随机过程2016作业及答案3
(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
应用随机过程第三章习题解

g(t) = f (x, tx)|x|dx
3
第三章 更新过程
第三章 更新过程
其中 f (t, tx) 是 Xi 与 TiXi 的联合密度函数, 当 Xi 与 TiXi 独立时,有
∫ g(t) = λ exp{−λtx}f (x)|x|dx
所以这样的 Ti 是存在的.
3.6 如果 p = P (X = ∞) > 0, 则称 X 是广义的随机变量. 设 X 是广
是 3 分钟. 假设每台电话独立工作, 一共有 6 部电话, 估算上午 10:30 时恰
有 5 部电话占线的概率.
解:
由题可知每台电话占线的概率为
p
=
3 23
,
又各电话是否占线独立,
所以 10:30 有 5 部电话占线的概率为:
P = C65p5(1 − p)
3.11 眨眼使泪水均匀地涂在角膜和结膜的表面,以保持眼球润湿而不
∑ ∑k
∑
P ( Xi = j, Xk+1 > t − j) = (kλ)jexp(−kλ)P (X1 > t − j)/j!
0≤j≤t i=1
0≤j≤t
3.9 设更新过程 N (t) 的更新间隔是 Xn, i1, i2, . . . , in 是 1, 2, . . . , n 的一
个全排列. 对于 n ≥ 2, 证明
= 1/p − 1
3.7 对于泊松过程验证定理 1.2(2)成立.
证明: 对于泊松过程 N (t) 有 m(t) = E(N (t)) = λ·t, 而 λ·(t) 是连续的且 在 t≥0 时是严格增加的,当然是单调不减的, 也即定理 1.2(2) 对于泊松过 程是成立的。
3.8 设更新过程N(t)的更新间隔是来自总体 X 的随机变量。
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程试题及解答

2016随机过程(A )解答1、(15分)设随机过程V t U t X +⋅=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。
1) 求)(t X 的一维概率密度函数;2) 求)(t X 的均值函数、相关函数和协方差函数。
3) 求)(t X 的二维概率密度函数; 解:由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +⋅=)(也服从正态分布,且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==⋅+=⋅+=+{}{}{}{}22()()99D t D X t D U t V t D U D V t ==⋅+=+=+故: (1) )(t X的一维概率密度函数为:()222218(1)(),x t t t f x ex ---+=-∞≤≤∞(2) )(t X 的均值函数为:()22m t t =+;相关函数为:{}{}(,)()()()()R s t E X s X t E U s V U t V =⋅=⋅+⋅⋅+{}{}{}22()13()413st E U s t E U V E V st s t =⋅++⋅⋅+=⋅++⋅+协方差函数为:(,)(,)()()99B s t R s t m s m t st =-⋅=+(3)相关系数:(,)s t ρρ====)(t X 的二维概率密度函数为:2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x eρ⎧⎫⎡⎤-----⎪⎪+⎢⎥⎨⎬-++⎢⎥⎪⎪⎣⎦⎩⎭=2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。
问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解:到达商店顾客数服从非齐次泊松过程。
随机过程第三章作业答案

Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
10证明:利用停时定理2 由已知P(T<∞)=1,得条件1已满足。
2 2 又∀n ≥ 1,E[X T ∧ n ]=E[|X T ∧ n | ] ≤ c;
利用柯西-施瓦茨不等式(E[XY])2 ≤ E[X 2 ]E[Y 2 ]: 令Y=1,(E[|X T ∧ n |])2 ≤ E[|X T ∧ n |2 ]E[12 ] ≤ c ∴ E[|X T ∧ n |] ≤ c,进而有E[ sup|X T ∧ n |] ≤ c < ∞,
第三章习题解答
3-(1) ∵{ X n , n ≥ 0}是鞅, ∴ E[X 0 ] = E[X n ] = 0,且有 E[Yk ]=E[X k -X k-1 ]=0;Var(Yk )=E[Yk2 ];Var(X n )=E[X 2 n ];
2 E[Yk2 ]=E[(X k -X k-1 )2 ]=E[X k +X 2 k-1 -2X k X k-1 ] 2 =E[X k ]+E[X 2 其中 k-1 ]-2E[X k X k-1 ],
9 (一)常规证明: 右侧不等号: E[X T ∧ n ]=E[X T ∧ n ⋅ I{T ≥ n} ]+E[X T ∧ n ⋅ I{T<n} ]=E[X n ⋅ I{T ≥ n} ]+E[X T ⋅ I{T<n} ] =E[X n ⋅ I{T ≥ n} ]+E[∑ X k ⋅ I{T=k} ]
k =0 n-1
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1
随机过程答案

随机过程第三章与第四章习题解答3.1 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
4030(30)((1)40)!k k P N e k -=≤=∑。
3.2 解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。
1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。
1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==---- 12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。
令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。
则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。
212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。
故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。
随机过程2016quiz及答案3

• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.Players A and B take turns in answering trivia questions, starting with player A answering the first question. Each time A answers a question, she has probability p 1 of getting it right. Each time B plays, he has probability p 2 of getting it right.(a)If A answers m questions, what is the PMF of the number of questions she gets right?The r.v.is Bin(m,p 1),so the PMF is mkp k 1(1 p 1)m k for k 2{0,1,...,m }.(b)If A answers m times and B answers n times,what is the PMF of the total number of questions they get right (you can leave your answer as a sum)?Describe exactly when/whether this is a Binomial distribution.Let T be the total number of questions they get right.To get a total of k questions right,it must be that A got 0and B got k ,or A got 1and B got k 1,etc.These are disjoint events so the PMF isP (T =k )=k X j =0✓mj ◆p j 1(1 p 1)m j ✓n k j◆p k j 2(1 p 2)n (k j )for k 2{0,1,...,m +n },with the usual convention that n k is 0for k >n .This is the Bin(m +n,p )distribution if p 1=p 2=p ,as shown in class (using the story for the Binomial,or using Vandermonde’s identity).For p 1=p 2,it’s not a Binomial distribution,since the trials have di ↵erent probabilities of success;having some trials with one probability of success and other trials with another probability of success isn’t equivalent to having trials with some “e ↵ective”probability of success.(c)Suppose that the first player to answer correctly wins the game (with no prede-termined maximum number of questions that can be asked).Find the probability that A wins the game.Let r =P (A wins).Conditioning on the results of the first question for each player,we have r =p 1+(1 p 1)p 2·0+(1 p 1)(1 p 2)r,which gives r =p 11 (1 p 1)(1 p 2)=p 1p 1+p 2 p 1p 2.1SI 241 Probability & Stochastic Processes, Fall 2016Homework 3 Solutions随机过程2016作业及答案2.A message is sent over a noisy channel.The message is a sequence x1,x2,...,x n of n bits(x i2{0,1}).Since the channel is noisy,there is a chance tha t any bit might be corrupted,resulting in an error(a0becomes a1or vice versa).Assume that the error events are independent.Let p be the probability that an individual bit has an error(0<p<1/2).Let y1,y2,...,y n be the received message(so y i=x i if there is no error in that bit,but y i=1 x i if there is an error there).To help detect errors,the n th bit is reserved for a parit y check:x n is defined to be 0if x1+x2+···+x n 1is even,and1if x1+x2+···+x n 1is odd.When the message is received,the recipient checks whether y n has the same parit y as y1+y2+···+y n 1. If the parity is wrong,the recipient knows that at least one error occurred;otherwise, the recipient assumes that there were no errors.(a)For n=5,p=0.1,what is the probabilit y that the received message has errors which go undetected?Note that P n i=1x i is even.If the number of errors is even(and nonzero),the errors will go undetected;otherwise,P n i=1y i will be odd,so the errors will be detected.The number of errors is Bin(n,p),so the probability of undetected errors when n=5,p=0.1is✓52◆p2(1 p)3+✓54◆p4(1 p)⇡0.073.(b)For general n and p,write down an expression(as a sum)for the probability that the received message has errors which go undetected.By the same reasoning as in(a),the probability of undetected errors isX k even,k 2✓n k◆p k(1 p)n k.(c)Give a simplified expression,not involving a sum of a large number of terms,for the probabilit y that the received message has errors which go undetected.Hint for(c):Lettinga=X k even,k 0✓n k◆p k(1 p)n k and b=X k odd,k 1✓n k◆p k(1 p)n k,the binomial theorem makes it possible tofind simple expressions for a+b and a b, which then makes it possible to obtain a and b.2Let a,b be as in the hint.Thena +b =X k 0✓n k ◆p k (1 p )n k =1,a b =X k 0✓n k ◆( p )k (1 p )n k =(1 2p )n .Solving for a and b gives a =1+(1 2p )n 2and b =1 (1 2p )n2.Xk even,k 0✓n k ◆p k (1 p )n k =1+(1 2p )n 2.Subtrac ting o ↵the possibility of no errors,we haveX k even,k 2✓n k ◆p k (1 p )n k =1+(1 2p )n 2 (1 p )n .Miracle check :note that letting n =5,p =0.1here gives 0.073,which agrees with (a);letting p =0gives 0,as it should;and letting p =1gives 0for n odd and 1for n even,which agai n makes sense.33.Let X be a r.v. whose possible values are 0, 1, 2,...,with CDF F .In some countries, rather than using a CDF, the convention is to use the function G defined by G (x )=P (X <x ) to specify a distribution. Find a way to convert from F to G , i.e., if F is a known function show how to obtain G (x )for all real x .Write G (x )=P (X x ) P (X = x )=F (x ) P (X = x ).If x is not a nonnegative integer, then P (X = x )=0so G (x )=F (x ). For x a nonnegative integer,P (X = x )=F (x ) F (x 1/2)since the PMF corresponds to the lengths of the jumps in the CDF. (The 1/2was chosen for concreteness; we also have F (x 1/2) = F (x a )for any a 2 (0, 1].)Thus,G (x )=(F (x )if x /2{0,1,2,...}F (x 1/2)if x 2{0,1,2,...}.t More compact ly, we can also write G (x )=lim !x F (t ), where the denotes taking a limit from the left (recall that F is right continuous), and G (x )=F (d x e 1),where d x e is the “ceiling” of x (the smallest integer greater than or equal to x ).4.There are n eggs, each of which hatches a chick with probability p (independently).Eac h of these chicks survives with probability r , independently. What is the distri-bution of the number of chicks that hatch? What is the distribution of the number of chicks that survive? (Give the PMFs; also give the names of the distributions and their parame ters, if they are distributions we have seen in class.)⇤⇥ ©⇤⇥ x ⇤⇥ ⇤⇥ ⇤⇥ ©⇤⇥ ©⇤⇥ x ⇤⇥ ©⇤⇥ ⇤⇥©Let H be the number of eggs that hatch and X be the number of hatchlings that survive.Think of each egg as a Ber noulli trial,where for H we define “success”to mean hatching,while for X we define “success”to mean surviving.For example,in the picture above,where ⇤⇥ ©denotes an egg that hatches with the chick surviving,⇤⇥ x denotes an egg that hatched but whose chick died,and ⇤⇥ denotes an egg that hatch,the events H =7,X =5occurred.By the of the Binomial,H ⇠Bin(n,p ),with PMF P (H =k )= n k p k (1 p )n k for k =0,1,...,n .The eggs independently have probability pr each of hatching a chick that survives.By the story of the Binomial,we have X ⇠Bin(n,pr ),with PMF P (X =k )= n k (pr )k (1 pr )n k for k =0,1,...,n .5.A scientist wishes to study whether men or women are more likely to have a certain disease, or whether they are equally likely. A random sample of m women and n men is gathered, and each person is tested for the disease (assume for this problem that the test is completely accurate). The numbers of women and men in he sa B n(n,w p ho ha He ve re p h e di and seas p e ar are e X unkno and Y wn,re p s and ec w tiv e e r a ly,Y i 2.1 2 e w in ith tereste d ⇠Bi in n(testin g p 1) a the le mp t t X ,m nd ⇠) “null hypothesis” p 1 = p 2.(a) Consider a 2 by 2 ta ble listing with rows corresponding to disease status and columns corresponding to gender, with each entry the count of how many people have that disease status and gender (so m + n is the sum of all 4 entries). Supp ose that it is observed that X + Y = r .The Fisher exact test is based on conditioning on both the row and column sums, so m, n, r are all treated as fixed, and then seeing if the observed value of X is “extreme” compared to this conditional distribution. Assuming the null hypothesis, use Ba yes’ Rule to find the conditional PMF of X given X + Y = r .Is this a distribution we have studied in class? If so, say which (and give its paramet ers).First let us build the 2 ⇥ 2 table (conditioning on the totals m, n, and r ).4Women Men Total Disease x r No Diseasem x r r x +n x m +n r Total n m m +nNext,let us compute P (X =x |X +Y =r ).By Ba yes’rule,P (X =x |X +Y =r )=P (X +Y =r |X =x )P (X =x )P (X +Y =r )=P (Y =r x )P (X =x )P (X +Y =r ).Y Assum Bi i n n (g n,th p e )w nu i l t l h h X ypot inde h p esi e s nde an n d t l of etti Y ng ,s p o =X p +1Y =p 2Bi ,w n(e n h +ave m,X p ).⇠T Bi h n us (,m,p )and ⇠⇠r x p r x p p )r n (1 r +x n m x p x (1 p )m x (1m + n r p )m +n r P (X =x |X +Y =r )== m nx m +r n rx .So the conditional distribution is Hypergeometric with parameters m, n, r.(b) Give an intuitive explanation for the distribution of (a), explaining how this problem relates to other problems we’ve seen, and why p 1 disappears (magica lly?) in the distribution found in (a).This problem has the same structure as the elk (capture-recapture) problem. In the elk problem, we take a sample of elk from a population, where earlier some were tagged, and we want to know the distribution of the number of tagged elk in the sample. By analogy, think of the women as corresponding to tagged elk, and men as corresponding to unta gged elk. Having r people be infected with the disease corresponds to capturing a new sample of r elk the number of women among the r diseased individuals corresponds to the number of tagged elk in the new sample.Under the null hypothesis and given that X + Y = r ,the set of diseased people is equally likely to be any set of r people.It makes sense that the conditional distribution of the number of diseased women does not depend on p ,since once we know tha t X + Y = r ,we can work directly in terms of the fact that we have a population with r diseased and m + n r undiseased people, without worrying about the value of p that originally generated the population characteristics.5。