随机过程作业(全部)
随机过程作业和答案第一二章

随机过程作业第一章 P9例题6:随机过程X(t)=A+Bt, t ≥0, 其中A 和B 是独立随机变量,分布服从正态分布N(0, 1)。
求X(t)的一维和二维分布。
解 先求一维分布。
当t 固定,X(t)是随机变量,因为 EX(t)=EA+tEB=0, DX(t)=DA+2t DB=1+2t故X(t)具有正态分布N(0, 1+2t )。
这亦是随机过程X(t)的一维分布。
再求二维分布。
当1t , 2t 固定, X(1t )=A+B 1t , X(2t )=A+B 2t因A 、B 独立同正态分布,故(A, B)T 亦为二维正态分布。
则其线性变换也服从正态分布。
且所以二维分布是数学期望为(0, 0)T,协方差矩阵 的二维正态分布。
P10例题7:随机过程X(t)=Acost, -∞<t<∞,其中A 是随机变量,且有分布列 A 1 2 3 P 1/3 1/3 1/3 求 (1) 一维分布函数(2) 二维分布函数解 (1) 先求所以222211211)DX(t ,1)DX(t , 0)EX(t ,0)(t t t EX +=+===212121211))(())()X(t ())X(t ),(cov(t t Bt A Bt A E t X E t X +=++==⎥⎦⎤⎢⎣⎡++++222121211111t t t t t t )3π,0x x F )2πF(x;x F ;,( ),4;(21π( ;) 4F x π。
X()cos ,442A A ππ==显然,三值,,易知它仅取2232 22{()42P X π=={cos 42P A π==1P{A 1},3==31}223)4({ ,31 }2)4({====ππX P X P 同理,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<= 2 23 x 1,2 23x 2 ,32 2 x 22 ,3122 x 0 )4; ( ,πx F进而有P18例题1:具有随机初相位的简谐波 其中a 与 是正常数,而 服从在区间[0,2 ]上的均匀分布, 求X(t)的数学期望方差和相关函数。
第三章随机过程作业

第三章随机过程作业1. 设A 、B 是独立同分布N(0,σ2)的随机变量,求随机过程{X t =At +B,t ∈R 1}的均值函数、自相关函数和协方差函数。
2. 设{X t ,t ≥a}是独立增量过程,且X a =0,方差函数为σX t 2。
记随机过程Y t =kX t +c ,k 、c 为常数,c≠0。
(1) 证明Y t 是独立增量随机过程;(2) 求Y t 的方差函数和协方差函数。
3. 设随机过程X t =X +Y ⋅t +Z ⋅t 2,其中X,Y,Z 是相互独立的随机变量且均值为0、方差为1,求{X t }的协方差函数。
4. 设U 是随机变量,随机过程X t =U,−∞ <t <∞ .(1) X t 是严平稳过程吗?为什么?(2) 如果E(U)=μ ,Var(U)=σ2,证明:X t 的自相关函数是常数。
5. 设随机过程X t =U cos t +V sin t,−∞ <t <∞ ,其中U 与V 独立同分布N(0,1)。
(1) X t 是平稳过程吗?为什么?(2) X t 是严平稳过程吗?为什么?6. 设随机变量X 的分布密度为f X ( x), 令 Y( t) = e − X t ( t > 0 ,X > 0), 试求Y( t)的一维概率分布密度及E(Y ( t ))、R X (s,t)。
7. 若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令X (t )={cos πt ,如t 时手机接收到短信息,2t ,如t 时手机未接收到短信息,试求:X (t )的一维分布函数 F [12;x],F[1;x]8. 设随机过程Y n =∑X k n k=1,Y 0=0, 其中X k ( 1 ≤ k ≤ n) 是相互独立的随机变量 ,且P( X k = 1 ) = p ,P( X k = 0 ) = 1 − p = q , 试求{ Y n } 的均值与协方差函数 .9. 设X( t) = A sin (ωt +Z) ,其中A 、ω为常数 , 随机变量Z ~ U( −π ,π) , 令Y ( t) = X 2 ( t ) , 试求 :EY ( t ) 和R Y ( t,t +τ)。
随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
《随机过程概论》第2章 随机信号的基本概念 作业

第2章 随机信号的基本概念 作业
2-1、已知随机信号()0cos X t A t ω=,其中0ω 为常数,随机变量A 服从标准高斯分布。
求00
0,,32t ππωω=三个时刻()X t 的一维概率密度。
2-2、已知随机信号()X
t A Bt =+,其中,A B 皆为已知的随机变量。
①求随机信号()X t 的期望()E X t ⎡⎤⎣⎦和自相关函数()12,X R t t ;②若已知随机变量,A B 相互独立,试用,A B 的概率密度()A f a 和()B f b 来表示()X t 的一维概率密度();X f x t 。
2-3、两个随机信号()()0sin X
t t ω=+Φ与()()0cos Y t t ω=+Φ,其中0ω为常数,随机变量Φ服从[]0,2π的均匀分布;试求:
①两个随机信号的互相关函数()12,XY
R t t ; ②讨论两个随机信号的正交的条件,并且判定正交条件下它们的互不相关性与统计独立性。
2-4、设随机信号()00cos sin X t A t B t ωω=+,其中0ω为常数,,A B 是两个
线性无关的高斯随机变量,且期望都为0,方差为2σ,求()X
t 的一维概率密度函数。
清华大学随机过程作业 答案

清华大学电子工程系版权所有
3
参考答案:
(1) |X1|, |X2|, |X3|, ... 满足 Markov 性,可以严格证明:P (|Xn+1| = xn+1||X1| = x1, ..., |Xn| = xn) = P (|Xn+1| = xn+1||Xn| = xn)。 当 |Xn| = 0 时,必有:|Xn+1| = 1,P (|Xn+1| = 1||X1| = x1, ..., |Xn| = 0) = 1 = P (|Xn+1| = 1||Xn| = 0) 当 |Xn| = xn ̸= 0 ∨ m 时,则 |Xn+1| = xn+1 必须取值为 |Xn| ± 1
=
(i1,
i2),
Zt−1
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
0 < i1 = i2 < m 其他
1
P {Zt+1
=
(i1,
i2)|Zt
=
(i1,
i2),
Zt−1
=
(xt−1,
yt−1),
·
·
·
,
Z1
=
(x1,
y1)}
=
2
0
i1 = i2 = m 其他
2. 设一个离散时间、离散状态的随机过程 {Xn, n ⩾ 1} 满足
X1, · · · , Xn−1⊥Xn+1|Xn, ∀n > 1
则成立
李晓峰应用随机过程课后习题_随机过程答案CH1

习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
随机过程作业(全部)

作业1(随机过程的基本概念)1、对于给定的随机过程{(),}X t t T ∈及实数x ,定义随机过程1,()()0,()X t xY t X t x≤⎧=⎨>⎩,t T ∈ 请将{(),}Y t t T ∈的均值函数和相关函数用{(),}X t t T ∈的一维和二维分布函数表示。
2、设(),Z t X Yt t R =+∀∈,其中随机变量X ,Y 相互独立且都服从2(0,)N σ,证明{(),}Z t t R ∀∈是正态过程,并求其相关函数。
3、设{(),0}W t t ≥是参数为2σ的Wiener 过程,求下列过程的协方差函数: (1){(),0}W t At t +≥,其中A 为常数;(2){(),0}W t Xt t +≥,其中(0,1)X N ,且与{(),0}W t t ≥相互独立;(3)2{(),0}taW t a ≥,其中a 为正常数; (4)1{(),0}tW t t≥作业2(泊松过程)1、设{(),0}N t t ≥是强度为λ的Poisson 过程,令()()()Y t N t L N t =+-,其中L>0为常数,求{(),0}Y t t ≥的一维分布,均值函数和相关函数。
2、设{(),0}N t t ≥是强度为λ的Poisson 过程,证明对于任意的0s t ≤<,(()|())()(1),0,1,,k kn k n s s P N s k N t n C k n t t-===-=作业3 (更新过程)1 设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = 服从参数为λ的指数分布,则(t),0N t ≥是服从参数为λ的Poisson 分布。
2 某收音机使用一节电池供电,当电池失效时,立即换一节同型号新电池。
如果电池的寿命服从30小时到60小时的均匀分布,问长时间工作情况下该收音机更换电池的速率是多少? 若没有备用电池,当收音机失效时,立即在市场上采购同型号电池,获得新电池的时间服从0小时到1小时的均匀分布,求在长时间工作的情况下,更换电池的速率。
(完整版)随机过程习题答案

解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)
。
解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业1(随机过程的基本概念)
1、对于给定的随机过程{(),}X t t T ∈及实数x ,定义随机过程
1,()()0,()X t x
Y t X t x
≤⎧=⎨
>⎩,t T ∈ 请将{(),}Y t t T ∈的均值函数和相关函数用{(),}X t t T ∈的一维和二维分布函数表示。
2、设(),Z t X Yt t R =+∀∈,其中随机变量X ,Y 相互独立且都服从2(0,)N σ,证明
{(),}Z t t R ∀∈是正态过程,并求其相关函数。
3、设{(),0}W t t ≥是参数为2
σ的Wiener 过程,求下列过程的协方差函数: (1){(),0}W t At t +≥,其中A 为常数;
(2){(),0}W t Xt t +≥,其中(0,1)X N ,且与{(),0}W t t ≥相互独立;
(3)2{(),0}t
aW t a ≥,其中a 为正常数; (4)1
{(),0}tW t t
≥
作业2(泊松过程)
1、设{(),0}N t t ≥是强度为λ的Poisson 过程,令()()()Y t N t L N t =+-,其中L>0为常数,求{(),0}Y t t ≥的一维分布,均值函数和相关函数。
2、设{(),0}N t t ≥是强度为λ的Poisson 过程,证明对于任意的0s t ≤<,
(()|())()(1),0,1,,k k
n k n s s P N s k N t n C k n t t
-===-=
作业3 (更新过程)
1 设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = 服从参数为λ的指数分布,则
(t),0N t ≥是服从参数为λ的Poisson 分布。
2 某收音机使用一节电池供电,当电池失效时,立即换一节同型号新电池。
如果电池的寿命服从30小时到60小时的均匀分布,问长时间工作情况下该收音机更换电池的速率是多少? 若没有备用电池,当收音机失效时,立即在市场上采购同型号电池,获得新电池的时间服从0小时到1小时的均匀分布,求在长时间工作的情况下,更换电池的速率。
3 设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = 的概率密度函数是
(),()0,
,x e x f x x αβαββ--⎧>=⎨≤⎩
求((t))P N k ≥。
4 设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = ,()N M t t λ=是它的更新函数,求
1
[exp()],0n
k k E t X t =->∑。
5设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = 的概率密度函数是
2,0
()0,0
t te t f x t λλ-⎧>=⎨≤⎩
求更新函数()N M t 。
作业4(Markov 过程)
一、计算题
1、设{,0}n X n ≥是齐次Markov 链,其状态空间{,,}E a b c =,一步转移概率为矩阵为
1/21/41/42/301/33/52/50⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
求(1)12340(,,,|)P X b X c X a X c X a =====; (2)2(|)n n P X c X b +==。
2、考虑一个质点在直线上作随机游动,如果在某一个时刻质点位于状态i ,则下一步将以概率(01)p p <<向前移动到达1i +,或以1q p =-向后移动到达1i -,以n X 表示n 时刻质点的位置,且在0时刻从原点出发,则{,0}n X n ≥显然是一个Markov 链。
求 (1)写出状态空间E ;
(2)求一步转移概率矩阵; (3)求n 步转移概率矩阵。
3、设齐次Markov 链{,0}n X n ≥的状态空间是{1,,7} ,状态转移矩阵为
001/201/201/31/31/3000000100001/3000
002/301000001/20
00001/20003/40
1/40P ⎡⎤⎢⎥⎢⎥⎢⎥
⎢
⎥
=⎢⎥⎢⎥
⎢
⎥
⎢⎥⎢⎥⎣
⎦
(1)对状态空间进行分解;
(2)求平稳分布。
4、设齐次Markov 链{,0}n X n ≥的状态空间是{1,2,3},状态转移矩阵为
000
q
p P q
p q
p ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
其中(01)p p <<,1q p =-,问该Markov 链{,0}n X n ≥是否为遍历链,为什么?若是,求极限分布。
5、设Markov 链{,0}n X n ≥的状态空间是{1,2,} ,转移概率矩阵为
1122331000
100010001000k k p p p p p p P p p -⎡⎤
⎢⎥-⎢
⎥⎢⎥
-=⎢
⎥⎢⎥⎢⎥
-⎢
⎥⎣⎦
其中1/,1,2,k k p e k -== ,判断状态1的性质。
6、某厂的商品销售状态可分为三个:分别用1,2,3表示滞销、正常和畅销,经过对历史资料的整理分析,其销售状态的变化与初始时刻无关,状态转移概率矩阵为
1/21/2
01/31/95/91/62/31/6P ⎡⎤⎢⎥=⎢⎥
⎢⎥⎣⎦
试对经过长时间后的销售状况进行分析。
二、证明题
1、设,1,2,k Y k = 为相互独立的随机变量,证明 (1){,1,2,}k Y k = 是Markov 链;
(2)1
{
,1,2,}n
k k Y n ==∑ 是Markov 链。
2、设{(),0}X t t ≥是状态离散的平稳的独立增量过程,且(0)0X =,证明{(),0}X t t ≥是Markov 链(注意,连续时间)。
3、设Markov 链{,0}n X n ≥的状态空间是{0,1,2,} ,转移概率为
0,10000,1,1,2,,i i i i p p p i p p -=>===
证明
(1)Markov 链{,0}n X n ≥是常返的不可约的; (2)Markov 链{,0}n X n ≥是零常返的充分必要条件是
1
1n n np
∞
-==∞∑;
(3)Markov 链{,0}n X n ≥是正常返的充分必要条件是
1
1
n n np
∞
-=<∞∑,且此时的平稳分布
为1
11,0,1,n n i n n p i np π∞
=∞-=⎧⎫
⎪⎪⎪⎪==⎨⎬⎪⎪⎪⎪⎩⎭
∑∑ 。
4、证明:若状态空间的元素个数为n ,且状态j 可由状态i 到达,则状态i 最多用n 步到达状态j 。