《应用概率统计》张国权编课后答案详解习题一解答
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计及其应用(第二版)详细完整版习题解答

___
P( AB) = 1 − P( AB) − 0.875 ,
___
P[( A ∪ B )( AB)] = P[( A ∪ B )( S − AB)] = P( A ∪ B ) − P[( A ∪ B )( AB)] = 0.625 − P( AB) = 0.5
解:设“讯号通过通讯线 i 进入计算机系统”记为事件 Ai (i = 1,2,3,4) , “进入讯号被无误差地接受”记为事件 B 。则根据全概率公式有
4
P( B ) = ∑ P( Ai ) P( B | Ai ) = 0.4 × 0.9998 + 0.3 × 0.9999 + 0.1× 0.9997 + 0.2 × 0.9996
1 1 1 1 1 C1 2 2 3 1 3 1 36 1 1 2 C 2 C 3 C1 C 3 C1 ;或者 。 × × × × × = = = 6 11 10 9 8 7 6 332640 9240 A11 9240
12 ,据统计,对于某一种疾病的两种症状:症状 A 、症状 B ,有 20% 的人只有症状 A, 有 30%的人只有症状 B, 有 10%的人两种症状都有, 其他的人两种症状都没有。在患这种病的人群中随机地选一人,求 (1)该人两种症状都没有的概率; (2)该人至少有一种症状的概率; (3)已知该人有症状 B,求该人有两种症状的概率。 解: (1)根据题意,有 40%的人两种症状都没有,所以该人两种症状 都没有的概率为 1 − 20 % − 30 % − 10 % = 40 % ; (2)至少有一种症状的概率为 1 − 40% = 60% ; (3)已知该人有症状 B,表明该人属于由只有症状 B 的 30%人群或 者两种症状都有的 10%的人群,总的概率为 30%+10%=40%,所以在 已知该人有症状 B 的条件下该人有两种症状的概率为
应用统计学课后习题和参考答案与解析

应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)。
A.只能有一个标志B.只能有一个指标C.可以有多个标志D.可以有多个指标2.对100名职工的工资收入情况进行调查,则总体单位是(D)。
A.100名职工B.100名职工的工资总额C.每一名职工D.每一名职工的工资3.某班学生统计学考试成绩分别为65分、72分、81分和87分,这4个数字是(D)。
A.指标B.标志C.变量D.标志值4.下列属于品质标志的是(B)。
A.工人年龄B.工人性别C.工人体重D.工人工资5.某工业企业的职工数、商品销售额是(C)。
A.连续变量B.离散变量C.前者是离散变量,后者是连续变量D.前者是连续变量,后者是离散变量6.下面指标中,属于质量指标的是(C)。
A.全国人口数B.国内生产总值C.劳动生产率D.工人工资7.以下指标中属于质量指标的是(C)。
A.播种面积B.销售量C.单位成本D.产量8.下列各项中属于数量指标的是(B)。
A.劳动生产率B.产量C.人口密度D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?总体是“所有的网上购物者”。
(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。
(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。
(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。
(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。
2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。
总体:该商店销售的所有冰箱。
总体单位:该商店销售的每一台冰箱。
品质标志:型号、产地、颜色。
数量标志:容量、外形尺寸;数量指标:销售量、销售额。
质量指标:不合格率、平均每天销售量、每小时电消耗量。
应用概率统计课后习题答案详解

习 题 一 解 答1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生;(3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生.解:(1)C B A (2)C AB (3)()C B A ⋃ (4)BC A C AB ABC ⋃⋃(5)ABC (6)C B A C B A C B A ⋃⋃――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件:(1) 41==i iA A , (2) A ,(3)B , (4) 32A A .解:(1)至少有一次取得白球 (2)没有一次取得白球(3)最多有2次取得白球(4)第2次和第3次至少有一次取得白球――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ⊇ (2)A B ⊆――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A .解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问:(1) ABC表示什么事件?(2) 在什么条件下,有ABC=A成立? (3) C ⊂B表示什么意思?(4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书(4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系.(1) X < 20 与X ≥ 20 ;(2) X > 20与X < 18 ; (3) X > 20与X ≤ 25 ;(4) 5 粒种子都出苗与5粒种子只有一粒不出苗; (5) 5 粒种子都出苗与5粒种子至少有一粒不出苗. 解:(1)对立; (2)互斥;(3)相容;(4)互斥;(5)对立――――――――――――――――――――――――――――――――――――――― (古)7. 抛掷三枚均匀的硬币,求出现“三个正面”的概率. 解:125.081213===p――――――――――――――――――――――――――――――――――――――― (古)8. 在一本英汉词典中,由两个不同的字母组成的单词共有 55 个,现从•26个英文字母中随机抽取两个排在一起,求能排成上述单词的概率. 解:252655⨯=p ≈0.0846――――――――――――――――――――――――――――――――――――――― (古)9. 把 10 本书任意地放在书架上,求其中指定的三本书放在一起的概率是多少? 解:首先将指定的三本书放在一起,共!3种放法,然后将8)1(7=+进行排列,共有!8种不同排列方法。
《应用数理统计》习题解答

2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
应用统计学课后习题与参考答案

应用统计学课后习题与参考答案应用统计学课后习题与参考答案应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)。
A.只能有一个标志B.只能有一个指标C.可以有多个标志D.可以有多个指标2.对100名职工的工资收入情况进行调查,则总体单位是(D)。
A.100名职工B.100名职工的工资总额C.每一名职工D.每一名职工的工资3.某班学生统计学考试成绩分别为65分、72分、81分和87分,这4个数字是(D)。
A.指标B.标志C.变量D.标志值4.下列属于品质标志的是(B)。
A.工人年龄B.工人性别C.工人体重D.工人工资5.某工业企业的职工数、商品销售额是(C)。
A.连续变量B.离散变量C.前者是离散变量,后者是连续变量D.前者是连续变量,后者是离散变量6.下面指标中,属于质量指标的是(C)。
A.全国人口数B.国内生产总值C.劳动生产率D.工人工资7.以下指标中属于质量指标的是(C)。
A.播种面积B.销售量C.单位成本D.产量8.下列各项中属于数量指标的是(B)。
A.劳动生产率B.产量C.人口密度D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?总体是“所有的网上购物者”。
(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。
(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。
(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。
(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。
2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。
总体:该商店销售的所有冰箱。
总体单位:该商店销售的每一台冰箱。
品质标志:型号、产地、颜色。
数量标志:容量、外形尺寸;数量指标:销售量、销售额。
概率论与数理统计课后习题答案1-8章_习题解答

第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。
本文档将提供《概率论与数理统计》课后习题的详细答案。
2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。
b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。
1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。
【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。
所以,P(A ∩ B) = 【答案】0.2。
b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。
【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。
所以,P(B) = 【答案】1.67。
第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。
b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 一 解 答1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来:(1) A发生,B、C不发生;(2) A、B不都发生,C发生;(3) A、B中至少有一个事件发生,但C不发生;(4) 三个事件中至少有两个事件发生;(5) 三个事件中最多有两个事件发生;(6) 三个事件中只有一个事件发生.解:(1)C B A (2)C AB (3)()C B A ⋃ (4)BC A C AB ABC ⋃⋃ (5)ABC (6)C B A C B A C B A ⋃⋃――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件:(1) 41 ==i iA A , (2) A ,(3)B , (4) 32A A .解:(1)至少有一次取得白球(2)没有一次取得白球(3)最多有2次取得白球(4)第2次和第3次至少有一次取得白球――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系.(1) A B=A (2)AB=A解:(1)A B ⊇ (2)A B ⊆――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件:(1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A .解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问:(1) ABC表示什么事件?(2) 在什么条件下,有ABC=A成立? (3) C ⊂B表示什么意思?(4) 如果A =B,说明什么问题?解:(1)选了一本1970年或以前出版的中文版数学书(2)图书馆的数学书都是1970年后出版的中文书(3)表示1970年或以前出版的书都是中文版的书(4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系.(1) X < 20 与X ≥ 20 ;(2) X > 20与X < 18 ;(3) X > 20与X ≤ 25 ;(4) 5 粒种子都出苗与5粒种子只有一粒不出苗;(5) 5 粒种子都出苗与5粒种子至少有一粒不出苗.解:(1)对立; (2)互斥;(3)相容;(4)互斥;(5)对立(古)7. 抛掷三枚均匀的硬币,求出现“三个正面”的概率. 解:125.081213===p ――――――――――――――――――――――――――――――――――――――― (古)8. 在一本英汉词典中,由两个不同的字母组成的单词共有 55 个,现从•26个英文字母中随机抽取两个排在一起,求能排成上述单词的概率.解:252655⨯=p ≈0.0846 ――――――――――――――――――――――――――――――――――――――― (古)9. 把 10 本书任意地放在书架上,求其中指定的三本书放在一起的概率是多少? 解:首先将指定的三本书放在一起,共!3种放法,然后将8)1(7=+进行排列,共有!8种不同排列方法。
故151906!10!8!3===p ≈0.067 ――――――――――――――――――――――――――――――――――――――― (古)10. 电话号码由 6 位数字组成,每个数字可以是 0,1,2,3,4,5,6,7,8,9 共 10 个数字中的任何一个数字(不考虑电话局的具体规定),求:(1) 电话号码中 6 个数字全不相同的概率;(2) 若某一用户的电话号码为 283125 ,如果不知道电话号码,问一次能打通电话的概率是多少?解:(1) 1512.0106610==P p ,(2) 610-=p ――――――――――――――――――――――――――――――――――――――― (古)11. 50 粒牧草种子中混有3粒杂草种子,从中任取4粒,求杂草种子数分别为0,1,23 粒的概律解: 3,2,1,0,/}{4504273===-k C C C k X P k k――――――――――――――――――――――――――――――――――――――― (古)12. 袋内放有两个伍分、三个贰分和五个壹分的硬币,从中任取五个,求钱额总和超过一角的概率.解:设A 为事件“钱额总和超过一角”,则A ={两个五分其余任取3个+一个五分3个两分一个一分+一个五分2个两分2个一分},故:[]25231215331238225101)(C C C C C C C C C A P ++==0.5――――――――――――――――――――――――――――――――――――――― (古)13. 10 把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:[]1713232101)(C C C C A P +=,或158301*********)(==+=A P =0.53 ――――――――――――――――――――――――――――――――――――――― (古)14. 求习题 11 中至少有一粒杂草种子的概率.解:本题与11解法有关,即为2255.0)0(1==-X P――――――――――――――――――――――――――――――――――――――― (几)15.有一码头,只能停泊一艘轮船,设有甲、乙两艘轮船在0道T 小时这段时间内等可能地到达这个码头,到后都停1T 小时,求两船不相遇的概率.解:设y x ,分别为甲、乙船到达码头的时刻,A 为事件“两船相遇”。
则{}T y T x y x ≤≤≤≤=Ω0,0|),(,{}1|),(T y x y x A ≤-=。
所求概率为[]2121221)(11)(1)(⎪⎪⎭⎫ ⎝⎛-=---=-=T T T T T T P A P ――――――――――――――――――――――――――――――――――――――― (几)16.(蒲丰投针问题)设平面上画着一些有相等距离2a (a>0)的平行线。
向此平面上投一枚质地均匀的长为2l(l<a)的针,求针与直线相交的概率。
解:设x 为针的中点到最近一条直线的距离φ),0(a x ≤≤为针与直线的夹角,则{}πφφ≤≤≤≤=Ω0,0|),(a x x , {}πφφφ≤≤≤≤=0,sin 0|),(l x x A ,于是有πφφππa l d l a L A L A P 2sin 1)()()(0⎰==Ω= ―――――――――――――――――――――――――――――――――――――――17. 某种动物由出生活到20岁的概率为0.8, 活到25岁的概率为0.4,求现在20岁的这种动物能活到25岁的概率。
解:设A 为该动物能活到20岁,B 为能活到25岁,则A B ⊂,已知4.0)(,8.0)(==B P A P ,所求概率为5.0)()()()()|(===A P B P A P AB P A B P ―――――――――――――――――――――――――――――――――――――――18.由长期统计资料表明,某一地区6月份下雨(记为事件A )的概率为4/15,刮风(记为事件B )的概率为7/15,既下雨又刮风的概率为1/10,求)(),|(),|(B A P A B P B A P 解:()()()2143.0143157101≈===B P AB P B A P ()()()375.083154101====A P AB P A B P ()()()()6333.03019101157154≈=-+=-+=⋃AB P B P A P B A P ―――――――――――――――――――――――――――――――――――――――19.为防止意外,在矿内设有两种报警系统,单独使用时,系统A有效的概率为 0.92 ,系统B有效的概率为 0.93 ,在系统A失灵的条件下,系统B有效的概 率为 0.85,求:(1) 发生意外时,这两种系统至少有一个系统有效的概率.(2) 系统B失灵的条件下,系统A有效的概率. 解:由题意85.0)|(,93.0)(,92.0)(===A B P B P A P 。
(1)所求概率为:,988.0068.092.0)()()()()(=+=+=-+=B P A P A B P A P B A P 其中:068.0)92.01(85.0)()|()(=-⨯==A P A B P A B P(2)所求概率为 ,82857.007.0012.01)()(1)|(1)|(=-=-=-=B P B A P B A P B A P 其中 012.0068.008.0)()()()(=-=-=-=B A P A P B A A P B A P―――――――――――――――――――――――――――――――――――――――20. 100件产品中有10件次品,用不放回的方式从中每次取1件,•连取3 次,求第三次才取得正品的概率.解:设第三次才取得正品的概率为A ,样本空间为3100A所以()0083.09899100910903100210190≈⨯⨯⨯⨯==A A C A P ――――――――――――――――――――――――――――――――――――――― (条件)21. 在空战中,甲机先向乙机开火,击落乙机的概率为 0.4 ;•若乙机未被击落,就进行还击,击落甲机的概率为 0.5 ;若甲机仍未被击落,则再进攻乙机,击落乙机的概率为 0.6 .求在这几个回合中(1) 甲机被击落的概率;(2) 乙机被击落的概率.解:设A 为甲机第一次被击落,i B 为乙机第i 次被击落,这里21,,B B A 互不相容。
依题义有6.0)|(,5.0)|(,4.0)(1211===B A B P B A P B P(1)所求概率为 3.06.05.04.00)()|()()|()(1111=⨯+⨯=+=B P B A P B P B A P A P(2)所求概率为 )()()(2121B P B P B B P += ,其中18.06.05.06.0)()|()|()()|()(11121122=⨯⨯===B P B A P B A B P B A P B A B P B P故所求概率为58.018.04.0)()()(2121=+=+=B P B P B B P――――――――――――――――――――――――――――――――――――――― (全概)22. 一个袋子中装有6只白球,4只黑球,从中任取一只,然后放回,并同时加进2只与取出的球同色的球,再取第二只球,求第二只球是白色的概率.解:设A 为“第一次取得白球”,B 为“第二次取得白球”(共4白2黑),则6.02.04.0104126106128)()|()()|()(=+=⨯+⨯=+=A P A B P A P A B P B P ―――――――――――――――――――――――――――――――――――――――23. 10 张娱乐票中有4张电影票, 10个人依次抽签.•问第一个人与第二个人抽到电影票的概率是否相同?解:设i A 为事件“第i 个人抽到电影票”,则 104)(1=A P 1041069410493)()|()()|()(1121122=⨯+⨯=+=A P A A P A P A A P A P ―――――――――――――――――――――――――――――――――――――――24. 发报台分别以概率 0.6 和 0.4发出信号“ .”和“ - ”,•由于通信系统受到干扰,当发出信号“ .”时,收报台分别以概率 0.8 及 0.2 收到信号 “ .”和“ - ”,同样,当发报台发出信号“ - ”时,收报台分别以概率 0 .9 和 0.1 收到信号“ - ”和“ .”.求(1) 收报台收到信号“ .”的概率.(2) 当收报台收到信号“ .”时,发报台确系发出信号“ .”的概率.解:设A ,B 分别为发出和接受信号“。