图像增强和边缘检测实验报告
实验二-图像增强处理实习报告

实验二图像增强处理实习报告1.实验目的和内容1.1.实验目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的1.2.实验要求熟练根据图像中的地物特征进行图像合成显示、拉伸、图像均衡化等显示增强操作。
理解直方图的含义,能熟练的利用直方图进行多波段的图像显示拉伸增强处理。
1.3.软件和数据ENVI 软件。
TM 图像数据。
上次实验合成后的图像数据文件AA。
1.4.实验内容图像的彩色合成显示图像的基本拉伸方法图像均衡化方法图像规定化2.实验过程通过合成和拉伸增强显示图像中的信息。
2.1.图像合成图像合成方法:伪彩色合成、彩色合成两种方式。
其中彩色合成包括:真彩色合成、假彩色合成、模拟真彩色合成。
操作:使用(4,3,2)进行RGB 合成显示图像。
图像窗口为#1。
移动图像窗口的红色选框到玄武湖,将光标十字放在红框内,双击,显示光标位置窗口。
该窗口中出现了Scrn 和Data,二者后面的RGB 的值是不同的。
2.1.1伪彩色合成在新的窗口显示第4 波段图像,窗口为#2。
操作:菜单:窗口菜单Tools-Color Mapping-Density slice…,选择Band 4,确定。
在“Density Slice”窗口中,点击“应用”按钮,窗口#2 的图像变成了彩色。
设置默认的分级数为3 个:在“Density Slice”窗口,点击Options-Set number of default range,输入3,确定。
点击Options-Apply default range,点击Apply 按钮。
查看窗口#2 内的变化。
重复上面步骤,设置分级数为10,查看图像的变化。
基本的特征是:长江是绿色的,玄武湖是红色的。
在新的窗口显示波段4,窗口编号为#3。
菜单:窗口菜单Tools-Color Mapping-ENVI Color table…依次点击Color Tables 下的颜色方案列表,查看#3 图像的变化。
图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。
本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。
一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。
二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。
2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。
3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。
4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。
5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。
三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。
首先,我们对该图像进行了直方图均衡化处理。
结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。
然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。
接下来,我们采用了拉普拉斯算子增强方法。
通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。
然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。
最后,我们尝试了灰度变换方法。
通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。
与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。
综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。
边缘检测实验报告

边缘检测实验报告边缘检测实验报告引言:边缘检测是图像处理中的一项重要任务,它能够有效地提取图像中物体的边界信息,为后续的图像分割、物体识别等任务提供基础。
本实验旨在探究不同的边缘检测算法在不同场景下的表现,并对其进行评估和比较。
一、实验背景边缘检测是图像处理领域的经典问题,早期的边缘检测算法主要基于梯度的计算,如Sobel、Prewitt等。
随着深度学习的发展,基于卷积神经网络的边缘检测方法也取得了显著的进展。
本实验将选择传统的Sobel算子和基于深度学习的Canny算法进行对比。
二、实验步骤1. 数据准备:选择一组包含不同场景、不同复杂度的图像作为实验数据集,确保数据集的多样性和代表性。
2. 算法实现:使用Python编程语言,利用OpenCV库实现Sobel算子和Canny 算法。
对于Sobel算子,我们将尝试不同的卷积核大小和阈值设置。
对于Canny算法,我们将调整高低阈值的取值范围。
3. 实验评估:使用评估指标来衡量不同算法的性能,如准确率、召回率、F1值等。
同时,我们还可以通过可视化的方式来比较不同算法的边缘检测效果。
三、实验结果在实验中,我们选择了10张不同类型的图像进行边缘检测,并使用Sobel算子和Canny算法进行处理。
通过对比实验结果,我们得出以下结论:1. Sobel算子:- 当卷积核大小较小(如3x3)时,Sobel算子能够较好地检测到图像中的细节边缘,但对于噪声较多的图像效果较差。
- 当卷积核大小较大(如7x7)时,Sobel算子能够更好地抑制噪声,但会导致边缘检测结果的模糊。
- 阈值的设置对Sobel算子的效果也有较大影响,较低的阈值可以提高边缘检测的敏感性,但也容易引入噪声。
2. Canny算法:- Canny算法基于梯度的计算和非极大值抑制,能够有效地检测到图像中的边缘,并且对噪声有较好的鲁棒性。
- 高低阈值的设置对Canny算法的效果影响较大,合适的阈值范围可以提高边缘检测的准确性和稳定性。
图像增强__实验报告

深圳大学实验报告课程名称: 数字图像处理实验项目名称: 图像增强学院: 信息工程学院专业: 通信工程****: ***报告人: 学号: 班级: 1班实验时间: 2015、04、09实验报告提交时间: 2015、05、21教务处制[1] 简述直方图均衡化原理答:直方图均衡化的基本思想就是对原始图像中的像素灰度做某种映射变换,使变换后的图像灰度的概率密度就是均匀分布的,即变换后图像就是一幅灰度均匀分布的图像,这意味着图像灰度的动态范围得到了增加,从而可提高图像的对比度。
[2] 对给定的两幅灰度数字图像(可以用MATLAB自带的图像文件)进行如下处理:a、对原图像进行直方图均衡化处理,同屏显示处理前后图像及其直方图,比较异同,并回答为什么数字图像均衡化后其直方图并非完全均匀分布。
答:代码实现如下:A = imread('1、jpg');I=rgb2gray(A);[height,width] = size(I);figuresubplot(221)imshow(I)%显示原始图像subplot(222)imhist(I)%显示原始图像直方图%进行像素灰度统计;s = zeros(1,256);%统计各灰度数目,共256个灰度级for i = 1:heightfor j = 1: widths(I(i,j) + 1) = s(I(i,j) + 1) + 1;%对应灰度值像素点数量增加一 endend%计算灰度分布密度p = zeros(1,256);for i = 1:256p(i) = s(i) / (height * width * 1、0);end%计算累计直方图分布c = zeros(1,256);c(1) = p(1);for i = 2:256c(i) = c(i - 1) + p(i);end%累计分布取整,将其数值归一化为1~256c = uint8(255 、* c + 0、5);%对图像进行均衡化for i = 1:heightfor j = 1: widthI(i,j) = c(I(i,j)+1);endendsubplot(223)imshow(I)%显示均衡化后的图像subplot(224)imhist(I)%显显示均衡化后的图像的直方图进行灰度均衡化的公式有很多,只要满足两个关键的条件就行了。
边缘检测实验报告

图像边缘提取实验报告一、实验目的通过课堂的学习,已经对图像分割的相关理论知识已经有了全面的了解,知道了许多图像分割的算法及算子,了解到不同的算子算法有着不同的优缺点,为了更好更直观地对图像分割进行深入理解,达到理论联系实际的目的,特制定如下的实验。
二、实验原理检测图像边缘信息,可以把图像看做曲面,边缘就是图像的变化最剧烈的位置。
这里所讲的边缘信息包含两个方面:一是边缘的具体位置,即像素的坐标;而是边缘的方向。
微分算子有两个重要性质:定域性(或局部性)、敏感性(或无界性)。
敏感性就是说,它对局部的函数值变化很敏感,但是因其对变化过于敏感又有了天然的缺陷——不能抵抗噪声。
局部性意思是指,每一点的导数只与函数在该点邻近的信息有关。
主要有两大类基于微分算子的边缘检测技术:一阶微分算子边缘检测与二阶微分算子边缘检测。
这些检测技术采用以下的基本步骤:(1)将相应的微分算子简化为离散的差分格式,进而简化为模板(记为T)。
(2)利用模板对图像f(m,n)进行运算,获得模板作用后的结果Tf(m,n)。
(3) 提出阈值h,在采用一阶微分算子情形记录下高于某个阈值h 的位置坐标}),(|),{(h n m Tf n m S h ≥=(而采用二阶微分算子情形,一般是对某个阈值0>ε确立}),(|),{(ε≥=n m Tf n m S h )(4) 对集合h S 进行整理,同时调整阈值h 。
Roberts 算子Roberts 算子是一种利用局部差分算子寻找边缘的算子,两个模板分别为⎥⎦⎤⎢⎣⎡-=1001x R ⎥⎦⎤⎢⎣⎡-=0110y R 则,),(j i f R x =)1,1(),(++-j i f j i f),(j i f R y =)1,(),1(+-+j i f j i f算法的步骤为:(1) 首先用两个模板分别对图像作用得到f R x 和f R y ;(2) 对22),(y x R R j i Tf +=,进行阈值判决,若),(j i Tf 大于阈值则相应的点 位于便于边缘处。
图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
图像增强与边缘检测
数字图像处理作业----第三次1、 什么是图像增强?常见算法有哪些?典型算法的程序实现,其优缺点?结果对比。
1.1图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。
一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。
图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。
图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。
但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。
传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。
这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。
1.2 图像增强的分类及方法图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。
边缘检测实验报告
图像边缘提取实验报告一、实验目的通过课堂的学习,已经对图像分割的相关理论知识已经有了全面的了解,知道了许多图像分割的算法及算子,了解到不同的算子算法有着不同的优缺点,为了更好更直观地对图像分割进行深入理解,达到理论联系实际的目的,特制定如下的实验。
二、实验原理检测图像边缘信息,可以把图像看做曲面,边缘就是图像的变化最剧烈的位置。
这里所讲的边缘信息包含两个方面:一是边缘的具体位置,即像素的坐标;而是边缘的方向。
微分算子有两个重要性质:定域性(或局部性)、敏感性(或无界性)。
敏感性就是说,它对局部的函数值变化很敏感,但是因其对变化过于敏感又有了天然的缺陷——不能抵抗噪声。
局部性意思是指,每一点的导数只与函数在该点邻近的信息有关。
主要有两大类基于微分算子的边缘检测技术:一阶微分算子边缘检测与二阶微分算子边缘检测。
这些检测技术采用以下的基本步骤:(1) 将相应的微分算子简化为离散的差分格式,进而简化为模板(记为T)。
(2)利用模板对图像f(m,n)进行运算,获得模板作用后的结果Tf(m,n)。
(3) 提出阈值h,在采用一阶微分算子情形记录下高于某个阈值h 的位置坐标}),(|),{(h n m Tf n m S h ≥=(而采用二阶微分算子情形,一般是对某个阈值0>ε确立}),(|),{(ε≥=n m Tf n m S h )(4) 对集合h S 进行整理,同时调整阈值h 。
Roberts 算子Roberts 算子是一种利用局部差分算子寻找边缘的算子,两个模板分别为⎥⎦⎤⎢⎣⎡-=1001x R ⎥⎦⎤⎢⎣⎡-=0110y R 则,),(j i f R x =)1,1(),(++-j i f j i f),(j i f R y =)1,(),1(+-+j i f j i f算法的步骤为:(1) 首先用两个模板分别对图像作用得到f R x 和f R y ;(2) 对22),(y x R R j i Tf +=,进行阈值判决,若),(j i Tf 大于阈值则相应的点 位于便于边缘处。
图像的边缘检测(实验报告)
数字信号处理实验图像的边缘检测图像的边缘检测一,原理本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。
首先,了解一些术语的定义:边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。
边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。
边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。
轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。
边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。
边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。
边缘就是图像中包含的对象的边界所对应的位置。
物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。
从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。
图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。
边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。
由于边缘的灰度不连续性,可以使用求导数的方法检测到。
最早的边缘检测方法都是基于像素的数值导数的运算。
本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。
边缘检测有三个共性准则,1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。
2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。
3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。
二,对图像进行各种算子运算本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny 算子运算。
由于MATLAB对彩色图像不能进行分析。
图像边缘检测实验报告
图像边缘检测实验报告图像边缘检测实验报告引言:图像边缘检测是计算机视觉领域中一项重要的任务,它在许多应用中都起到关键作用。
边缘是图像中不同区域之间的分界线,它们包含了图像中物体的轮廓和形状信息。
因此,准确地检测和提取图像边缘对于目标识别、图像分割和特征提取等任务至关重要。
实验目的:本实验旨在通过实践探索和理解常用的图像边缘检测算法,并对其性能进行评估。
我们将使用不同的算法对一组测试图像进行边缘检测,并比较它们的结果,以了解它们的优缺点和适用场景。
实验方法:1. 数据准备:我们从公开的图像数据库中选择了一组具有不同特征和复杂度的测试图像。
这些图像包括自然风景、人物肖像和建筑物等多种场景,以覆盖不同的应用场景。
2. 算法选择:我们选择了三种常用的图像边缘检测算法进行实验:Sobel算子、Canny算子和Laplacian算子。
这三种算法在实践中被广泛应用,并且具有不同的特点和适用范围。
3. 实验步骤:a) Sobel算子:我们首先将测试图像转换为灰度图像,然后使用Sobel算子对其进行边缘检测。
Sobel算子是一种基于梯度的算法,它通过计算图像中每个像素点的梯度值来检测边缘。
b) Canny算子:接下来,我们使用Canny算子对同一组测试图像进行边缘检测。
Canny算子是一种基于多阶段处理的算法,它首先使用高斯滤波器对图像进行平滑处理,然后计算梯度和非最大抑制,最后进行边缘连接和阈值处理。
c) Laplacian算子:最后,我们使用Laplacian算子对测试图像进行边缘检测。
Laplacian算子是一种基于二阶导数的算法,它通过计算图像中每个像素点的二阶导数值来检测边缘。
实验结果:通过对实验图像的边缘检测,我们得到了以下结果:1. Sobel算子产生了较为明显的边缘线,但在一些复杂场景下容易产生噪声,并且边缘线有时会断裂。
2. Canny算子在平滑处理后能够准确地检测到图像中的边缘,并且能够消除噪声和断裂的边缘线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像增强和边缘检测
实验内容
1)将Image1.jpg 转换为灰度图像A。
2)读懂文档(图像直方图均衡化.doc),利用里面的方法通过编程对图像A进行直方图均衡化处理,得到处理后的图像B。
显示图像A和B,以及各自对应的灰度直方图。
3)利用锐化方法(教材118-120页),编制程序,对图像A和B分别使用罗伯特梯度,索伯尔梯度,拉普拉斯方法,进行处理,比较哪种求边缘的方法好,以及进行图像的直方图均衡化后能否提高求边缘的精确度。
4)撰写报告书,说明实验的步骤和方法,实验的结果等。
5)提交报告书以及源程序
实验步骤和方法
1)调用rgb2gray()函数将Image1.jpg 转换为灰度图像A。
并将图像A保存到f和I1中。
2)统计图像A中的像素并进行均衡化处理并将结果保存到B,显示图像A和B;调用imhist()函数显示两图像的灰度直方图。
3)编制罗伯特锐化函数,设定两个模板t1=[1,0;0,-1] t2=[0,-1;1,0],调用conv2()函数获得图像和两个模板的卷积并取绝对值相加获得罗伯特锐化结果,缩小结果图像。
4)编制索伯尔锐化函数,设定两个模板t1=[1,2,1;0,0,0;-1,-2,-1] t2=[-1,0,1;-2,0,2;-1,0,1] ,其余步骤与罗伯特锐化相似。
5)编制拉普拉斯锐化函数,设定模板t(m,n)=[0,1,0;1,-4,1;0,1,0],将待处理图像与模板卷积,并用原图像的至减去模板运算结果的整数倍,将结果缩小化到原图像大小既得拉普拉斯锐化结果。
6)函数整合,将编制好的3)、4)、5)三个函数整合到2)的程序后面并加以调整,分别对图像A和B进行锐化,并将结果输出到2*4的图框中进行对比
实验结果
1)
2)
3)通过比较可以发现罗伯特算法要比索伯尔算法差一些,索伯尔算法可以使检测边界更加精确;拉普拉斯算法相对于索伯尔算法对比度更高一些边缘更加明显和精确。
通过对比AB 两图锐化后的结果可知无论使用那一种锐化算法,都是均衡化后的图像B的锐化结果更好一些,边缘更加明显,所以可以得出结论:直方图均衡化可以提高求边缘的精度。
思考题
尝试了几种方法,将图片锐化以后提取电力线都不理想,没有找到具体原因。
下图是利用MatLab自带函数Hough进行提取后的结果。