随机过程习题和答案

合集下载

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

(完整版)随机过程习题答案

(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。

解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。

解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。

(完整word版)随机过程试题带答案

(完整word版)随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

1.为it(e-1)e λ。

2. 1(sin(t+1)-sin t)2ωω。

3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。

6.(n)nP P =。

随机过程习题答案

随机过程习题答案

1 X ( )与 X (1)的联合分布律为 2 1 X( ) 0 1 2 X (1) −1 +2 1 2 0 0 1 2
0, 0, 1 1 , ⇒ F ( x1 , x2 ; ,1) = 2 2 1 , 2 1,
x1 < 0, −∞ < x2 < +∞ x1 ≥ 0, x2 < −1 0 ≤ x1 < 1, x2 ≥ −1 x1 ≥ 1, −1 ≤ x2 < 2 x1 ≥ 1, x2 ≥ 2
假定 Z (t ) = X + Yt , t ∈ R.若已知二维随机变量 例3 σ 12 ( X , Y )的协方差矩阵为 ρσ 1σ 2 的协方差函数.
ρσ 1σ 2 ,试求 Z (t ) 2 σ2
解 CZ (t1 , t2 ) = E[( X + Yt1 − ( µ X + µY t1 ))( X + Yt2 − ( µ X + µY t2 ))] = E[(( X − µ X ) + (Yt1 − µY t1 ))(( X − µ X ) + (Yt2 − µY t2 ))] = E[( X − µ X )( X − µ X )] + t2 E[( X − µ X )(Y − µY )] +t1 E[(Y − µY )( X − µ X )] + t1t2 E[(Y − µY )(Y − µY )]
(3)、令 Z (t ) = aW ( t a 2 ) ⇒ µ Z (t ) = aE[W ( t a 2 )] = 0 C Z (t1 , t 2 ) = E[ aW ( t1 a 2 ) aW ( t2 a 2 )] = a 2 E[W ( t1 a 2 )W ( t2 a 2 )] = a 2σ 2 min{ t1 a 2 , t2 a 2 } = σ 2 min{t1 , t 2 }, t1 , t 2 ≥ 0

随机过程试题与答案

随机过程试题与答案

随机过程试题与答案《随机过程》试题一、简答题(每小题4分,共16分) 1、φX t =E e jtX2、acos ωt +π3 ,acos ωt ?π4 . (任意两条即可)3、N t 为参数λ的poison 过程,{X n }是独立同分布的随机变量序列,且与N t相互独立,则称Y t = X n N tn=1为复合poison 过程。

4、二重积分 R X s,t dsdt ba b a 存在且有限。

二、(本题10分)解:(1)P N 12 ?N 8 =0 =e ?12. (5分)(2)f T t =3e ?3t t >00t ≤0(10分)三、(本题12分)解:(1){0,3}是正常返的闭集,{1,4}是正常返的闭集,{2}是非常返的。

(4分)(2)对于{0,3}和{1,4}的转移概率矩阵分别为P 1= 0.60.40.40.6 ,P 2= 0.60.40.20.8 (6分)记z 1 =(z 1 1,z 2 1),z 2 =(z 1 2,z 2 2),求解方程组z 1 =z 1 P 1, z 1 1 +z 2 1=1z 2 =z 2 P 2, z 1 2 +z 2 2=1得z 1 = 12,12 , z 2 = 13,23 。

则平稳分布为(10分)π= λ1,λ2,0,λ1,2λ2(12分)四、(本题13分)解:(1)Q = ?λλμ?(λ+μ) 0 0λ 00 μ0 0 ?(λ+μ)λμ?μ (4分)前进方程dP(t)dt =P(t)Q (6分)后退方程dP(t)dt=QP(t) (8分)(2)由πQ =0,π=1, π=(π0,π1,π2,π3) 解得平稳分布为π0=1?λμ1? λμ4,π1=λμ 1?λμ1? λμ4,π2=λμ2 1?λμ1? λμ4,π3=λμ3 1?λμ1? λμ4(13分) 五、(本题13分)解:(1)对任意的t 1,t 2,?,t n ∈R ,Z t 1 Z t 2 ?Z t n = t 12t 22?t n2 2t 12t 2?2t n X Y + ?2?2?2?2因X,Y 是相互独立的正态分布,所以 XY 是正态分布,又线性变换的性质可知Z t 1 ,Z t 2 ,?,Z t n T 服从多元正态分布,故Z t 是正态过程。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。

答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。

2. 解释什么是泊松过程,并给出其主要特征。

答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。

其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。

三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。

计算在时间间隔[0, t]内恰好发生n次事件的概率。

答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。

答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。

解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。

1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。

1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==----12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。

令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。

则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。

212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。

故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。

将乘客乘坐公共汽车1代表试验成功,那么有:121111111211212(1=()()N N N N k N k k N P C λλλλλλ+----=++∑路汽车比2路汽车先出发)(2)当1N =2N 、1λ=2λ时2121111111111(1=()()2222N N N k N k k k k N k N P CC -------====∑∑路汽车比2路汽车先出发)3.3设{(),0}i N t t ≥,(1,2,,)i n =是n 个相互独立的Poisson 过程,参数分别为i λ(1,2,,)i n =。

记T 为全部n 个过程中,第一个事件发生的时刻。

(1)求T 的分布; (2)证明1{()(),0}n i i N t N t t ==≥∑是Poisson 过程,参数为1ni i λλ==∑;(3)求当n 个过程中,只有一个事件发生时,它是属于1{(),0}N t t ≥的概率。

解:(1)记第i 个过程中第一次事件发生的时刻为1i t ,1,2,...,i n =。

则1min{,1,2,...,}i T t i n ==。

由1i t 服从指数分布,有111111{}1{}1{min{,1,2,...,}}1{,1,2,...,}1{}1{1(1)}1exp{}i i ni i i nnti i i P T t P T t P t i n t P t t i n P t t et λλ=-==≤=->=-=>=->==->=---=--∏∑∏(2)方法一:由{(),1,2,...,}i N t i n =为相互独立的poisson 过程,对于,0s t ∀≥。

11111{()()}{[()()]}{()(),,1,2...,}(exp(()))!()exp(())!n ni in ni ni i i iiiinnn ni i i i i n ni ni i i P N t s N t n P N t s N t n P N t s N t n nn i n ss n s s n λλλλ=∑=∑=====+-==+-==+-====-=-∑∑∑∑∑∏∑∑这里利用了公式11(...)!!in ni nnni n i i n n λλλ=∑=++=∑∏所以1{()(),0}n i i N t N t t ==≥∑是参数为1ni i λλ==∑的poisson 过程。

方法二: ○1当0h →时,11111{()()1}{[()()]1}{(())(1())}[()]()ni i i nn i j i j j inni i i i P N t h N t P N t s N t h o h h o h h o h h o h λλλλ===≠==+-==+-==+-+=+=+∑∑∏∑∑○2当0h →时, 111111{()()2}{[()()]2}1{[()()]2}1(1())()1(1())()()ni i i ni i i n nj i i j n ni i i i P N t h N t P N t s N t P N t s N t h o h h o h h o h h o h o h λλλλ======+-≥=+-≥=-+-<=--+-+=--+-+=∑∑∑∏∑∑得证。

(3)11{()1|()1}{()1,()0,2,...,}/{()1}i P N t N t P N t N t i n P N t ======= 1111121/...ni i i nnttti i i nteeet λλλλλλλλ=---==∑==++∑∏3.4 证明poisson 过程分解定理:对于参数为λ的poisson 过程{(),0}N t t ≥,01i p <<,11ri i p ==∑,1,2,,i r =,可分解为r 个相互独立的poisson 过程,参数分别为i p λ,1,2,,i r =。

解:对过程{(),0}N t t ≥,设每次事件发生时,有r 个人对此以概率12,,...,r p p p 进行记录,且11ri i p ==∑,同时事件的发生与被记录之间相互独立,r 个人的行为也相互独立,以()i N t 表示为到t 时刻第i 个人所记录的数目。

现在来证明{(),0}i N t t ≥是参数为i p λ的poisson 过程。

00{()}{()|()}{()}()(1)()!()!i i i n m n m mntm ni i n mp ti P N t m P N t m N t m n P N t m n t Cp p em n p t em λλλλ∞=+∞-+=-====+=+=-+=∑∑独立性证明:考虑两种情况的情形,即只存在两个人记录, 一个以概率p ,一个以概率1p -记录,则1{(),0}N t t ≥是参数为p λ的poisson 过程,2{(),0}N t t ≥是参数为(1)p λ-的poisson过程。

121121212121212112211121211121212121212{(),()}{(),()}{()}{()|()}()(1)()!()!()(1)()!!!()(1)!!(k k k k k t k k k k k k t k k k k t P N t k N t k P N t k N t k k P N t k k P N t k N t k k t e C p p k k k k t e p p k k k k t e p p k k pt λλλλλλλ+-++-+-=====+==+==+=-++=-+=-=12(1)121122)((1))!!{()}{()}k k t p t p t e ek k P N t k P N t k λλλ----===得证。

3.5 设{(),0}N t t ≥是参数为3的poisson 过程,试求 (1){(1)3}P N ≤; (2){(1)1,(3)2}P N N ==; (3){(1)2|(1)1}P N N ≥≥解:(1)33303{(1)3}13!kk P N e e k --=≤==∑ (2){(1)1,(3)2}{(1)1,(3)(1)1}P N N P N N N ====-=369{(1)1}{(3)(1)1}3618P N P N N e e e ---==-===(3)33{(1)2}14{(1)2|(1)1}{(1)1}1P N e P N N P N e--≥-≥≥==≥- 3.6 对于poisson 过程{(),0}N t t ≥,证明s t <时,{()|()}P N s k N t n ===(1)()n k k n s sk t t -⎛⎫- ⎪⎝⎭解:(){(),()}{()|()}{()}{(),()()}{()}{()()}{()}{()}(())()()!!()!()!()!!()n k kt s s nt n k k nn k k P N s k N t n P N s k N t n P N t n P N s k N t N s n k P N t n P N t N s n k P N s k P N t n t s s e en k k t en t s s n n k k t n t s s k λλλλλλ-------=======-=-==-=-===--=-=-⎛⎫-= ⎪⎝⎭(1)()n k k n k kt t n s s k t t --⎛⎫=- ⎪⎝⎭3.7 设1{(),0}N t t ≥和2{(),0}N t t ≥分别是参数为1λ,2λ的Poisson 过程,另12()()()X t N t N t =-,问{()}X t 是否为Poisson 过程,为什么?解:不是12()()()X t N t N t =-,()X t 的一维特征函数为:121212121122(()())()()()()120012001212()()()()()()!!()()!!exp{(iuiu iu N t N t iuN t iuN t iuX t X t k k t tiukiuk k k iu k iu ktt k k t et t e tiu iu f u E e E e E e e t t ee e e k k e t e t ee k k e e e ee t e t λλλλλλλλλλλλλλλλ--∞∞--==∞∞--==---=====⋅==+-+∑∑∑∑)}t参数为λ的Poisson 过程的特征函数的形式为exp{1}iu e t λ-,所以()X t 不是poisson 过程。

相关文档
最新文档