第二章信号与系统
合集下载
信号与系统课件:第二章 LTI系统

第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
信号与系统第二章习题

当激励为et sin tut ut 1时的零状态响应为
rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20
第
例2-4 计算卷积 f1(t) f2(t),并画出波形。
页
f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3
第
页
已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二
第
页
零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt
rt et ht
sin tut ut 1ut ut 1
t
0
sin
d
τ
u
t
ut
2
1
t 1
sin
τ
d
τut
u
t
2
1 1 costut ut 2
X
20
第
例2-4 计算卷积 f1(t) f2(t),并画出波形。
页
f1 t
f2 t
2
1
1 e t1u t 1
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut X
18
例2-3
第
页
已知线性时不变系统的一对激励和响应波形如下图所示,
求该系统对激励的 et sin tut ut 1零状态响应。
et
r t
1
1
O 12
t
对激励和响应分别微分一次,得
t0
因为特解为3,所以 强迫响应是3,自由响应是 4 et e2t
X
12
方法二
第
页
零状态响应rzs t是方程
d2 r dt
t
2
3
dr d
t
t
2r
t
2
t
6ut
且满足rzs 0 rzs0 0的解
(5)
由于上式等号右边有 t项 ,故rzst应含有冲激函数,
从而rzs t 将发生跳变,即 rzs 0 rzs 0
d2 rt 3 d rt 2rt 0
dt2
dt
信号与系统第二章_线性时不变系统

x(k)h(n k) ku(k)u(n k)
k
k
n k 1 n1 u(n)
k 0
1
11
例2:
x(n)
1 0
0n4 otherwise
n
h(n) 0
1,0 n 6
otherwise
h(t) h(n)
x(t)
y(t) y(n)
结论:
一个单位冲激响应是 h(t) 的LTI系统对输入 信号 x(t) 所产生的响应,与一个单位冲激响应 是x(t)的LTI系统对输入信号 h(t) 所产生的响应
相同。
25
2. 分配律: x(n) [h1(n) h2 (n)] x(n) h1(n) x(n) h2(n) x(t) [h1(t) h2 (t)] x(t) h1(t) x(t) h2(t)
1
本章主要内容:
• 信号的时域分解——用 (n) 表示离散时间信号; 用 (t) 表示连续时间信号。
• LTI系统的时域分析——卷积积分与卷积和。
• LTI系统的微分方程及差分方程表示。 • LTI系统的框图结构表示。 • 奇异函数。
2
2.0 引言 ( Introduction )
由于LTI系统满足齐次性和可加性,并且具有 时不变性的特点,因而为建立信号与系统分析的 理论与方法奠定了基础。
缺点:①只适用于两个有限长序列的卷积和; ②一般情况下,无法写出 y(n)的封闭表达式。
15
2.2 连续时间LTI系统:卷积积分
(Continuous-Time LTI Systems:The convolution integral)
信号与系统第2章ppt课件

,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
信号与系统第二章

2 B2 14 B1 6
解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻
iR (t )
R
uR (t ) RiR (t )
uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L
uL (t )
diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2
解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻
iR (t )
R
uR (t ) RiR (t )
uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L
uL (t )
diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2
信号与系统 第二章repeat

④
0
e2t
k
2 t 4 e d t 2 dt e d t 2 k dt 0
19
课堂练习:计算下列各式
sin 2t sin 2t dt 4d t ① 2d t dt 4 d t dt 4 t 2t
t 设齐次解: ht C1e U t C2d t
代入方程: C1etU t C1d t C2d t C1etU t C2d t 2d t 比较系数: C1 C2 0, C2 2, C1 2 所以:
ht 2etU t 2d t
25
课堂练习
1. 已知激励为零时刻加入,求该系统的零输入响应。(2.13)
y(t ) 3 y(t ) 2 y(t ) f (t ),
yx (t ) (2et e2t )U (t )
y(0 ) 1, y(0 ) 0
2C1 C2 2C3 1 C1 C2 3C3 2C4 0 C3 3C4 0 C4 1, C3 3, ht 7e2tU t 3d t d t
f t d t t0 dt f t0 f t d ( n) t t0 dt (1)n f ( n) t0
(2)相乘性质:
f t d t f 0 d t f 0 d t
2. 已知 yt 3 yt 2 yt f t f t ,
3. 4.
求 ht .
y(t ) 3 y(t ) 2 y(t ) f (t ) f (t ) y(t ) 7 y(t ) 12 y(t ) f (t )
信号与系统第二章
第 2 章 连续信号与系统的时域分析
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统第2章信号描述及其分析1
图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。
信号与系统第二章_连续时间系统时域分析(青岛大学)
n
rzi (t) Azikekt k 1
(b)
r(k zi
)
(0
)
r(k) (0 )
k 0,1,L ,(n 1)
系数Azik可直接由 r(k) (0 ) 来确定。
例:已知描述某二阶LTI连续时间系统的动态方程
d2 dt 2
r(t)
5
d dt
r(t)
6r(t)
e(t)
起始状态 r(0 ) 1,r(0 ) ,2激励信号
(t)
2
p3
5
2p p2
5
p
3
e(t)
2
d3 dt3
vo
(t)
5
d2 dt 2
vo
(t)
5
d dt
vo
(t)
3vo
(t)
2
d dt
e(t)
总结: (1)引入算子符号后,RLC 电路可借助纯电阻电路的分析方法;
(2)是否可消去公共因子的原则:微分方程的阶数应等于电路 阶数(独立储能元件的个数)。
§2.3 微分方程的经典解法 r(t) rh (t) rp (t)
r(0 ) r(0 ) 1
(4)由 0状态确定待定系数
r(t) A1et A2e2t 0.5e3t
rr((00))
A1 A1
A2 0.5 1 2A2 1.5
3
A1 A2
5.5 5
全响应 r(t) 5.5et 5e2t 0.5e3t ,t 0
(一)经典法求解微分方程步骤:
r(t) 0 u(t) r(0 ) r(0 )
代入
d2 dt 2
r(t)
3
d dt
r(t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h(t ) ds(t ) (1 et / 4 ) (t ) 1 et / 4 (t )
dt
4
1 et / 4 (t)
4
7
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
❖利用微分方程的经典法求解
RC
duC (t dt
)
uC
(t
)
us
us
RC dh(t) h(t) (t)
dt
R=2 C=2F uc
us (t)
4 dh(t) h(t) (t)
dt
uC (0 ) 0
uC (t) h(t)
8
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
dh(t ) t 0 4 dt h(t) 0 h(t ) Ket /4 t 0
04 dh(t) dt 0h(t)dt 0 (t)dt
a2h(t ) a1h(t ) a0h(t ) (t )
t 0 a2h(t ) a1h(t ) a0h(t ) 0 特征根 s1 , s2 从而 h(t ) K1e s1t K 2e s2t (*)
13
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
0 0
a2
h(t
)dt
0 0
a1h(t
)dt
0 0
a0
h(
t
)dt
1
且 h(t),h(t) 不含冲激,为有限值
知 h(0 ) h(0 ) 0
h(0 ) 1/ a2
(**)
根据式(*) 和式(**)即可确定待定系数 K1和K2
14
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
(3) a2 y(t ) a1 y(t ) a0 y(t ) b1 x(t ) b0 x(t )
❖利用阶跃响应与冲激响应的关系求解 h(t)
(t )
(t) d (t)
dt
s(t )
h(t ) ds(t ) dt
6
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
例:求图示电路的 冲激响应h(t)。
解:阶跃响应
us
s(t) (1 et / 4 ) (t) 冲激响应
R=2 C=2F uc
1.齐次通解
y( n )( t ) an1 y( ( n1) t ) L a1 y( t ) a0 y( t ) 0
3
2020年8月1日2时36分
2.1 LTI连续系统的经典时域分析法
特征方程
n
a n1 n1
L
a1 a0
0
解得特征根
1 2 L n
按照P53页表2-1写出通解形式
代入初始条件,确定待定系数,得到通解表 达式
16
2020年8月1日2时36分
2.3 TI连续系统的单位冲激响应
因 h0 (0 ) 0, h0 (0 ) 1 知 K1 0.5, K2 0.5
于是 h0 (t ) 0.5(et e3t ) (t ) 所以 h(t) h0 (t) 2h0(t)
0.5(et e3t ) (t )
信号与系统 (Signals & systems)
教师:郑丹玲 zhengdl@ 通信学院信号基础教研中心
第二章 LTI系统的时域分析法
2.1 LTI连续系统的经典时域分析法 2.3 LTI连续系统的单位冲激响应 2.5 卷积积分
2.2 LTI离散系统的经典时域分析法 2.4 LTI离散系统的单位序列响应 2.6 卷和
a2h(t ) a1h(t ) a0h(t ) b1 (t ) b0 (t ) 设 a2h0(t ) a1h0 (t ) a0h0 (t ) (t )
则 h(t ) b1h0 (t ) b0h0 (t )
说明:对高阶微分方程,方法同上。
15
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
0 dt
0
0
4h(t
)
|0
0
0 h(t )dt
0
1
则
h(t)为有限值
9
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
4[h(0 ) h(0 )] 1 可得
h(0 ) 0
h(0 ) 1 / 4 从而 K h(0 ) 1 / 4
h(t ) 1 et /4 4
t 0
2
2020年8月1日2时36分
2.1 LTI连续系统的经典时域分析法
2.1.1 微分方程的经典解
描述LTI连续系统的数学模型是常系数线性微 分方程,一般形式为
y( n )( t ) an1 y( ( n1) t ) L a1 y( t ) a0 y( t ) bm x( m )( t ) bm1x( ( m1) t ) L b1x( t ) b0 x( t )
11
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
h(0 ) 0 h(0 ) K
又 0ah(t)dt 0bh(t)dt c
0
0
知 h(0 ) c / a
所以
h(t )
c
bt
e a (t)
a
12
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
(2) a2 y(t) a1 y(t ) a0 y(t ) x(t)
或 h(t ) 1 et /4 (t )
4
10
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
❖利用微分方程的经典法求解
(1) ay(t) by(t) cx(t)
ah(t) bh(t) c (t)
t 0 ah(t) bh(t) 0
特征根 s b / a
bt
从而 h(t ) Ke a (t )
例:求如下系统的h(t) y(t) 4 y(t) 3 y(t) x(t) 2x(t)
解:设 h0(t) 4h0 (t ) 3h0(t) (t)
t 0 h0(t ) 4h0 (t ) 3h0 (t ) 0 特征根 s1 -1, s2 3
从而 h0 (t ) ( K1et K 2e3t ) (t )
4
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应
❖单位冲激响应(Unit impulse response)
单位冲激函数(t)激励下系统的零状态响
应,简称冲激响应,用h(t)表示。
(t)
零状态系统
h(t )
x(t )
h(t)
y(t )
5
2020年8月1日2时36分
2.3 LTI连续系统的单位冲激响应