(i )如图,作出光路图根据折射定律可得sin sin n θα=①根据几何知识可得3sin OA R θ==② 90αθ+=︒ ③联立解得3n =④玻璃的折射率为3。
(ii )光从A 经多次反射到C 点的路程322R Rs R R R =+++=⑤ 时间st c=⑥ 得3t R c=光线从A 在气泡中多次反射到C 的时间为3R c。
高考物理数学物理法题20套(带答案)

高考物理数学物理法题20套(带答案)一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos157712gLS rt Tπ︒==︒【点睛】考察粒子在复合场中的运动。
高中物理数学物理法题20套(带答案)含解析

高中物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。
在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。
若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。
已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。
若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。
两小球重力均不计。
(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。
【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2BB122Tt nTt n==(2)如图所示,小球A经圆周运动后,在电场中做类平抛运动。
水平方向有A AL v t=③竖直方向有2A A A12y a t=④由牛顿第二定律得AqE ma=⑤解③④⑤式得2AA()2qE Lym v=⑥小球B在电场中做类平抛运动,同理有22B1B()2n qE Lyn m v=⑦由题意知By r=⑧应用几何关系得B A2y y r y∆=+-⑨解①⑥⑦⑧⑨式得123ry rn n∆=-2.如图所示,身高h=1.7 m的人以v=1 m/s的速度沿平直路面远离路灯而去,某时刻人的影长L1=1.3 m,2 s后人的影长L2=1.8 m.(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv t H h=-=1.25m/s ; 【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.3.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I和II两个区域,I区域的宽度为d,右侧磁场II区域还存在平行于xoy平面的匀强电场,场强大小为E=22B qdm,电场方向沿y轴正方向。
高考物理数学物理法题20套(带答案)
高考物理数学物理法题20套(带答案)一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mvqv BR='⑨1mvRqB'=⑩带电粒子在磁场中圆周运动的周期为T12π2πR mTv qB'==⑪在磁场中运动时间2π(π2)2πt Tα--=⑫联立⑪⑫得663π10s9.4210st--=⨯=⨯2.如右图所示,一位重600N的演员,悬挂在绳上.若AO绳与水平方向的夹角为37︒,BO绳水平,则AO、BO两绳受到的力各为多大?若B点位置往上移动,则BO绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin︒=,4cos375︒=,3374tan︒=,4373cot︒=)【答案】AO绳的拉力为1000N ,BO绳的拉力为800N,OB绳的拉力先减小后增大.【解析】试题分析:把人的拉力F沿AO方向和BO方向分解成两个分力,AO绳上受到的拉力等于沿着AO绳方向的分力,BO绳上受到的拉力等于沿着BO绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F沿AO方向和BO方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.人在A 点拉着绳通过一个定滑轮匀速吊起质量50kg m =的物体,如图所示,开始时绳与水平方向成60o 角,当人拉着绳由A 点沿水平方向运动2m s =而到达B 点时,绳与水平方向成30o 角,求人对绳的拉力做了多少功?(不计摩擦,g 取210m/s )【答案】732J 【解析】 【分析】 【详解】人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h ,物体上升的高度等于滑轮右侧绳子增加的长度,即sin 30sin 60h hh ∆=-o o又tan 30tan 60h hs =-o o所以人对绳的拉力做的功(31)732JW mg h mg s =∆=⋅-≈4.如图所示,在xOy 平面的第一、第四象限有方向垂直于纸面向里的匀强磁场;在第二象限有一匀强电场,电场强度的方向沿y 轴负方向。
物理数学方法试题及答案
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
(物理)物理数学物理法题20套(带答案)含解析
(物理)物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
【物理】物理数学物理法题20套(带答案)含解析
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福师大物理系《数学物理方法》B 课程考试题
一、简答题(共70分)
1、试阐述解析延拓的含义。
解析延拓的结果是否唯一?(6分)
解析延拓就是通过函数的替换来扩大解析函数的定义域。
替换函数在原定义域上与替换前的函数相等。
无论用何种方法进行解析延拓,所得到的替换函数都完全等同。
2、奇点分为几类?如何判别?(6分)
在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。
判别方法:洛朗级数展开法
A,先找出函数f(z)的奇点;
B,把函数在的环域作洛朗展开
1)如果展开式中没有负幂项,则为可去奇点;
2)如果展开式中有无穷多负幂项,则为本性奇点;
3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。
3、何谓定解问题的适定性?(6分)
1,定解问题有解;2,其解是唯一的;3,解是稳定的。
满足以上三个条件,则称为定解问题的适定性。
4、什么是解析函数?其特征有哪些?(6分)
在某区域上处处可导的复变函数
称为该区域上的解析函数.
1)在区域内处处可导且有任意阶导数.
2)
()
()
⎩
⎨
⎧
=
=
2
1
,
,
C
y
x
v
C
y
x
u
这两曲线族在区域上正交。
3)()y x u,和()y x v,都满足二维拉普拉斯方程。
(称为共轭调和函数)
4)在边界上达最大值。
4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)
数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。
波动方程属于其中的双曲线方程。
5、写出)(x δ挑选性的表达式(6分)
()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==-⎰⎰⎰∞
∞∞-∞∞
-)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ
6、写出复数2
31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2
321isin cos 222ππϕ
ϕρϕϕρi i i +=++=+=+
指数形式:由三角形式得:
313πρπϕi e
z ===
7、求函数
2)2)(1(--z z z 在奇点的留数(8分) 解:
奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=⎥⎦⎤⎢⎣
⎡---=→z z z z sf z
1)1(1lim )2)(1()2(!11lim Re 22222)
2(\-=⎥⎦
⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---=→→z z z z z dz d sf z z 8、求回路积分 dz z
z z ⎰=13cos (8分)
解:)(z f 有三阶奇点z=0(在积分路径内)
[]21-cosz lim z cosz !21lim Re 033220)0(\==⎥⎦
⎤⎢⎣⎡=→→z z z dz d sf ∴原积分=i i sf i πππ-=-=)2
1(2)0(Re 2
9、计算实变函数定积分dx x x ⎰∞
∞-++1142(8分) 解:⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--+=++=)1(22)1(22)1(22)1(22111)(242i z i z i z i z z z z z f 它具有4个单极点:只有z=)1(22i --和z=)1(2
2i +在上半平面,其留数分别为: ππ2)221221(2I 221)1(22)1(22)1(221lim Re 221)1(22)1(22)1(221lim Re 20))1(22(\20))1(22(\=+=∴=⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--+==⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡--+=→+→--i
i i i i z i z i z z sf i i z i z i z z sf
z i z i
10、求幂级数k k i z k )(11
-∑∞
= 的收敛半径(8分) 111lim 1
11
lim lim 1
≤-=+=+==∞→∞→+∞→i z k k k k a a R k k k k k 所以收敛圆为
二、计算题(共30分)
1、试用分离变数法求解定解问题(14分)
⎪⎪⎩⎪⎪⎨⎧=-===><<=-====0
,2/100,000002t t t l x x x x xx tt u x u u u t l x u a u
令)()(),(t T x X t x u =,并代入方程得
⎪⎩
⎪⎨⎧===-0)()(0)()0(0
''''2''t T l X t T X T X a XT 移项 λ-==X X T a T ''2'' ⎪⎩
⎪⎨⎧===+0)(0)0(0''''l X X X X λ和02''=+T a T λ x
C x C x X C x C x X e C e C x X x x λλλλλλ
λsin cos )(0)(0)(0212
121+=+==+=---时,方程的解为:>在时,方程的解为:在时,方程的解为:<在
由边界条件0)(0)0(''==l X X ,得:
x l
n C x X l n n l l C l C l C l X C C X x
C x C x X C
Xx x X ππλπλλλλλλλλλλλλλλλcos )(0
sin 00
sin cos )(000)0(sin cos )(0(00
)(0122
2121'22'21'==→=∴=≠=+-==≠==+===≡(否则方程无解),,时,>时,时,<
)3,21(sin cos )()(000002''22
2 ,得:的方程代人和把=⎪⎩
⎪⎨⎧+=+==+==n l at n B l at n A t T t B A t T T a T T l
n n n n ππλπλλ x l
n l at n B l at n A t B A t x U n n n πππcos )sin cos (),(100+∑++=∴∞= 由初始条件得⎪⎪⎩
⎪⎪⎨⎧=∑+-=∑+∞=∞=0cos 21cos 1010x l n l a n B B x x l n A A n n n n πππ 把右边的函数展成傅里叶余弦级数, 比较两边的系数得
⎰⎰⎰⎰⋅=⋅-==-=l n l n l l xdx l n a n B xdx l n x l A dx l B dx x l A 000
000cos 02cos )21(201)2
1(1πππ 得:⎪⎩⎪⎨⎧=+=-=∴-=-=)2(0)12(4)1(cos 2212
2220k n k n n l A n n l
A l A n n πππ x l n l at n n l l t x U n πππ
cos cos )4(21),(221-∑+-=∴∞=
2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分) ⎪⎪⎪⎩
⎪⎪⎪⎨⎧===-==∆====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π
),(),(),(t x w t x v t x u +=令
⎪⎪⎪⎩⎪⎪⎪⎨⎧=====+====0sin 00000b y y a x x yy xx v a x B v v v v v ,,
π ⎪⎪⎩⎪⎪⎨⎧===-==+====000)(000b y y a x x yy xx w w w y b Ay w w w ,,
则,v ,w 都可以分别用分离变量法求解了。
3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。
(10分)
解:对方程程两边取拉氏变换,并注意到初始条件,得 ()()()1
13212+=
-+-p p f p f p p f p 解上式这个代数方程,得 ()()()()
3112+-++=p p p p p f ()3
181********+⋅--⋅++⋅-=p p p p f ()t t t e e e t y 3818341---⋅+⋅-=∴ t
e y y y -=-
'+''32。