遗传学

合集下载

遗传学概念(名词解释)

遗传学概念(名词解释)

遗传学名词解释遗传学:研究遗传和变异的科学。

遗传学的研究对象:群体——个体——细胞——分子遗传学物质基础:DNA、RNA遗传物质必须具备的特点(5点)体细胞中含量稳定;生殖细胞中含量减半;携带遗传信息;能精确地自我复制;能发生变异。

DNA和RNA的化学组成(胞嘧啶的化学式)DNA双螺旋结构的发现(沃森克里克发现)特点:1、一个DNA分子由两条多核苷酸链组成,走向相反;2、双螺旋结构;3、链内侧为碱基,AT、CG配对,氢键连接;4各对碱基之间0.34nm,每转一圈长为3.4nm。

受到4个方面的影响:1、达尔文2、孟德尔3、梅肖尔:从鱼精子细胞中分离出DNA分子4、弗来明:发现染色体5、摩尔根:遗传信息在染色体上6、格里菲斯:转移因子(基因)7、艾弗里:DNA是遗传物质8、富兰克林、威尔金斯:晶体X射线衍射照片Chargaff Rules (DNA的碱基组成特点)(1)碱基当量定律:嘌呤碱基总量=嘧啶碱基总量,即A+G=T+C(2)不对称比率(A+T)/(G+C)因物种(亲缘关系远近)而异(3)A=T C=G半保留复制(semi-conservative replication):DNA复制时,虽然原来的两条链保持完整,但它们互相分开,作为新链合成的模版,各自进入子DNA分子中,这种复制叫做半保留复制。

中心法则(画图表示):生物体中DNA、RNA和蛋白质之间的关系。

P218朊病毒对中心法则的挑战朊病毒是不含核酸和脂类的蛋白质颗粒。

一个不含DNA或RNA的蛋白质分子能在受感染的宿主细胞内产生与自身相同的分子,实现相同的生物学功能,引起相同的疾病。

朊病毒不是传递遗传信息的载体,也不能自我复制,其本职为基因编码产生的一种正常蛋白质的异构体。

朊蛋白的错误折叠形成的致病蛋白在脑中积累而引起的。

朊病毒未证明蛋白质是遗传物质的原因:“蛋白质构象致病假说”朊蛋白(PrP)有两种形式:正常型(PrPC)和异常型(PrPSc)朊蛋白具有独特的复制方式,它是以构象异常的蛋白质分子为引子,诱使正常的PrPC发生构象上的变化,由原来的α-螺旋变为β-折叠,丧失了原有的功能,变成具有致病感染力的分子。

遗传学

遗传学

遗传学 ()第四章单基因病单基因遗传病是指某种疾病的发生受一对等位基因控制,它们的传递方式遵循孟德尔分离律。

根据致病基因所在染色体及其遗传方式的不同,分为:常染色体遗传、X连锁遗传、Y连锁遗传和线粒体遗传。

其中常染色体遗传又分为常染色体显性遗传(AD)、常染色体隐性遗传(AR);X连锁遗传又分为X连锁显性遗传(XD)、X连锁隐性遗传(XR);线粒体遗传属于细胞核外遗传。

本章重点讨论了AD、AR、XD、XR和Y连锁遗传等不同单基因遗传病的系谱、系谱特点、系谱分析、患者与亲代的基因型以及后代的发病风险和相关疾病。

另外还介绍了两种单基因性状或疾病的伴随传递、基因的多效性、遗传异质性、遗传早现、限性遗传、表观遗传学。

一、基本纲要1.掌握单基因遗传病、系谱、先证者、表现度、外显率等基本概念。

2.掌握单基因疾病的各种遗传方式及其特点。

3.掌握影响单基因遗传病分析的因素。

4.熟悉系谱与系谱分析法。

5.了解常见的几种单基因遗传疾病及两种单基因性状及疾病的伴随遗传。

二、习题(一)选择题(A 型选择题)1.在世代间连续传代并无性别分布差异的遗传病为__A______。

A.常染色体显性遗传 B.常染色体隐性遗传 C.X连锁显性遗传D.X连锁隐性遗传 E.Y连锁遗传2.在世代间连续传代且患者的同胞中约有1/2的可能性也为患者的遗传病为__A______。

A.染色体显性遗传 B.常染色体隐性遗传 C.X连锁显性遗传D.X连锁隐性遗传 E.Y连锁遗传3.属于常染色体显性遗传病的是__C______。

A.镰状细胞贫血 B.先天聋哑 C.短指症D.红绿色盲 E.血友病A4.属于常染色体完全显性的遗传病为___D_____。

A.软骨发育不全 B.多指症 C.Huntington舞蹈病D.短指症 E.早秃5.属于不完全显性的遗传病为___A_____。

A.软骨发育不全 B.短指症 C.多指症D.Huntington舞蹈病 E.早秃6.属于不规则显性的遗传病为___B_____。

遗传学课件全部完整版

遗传学课件全部完整版
与单基因性状的区别
多因子复杂性状受多个基因控制,每个基因作用较小,且易受环境 影响;而单基因性状通常受单一基因控制,遗传效应显著。
研究意义
揭示多因子复杂性状的遗传机制,为疾病预测、诊断和治疗提供理论 依据。
数量性状遗传学原理
数量性状定义
01
表现为连续变异的性状,如身高、体重等。
遗传基础
02
数量性状受多对基因控制,每对基因作用微小,呈累加效应。
克隆技术介绍
简要介绍动物克隆技术的原理、方法和应用实例。
伦理道德问题
探讨动物克隆技术所涉及的伦理道德问题,如生命尊严、生物多样 性、人类安全等。
社会影响与监管
分析动物克隆技术对社会的影响以及政府对相关技术的监管措施。
未来发展趋势预测
精准医学
随着遗传学研究的深入,精准医学将成为 未来发展的重要方向,实现个体化诊断和
RNA翻译的过程
RNA翻译是以mRNA为模板合成蛋白质的过程。在翻译过程中,核糖体识别 mRNA上的遗传密码,并根据密码子的顺序合成相应的氨基酸序列,从而合成蛋 白质。
基因突变与修复机制
基因突变的类型
基因突变包括点突变、插入突变、缺失突变等类型。这些突变可能导致遗传信息的改变,从而影响生 物体的性状和表型。
包括点突变、插入突变、缺失突变等。
对生物表型的影响
可能导致生物体形态、生理、生化等方面的 异常表现。
对蛋白质结构和功能的影响
可能导致蛋白质结构异常、功能丧失或获得 新的功能。
对生物进化的意义
是生物进化的原材料,为自然选择提供多样 性。
基因重组与染色体变异
基因重组类型
包括同源重组、非同源重组等 。
染色体变异类型
DNA复制的特点

遗传学的基本概念

遗传学的基本概念

遗传学的基本概念遗传学是关于遗传变异和遗传传递的科学,它探讨人类、动物和植物的遗传现象。

遗传学的理论研究与实践应用都具有深远的意义。

1. 基因基因是遗传学研究的基本单位,是决定生物性状的基础。

基因是一段有特定功能的DNA序列,并以某种方式进行表达。

基因掌控着许多特征,比如眼睛颜色、头发颜色等等。

2. 突变突变是指基因组中的DNA序列发生了变化。

这种突变可能在DNA复制或修复过程中发生。

突变可能导致细胞发育有问题,或者导致某些功能受到影响。

突变可以是基因变异的一种机制,可以是病理学问题的根源,也可以是种群进化的重要原因。

3. DNA复制DNA复制是指在细胞分裂之前进行的一系列过程。

每个细胞都需要进行DNA复制保证下一代细胞的遗传信息确实准确地传递。

DNA复制期间,DNA链分为两条,由对应的鸟嘌呤和胸腺嘧啶基对来添加新的互补链。

复制完毕后,原DNA与新DNA均被分配到不同的细胞中。

4. 基因表达基因表达是指特定的基因产生特定的蛋白质的过程。

基因表达是非常重要的,因为蛋白质是生物体几乎所有生理过程的组成部分。

基因表达被调节,因此有时基因无法被表达,有时会产生过多或过少的蛋白质。

5. 遗传疾病遗传疾病是由基因突变导致的疾病,这些基因可能来自父母或可能是在胚胎发育期间突变。

遗传疾病的一些症状是明显的,如先天性心脏病,而其他疾病可能不会在一生中产生影响。

6. 基因治疗基因治疗是一种新型的治疗手段,使用基因工程技术加以创新,试图通过细胞改造来根治遗传性疾病和其他健康问题。

基因治疗的目标是找到病因、修复基因、替换缺损等手段来恢复受伤细胞的正常功能。

总之,遗传学是人类、动物和植物生命中不可或缺的组成部分,对人类的健康、环境保护和经济发展至关重要。

了解遗传学的基本概念,对于网络安全、食品安全、生态保护及改善人类的科学研究和自我提高都大有裨益。

遗传学

遗传学

遗传:生物物种世代间的延续变异:生物亲子个体间的差异遗传学:研究生物的遗传与变异的学科医学遗传学(medical genetics):是遗传学与医学相结合的一门边缘学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。

遗传病(genetic disease):遗传物质改变所导致的疾病。

包括单基因病、多基因病、染色体病、体细胞遗传病和线粒体遗传病。

性状:是由基因与环境共同作用的结果,性状是基因决定的生物形态,生理,生化特征,临床症状。

家族病、先天性疾病不一定是遗传病。

显性基因-------显性性状隐性基因-------隐性性状等位基因:一般指位于一对同源染色体的相同位置上控制着相对性状的一对基因。

复等位基因:在同源染色体相对应的基因座位上存在三种以上不同形式的等位基因,称为复等位基因(multiple allelism)。

遗传病的特点:1遗传性和家族性 2先天性3终生性4在群体中按一定比率发病 常染色质(euchromatin):细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性的染色质。

异染色质(heterochromatin):细胞间期核内纤维折叠盘曲紧密,呈凝集状态,染色较深且没有转录活性的染色质。

异染色质的分类:1.结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态的染色质。

大多位于着丝粒区和端粒区,不具有转录活性。

2.兼性异染色质:指在特定细胞的某一发育阶段所具有的凝缩状态的染色质。

染色体(Chromosome ):是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质);其本质是脱氧核甘酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。

核型:一个体细胞中的全部染色体即构成其核型。

核型分析:将待测细胞的全套染色体按照Denver体制配对、排列后,分析确定其是否与正常核型的异同,称为核型分析(karyotype analysis)。

什么是遗传学

什么是遗传学

什么是遗传学
遗传学是生物学的一个重要分支,主要研究生物体中的基因、遗传变异和遗传的规律。

它涉及到基因的结构、功能、变异、分布以及与生物体发育和行为的关系。

遗传学的研究范围广泛,包括分子遗传学、表观遗传学和群体遗传学等子领域。

在遗传学中,基因是遗传的基本单位,存在于生物的细胞核、染色体和DNA中。

基因通过编码蛋白质或RNA等分子来控制生物体的性状和特征。

遗传学的研究不仅关注单个基因的作用,还关注多个基因之间的相互作用以及环境对遗传的影响。

此外,遗传学还涉及到生物体的进化过程,因为遗传变异是进化的基础。

通过研究生物体在不同环境下的适应性进化,可以了解基因的变异和选择机制。

总之,遗传学是一门研究生物体遗传规律和遗传变异的科学,对于理解生命的本质和生物进化的机制具有重要意义。

遗传学基础知识点

遗传学基础知识点

遗传学基础知识点遗传学是生物学中的一个重要分支,研究个体间遗传信息的传递、表现和变异。

在遗传学的学习过程中,有一些基础知识点是必须要掌握的。

本文将围绕这些基础知识点展开讨论。

1. 遗传物质的本质遗传物质是指携带遗传信息的生物分子,主要包括DNA和RNA。

DNA是双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,形成基因和染色体。

RNA则在蛋白质合成中起着重要作用。

2. 孟德尔遗传定律孟德尔是遗传学的奠基人,他根据豌豆杂交实验提出了一系列遗传定律,包括隔离定律、自由组合定律和性联和定律。

这些定律揭示了遗传物质的传递规律。

3. 遗传的分子基础遗传信息的传递和表达是通过DNA分子进行的。

DNA分子在细胞分裂时复制,通过核糖体和tRNA、mRNA参与蛋白质合成,从而实现基因的表达。

4. 遗传性状的表现遗传性状是由基因决定的,在有性繁殖中通过配子随机组合形成。

一对等位基因可以表现为显性和隐性,而性状的表现受到基因型和环境的影响。

5. 遗传变异基因在不同个体间可以发生变异,包括基因突变、基因互作和基因重组等。

这种变异是进化的基础,可以导致个体的遗传多样性。

6. 遗传病与遗传咨询遗传病是由基因突变引起的遗传性疾病,如地中海贫血、囊性纤维化等。

遗传咨询是通过遗传学知识对个体的遗传信息进行评估和风险预测,提供个性化的健康建议。

通过对上述基础知识点的了解,可以更好地理解遗传学的基本原理和应用。

遗传学作为一门重要的生物学学科,为人类健康和生物多样性的研究提供了理论基础和实践指导。

希望本文能够对您的遗传学学习有所帮助。

第一章绪论遗传学介绍

第一章绪论遗传学介绍
发育遗传学
数量遗传学
进化遗传学
群体遗传学
微生物遗传学
辐射遗传学
遗传工程
医学遗传学
基因组学
分子遗传学
生物信息学

遗传学的发展过程:
个体水平 宏观 染色体 细胞水平 分子水平;
微观; 基因;
逐步深入到研究遗传物质的结构和功能。
第三节 遗传学的应用
一、在科学发展上的作用
1、探索生命本质
4、遗传与变异是矛盾对立统一的两个方面
遗传是相对的、保守的,没有遗传就没有物种的相 对稳定,也就不存在变异的问题。 而变异是绝对的、发展的;没有变异生物就不会产 生新的性状,也就不能发展、进化。
5、遗传、变异和选择是生物进化和新品种选育的 三大因素
(1)生物进化就是环境条件对生物变异进行自然选择, 在自然选择中得以保存的变异传递给子代,变异逐代积累 导致物种演变、产生新物种。 变异 自然选择 遗传 生物进化
1910, T.H.Morgan, demonstrated that genes are on the chromosome
The Nobel Prize in Physiology or Medicine 1933
"for his discoveries concerning the role played by the Chromosome in heredity"
细菌质粒、噬菌体、限制性核酸内切酶、人工分离和合 成基因取得进展,1973年成功实现DNA的体外重组,人类 开始进入按照需要进行设计并能动地改造物种和创造新物 种的新时代。
80~90年代:基因工程取得重大进展,人类基因组计 划(Human Genome Project,HGP) 及模式生物和重要 生物基因组计划。形成了基因组学(Genomics)、蛋白质 组学(Protemics )和生物信息学(Bioinformatics )。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:
1.遗传:亲代与子代相似的现象。

2.变异:亲代与子代,子代个体之间存在着不同程度的差异的现象。

3.同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体。

4.非同源染色体:形态结构上有所不同的染色体。

5.显性性状:杂种F1代在一对相对性状中表现出来的性状。

6.隐性性状:杂种F1代在一对相对性状中没有表现出来的性状。

7.相对性状:同一单位性状的相对差异。

8.测交法:把被测的个体与隐性纯合的亲本杂交,根据测交子代(Ft)的表现
型和比例测知该个体的基因型。

9.嵌镶显性:双亲的性状在F1个体的不同部位分别表现。

10.连锁遗传:同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的
倾向。

11.性连锁(伴性遗传):指性染色体上基因所控制的某些性状总是伴随性别
而遗传的现象。

12.从性遗传或称为性影响遗传:不是指由X及Y染色体上基因所控制的性
状,而是因为内分泌及其它关系使某些性状只出现于雌、雄一方;或在一方为显性,另一方为隐性的现象。

13.假显性现象:一条染色体某区段缺失后,另一条同源染色体上隐性基因的
作用表现出来。

14.位置效应:基因所在染色体上的位置不同,其表现型效应也不同。

15.转导:以噬菌体为媒体,将细菌的小片段染色体或基因从一个细菌转移到
另一个细菌的过程。

16.细胞质遗传:由细胞质基因所决定的遗传现象和遗传规律。

17.微效多基因或称微效基因:控制数量性状的基因数量多,每个基因对表现
型的影响较微的一类基因。

18.杂种优势:两个遗传组成不同的亲本杂交产生的杂种F1,在生长势、生活
力、繁殖力、抗逆性、产量和品质上比其双亲优越的现象。

简答:
1、基因分离、自由组合规律的细胞学基础和实质?
细胞学基础:在减I后期,同源染色体分离,非同源染色体自由组合。

实质:控制两对相对性状的两对等位基因,分别位于两对同源染色体上,在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,位于非同源染色体上的非等位基因之间可以自由组合。

2、显性、隐性相对性有哪些表现?(举例说明)
①完全显性:杂种F1代表现的性状与亲本之一完全相同。

如孟德尔在豌豆杂交试验中的7对相对性状。

②不完全显性:杂种F1表现的性状并不是完全的,可能是双亲性状的中间型。

如紫茉莉花色的遗传,红色亲本与白色亲本杂交,F1的花色是粉红色。

③共显性:双亲的性状同时在F1个体上出现,而不表现单一的中间型。

如镰形红细胞贫血症患者与正常人结婚生的子女的红细胞既有碟形,又有镰刀形。

④嵌镶显性:双亲的性状在F1个体的不同部位分别表现。

如异色瓢虫的鞘翅色斑遗传,黑缘型与均色型杂交,子一代鞘翅出现上下缘均呈黑色;紫花辣椒与白花辣椒杂交,F1表现为边缘为紫色,中央为白色。

3、数量性状遗传特点及其与质量性状遗传的区别?
特点:⑴.数量性状的变异呈连续性,杂交后代难以明确分组,只能用度量单位进行测量,并采用统计学方法分析;
⑵一般易受环境条件的影响而出现连续变异,这种变异不遗传,往往和那些能够遗传的变异相混淆;
⑶控制数量性状的基因在特定的时空条件下表达,在不同环境下基因表达的程度可能不同。

区别:
4、同源多倍体、异源多倍体,举例说明其在育种上的应用。

同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍产生的。

异源多倍体:指增加的染色体组来自不同物种,一般是由不同种属间的杂交种染色体加倍形成。

多倍体的应用:(1)克服远缘杂交的不孕性,如将甘蓝的染色体加倍后与白菜杂交,结实率提高(2)克服远缘杂种不育性,如普通烟草与粘毛烟草杂交,其后代不育,但将后代加倍后变成异源多倍体后可育(3)育成作物新类型,如同源三倍体甜菜、异源八倍体小黑麦。

5、细胞核遗传与细胞质遗传的区别
(1)细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。

细胞核遗传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体和叶绿体中。

(2)细胞核遗传雌雄配子的核遗传物质相等,而细胞质遗传物质主要存在于卵细胞中;
(3)核遗传物质的载体(染色体)有均分机制,遵循三大遗传定律;细胞质遗传方式是非孟德尔式的,杂交后代一般不表现一定比例的分离。

(4)细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时,正反交不同,子一代性状均与母本相同,即母系遗传。

6、用图解说明无籽西瓜的原理?
无籽西瓜(X=11)
二倍体(2n=2X=22)
↓加倍
同源四倍体×二倍体
(2n=4X=44) ↓
同源三倍体西瓜(无籽)
2n=3X=33
7、减数分裂与遗传三大规律的联系?
减数分裂(又称成熟分裂):是在配子形成过程中进行的一种特殊的有丝分裂。

它使体细胞染色体数目减半。

包括两次连续的核分裂而染色体只复制一次。

减数分裂是三大遗传定律的基础。

基因的分离定律指的是减数分裂过程中,等位基因随着同源染色体的分离而分离,发生在减I后期。

基因的自由组合定律指的是在减数分裂的过程中,位于非同源染色体上的非等位基因自由组合,和等位基因的分离是同时的。

基因连锁交换定律指的是四分体时期同源染色体的非姐妹染色单体之间的交叉互换,发生在减I前期。

8、减I前期染色体动态特征?
1)、细线期此期染色体呈细长线状,核仁依然存在。

在细线期和整个的前期中染色体持续地浓缩。

2)、偶线期同源染色体开始联会,出现联会复合体。

3)、粗线期二价体缩短变粗,一对配对的同源染色体称四合体或四联体。

非姊妹染色单体间可能发生交换
4)、双线期交叉
5)、终变期交叉端化,染色体进一步收缩变粗变短,便于分裂时移动。

9、比较转化、接合、转导、性导在遗传物质传递上的异同?
转化:某些细菌(或其他生物)能通过其细胞膜摄取周围供体的染色体片段,并将此外源DNA片段通过重组参入到自己的染色体组的过程。

接合:遗传物质从供体——“雄性”转移到受体——“雌性”的过程。

特点为需通过细胞的直接接触。

转导:以噬菌体为媒体,将细菌的小片段染色体或基因从一个细菌转移到另一个细菌的过程。

性导:利用F’因子形成部分二倍体。

接合是两个细菌通过性菌毛沟通,转导以温和噬菌体为载体,转化是通过摄入方式进行转换,三者基因均来源于供体菌。

10、什么是雄性不育,其在生产上的应用价值?
雄性不育:雄蕊发育不正常,不能产生正常功能的花粉。

应用:免除人工去雄,节约人力,降低种子成本,保证种子纯度。

11、从易位杂合体的联会和分离特点说明半不育性是怎么产生的。

半不育现象——易位杂合体最突出的特点,即花粉有50%不育,胚囊有50%不育,结实率50%
联会——相互易位杂合体在粗线期,交替相间联会成“十”字形;终变期,十字形因交叉端化而变为“四体链”或“四体环”(相邻式),交替式则变为“8”字形;
分离——到后期I ,染色体表现出不同的分离方式:相邻分离交互分离
原因:①.相邻式分离:产生重复、缺失染色体,配子不育;
②.交替式分离:染色体具有全部基因,配子可育。

交替式和两种相邻式分离的机会大致相等。

12、为什么细菌、病毒是遗传学研究的好材料?
1)繁殖世代所需时间短
2)易于管理和进行化学分析
3)遗传物质比较简单
4)便于研究基因的突变
5)便于研究基因的作用
6)可用作研究高等生物的简单模型
13、说明遗传变异、选择与生物进化的关系?
可遗传的变异是生物进化的原始材料,其主要来自基因突变、基因重组和染色体变异,变异是不定向的,但生物进化的方向是由自然选择来决定的。

选择即环境对变异的选择,即保存有利变异和淘汰不利变异的过程,实质是定向地改变群体的基因频率。

选择是生物进化和物种形成的主导因素,生物进化的实质在于种群基因频率的改变。

所以自然选择是生物界进化的主导因素,而遗传和变异是它作用的基础。

相关文档
最新文档