运动的合成与分解中的牵连速度问题
专题+关联速度的问题

N端在水平地面上向右以v0匀速运动,被救助的人员紧抱在M端随轻杆向平台B端
靠近,平台高h,当BN=2h时,则此时被救人员向B点运动的速率是(
)
A.v0
B.2v0
C.
D
.
ℎ
1
解析:设杆与水平面CD的夹角为,由几何关系可知 = 2ℎ = 2
A.
B.
C.
D.
)
绳下端实际速度0
绳上端实际速度
1.使下端绳子伸长
将0 沿绳方向分解为⁄⁄ = 0 cos
2.使下端绳子旋转
将0 沿垂直于绳方向分解为⊥ = 0 sin
作用效果
作用效果
使上端绳子缩短
绳子下端伸长的速度⁄⁄ 和上端缩
短的速度大小相等,即⁄⁄ =
绳子的“关联”速度问题
杆以及相互接触物体的“关联”速度问题
变换参考系相关的运动合成与分解
02
典例分析
【例题】如图所示,物体放在水平平台上,系在物体上的绳子跨过定滑轮,由地
面上的人以速度 向右水平匀速拉动,设人从地面上平台的边缘开始向右行至绳
与水平方向夹角为30°处,此时物体的速度为(
即 = 30°;将杆上N点的速度分解成沿杆的分速度1 和垂直杆转动的速度2 ,由矢量三角形可知
1 = 0 =
故选C。
3
3
0 ;而沿着同一根杆,各点的速度相同,故被救人员向B点运动的速率为 0 ,
2
2
4.光滑半球A放在竖直面光滑的墙角,并用手推着保持静止.现在A与墙壁之间放入
专题2.3 力与曲线运动(解析版)

第二部分核心主干专题突破专题2.3 力与曲线运动目录【突破高考题型】 (1)题型一曲线运动、运动的合成与分解 (1)题型二平抛(类平抛)运动的规律 (4)题型三圆周运动 (7)类型1水平面内圆周运动的临界问题 (7)类型2竖直平面内圆周运动的轻绳模型 (8)类型3竖直平面内圆周运动的轻杆模型 (9)【专题突破练】 (11)【突破高考题型】题型一曲线运动、运动的合成与分解1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向。
(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧。
2.运动的合成与分解(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成。
(2)根据合外力与合初速度的方向关系判断合运动的性质。
(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵循平行四边形定则。
【例1】(2022·学军中学适应考)2021年10月29日,华南师大附中校运会开幕式隆重举行,各班进行入场式表演时,无人机从地面开始起飞,在空中进行跟踪拍摄。
若无人机在水平和竖直方向运动的速度随时间变化关系图像如图所示,则无人机()A.在0~t1的时间内,运动轨迹为曲线B.在t1~t2的时间内,运动轨迹为直线C.在t1~t2的时间内,速度均匀变化D.在t3时刻的加速度方向竖直向上【答案】C【解析】在0~t1的时间内,无人机沿x方向和y方向均做初速度为零的匀加速直线运动,其合运动仍是直线运动,A错误;在t1~t2的时间内,无人机的加速度沿y轴负向,但初速度为t1时刻的末速度,方向不是沿y轴方向,初速度和加速度不共线,因此运动轨迹应是曲线,B错误;在t1~t2的时间内,无人机加速度沿y轴负向,且为定值,因此其速度均匀变化,C正确;在t3时刻,无人机有x轴负方向和y轴正方向的加速度分量,合加速度方向不是竖直向上,D错误。
【例2】.(2022·成都诊断)质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑轻质定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动。
第2节 运动的合成与分解

四、关联速度模型
算一算:如图,A、B两个物体用细绳相连,A
在力F作用下在水平面上运动,B在竖直方向
运动。当细绳与水平面间的夹角为θ时,B的
速度为V1,求此时物体A的速度多大?
v2
V1=Vcosθ
v
v1
F
θ
θA
V=V1/cosθ
解题关键:找到沿绳的速度
找到真正的合速度(实际速度)
V1
B
V1
四、关联速度模型
D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒
拓展:怎么操作才能将乒乓球吹进纸筒?
)
二、合运动的性质与运动轨迹
一个分运动是匀速直线运动,垂直方向上的分
运动是匀加速直线运动 ,合运动的轨迹是?
二、合运动的性质与运动轨迹
理论分析
加速度与合速度不共线, 物体一定做曲线运动。
v
vy
0
加速度恒定, 物体一定做匀变速曲线运动。
(2) 等效性----各分运动的规律叠加起来和合运动的规律等效。
(3) 同体性----各分运动与合运动是同一物体的运动。
(4) 独立性----各分运动独立进行,互不影响;
一、运动的合成与分解
3.运动的合成与分解
运动的合成与分解是指 x、v、 a 的合成与分解。
运动的合成
分运动
合运动
运动的分解
分解原则:根据运动的实际效果分解,也可以正交分解。
匀加速直线运动
两个初速度不为零的匀变速直线运动
如果 v 合与 a 合共线,为匀变速直线运动
如果 v 合与 a 合不共线,为匀变速曲线运动
思考:一匀速直线与一匀变速曲线互成角度合成合运动是?
可能直线运动;可能曲线运动
运动合成与分解的应用-牵连速度问题总结

v
运动的合成和分解的应用 3.杆物牵连速度问题
❖ “杆+物”问题
【问题综述】 此类问题的关键是: 1.准确判断谁是合运动,谁是分运动;实际运动是合运动 2.根据运动效果寻找分运动; 3.一般情况下,分运动表现在:
①沿杆方向的运动; ②垂直于杆方向的旋转运动。 4.根据运动效果认真做好运动矢量图,是解题的关键。 5.要牢记在杆上各点沿杆的方向上的速度相等。 6.此类问题还经常用到微元法求解。
运动的合成与分解的应用
1.小船渡河问题
v船 v船
v船
v水
v船
v船 v船
v水
v船
θ
θv水
结论:船当头v船指<向v与水时上,游最河岸短成航θ程:不c等os于河宽vvd2。
• 如果:
1、在船头始终垂直对岸的情况下,在行 驶到河中间时,水流速度突然增大,过 河时间如何变化? 答案:不变
2、为了垂直到达河对岸,在行驶到河中 间时,水流速度突然增大,过河时间如 何变化? 答案:变长
va
α vb
❖ “杆+物”问题
【例4】如图所示,滑块B以速度vB向左运动时,触点P
沿杆移动的速度如何?
寻找分运动效果
vB
【答案】 v vB cos
❖ “杆+物”问题
【例5】如图所示,长L的杆AB,它的两端在地板和竖直墙
壁上,现拉A端由图示位置以速率v匀速向右运动,则B端坐
标y和时间的函数关系是:
。B端滑动的速度
度vPx、 vPxy2是多y2 少? a 2l 2 (l al )2 1
寻找分运动效果
【答案】
vPx a ctg v A
vPy (1 a)v A
❖ “杆+物”问题 寻找分运动效果
“关联速度”模型

“关联速度”模型模型建构:【模型】绳子(或杆)牵连物体,研究关联速度【特点】力学问题中经常出现牵连运动:“两个物体用轻绳(或轻杆)相维系着向不同方向运动且速度不同,但在沿绳或杆方向上的速度分量却相同” 。
这种特殊的运动形式与一般意义的动力学连结体运动有很大的差别,通常不宜采用牛顿运动定律求解,大多可以通过“运动效果分解”或“功能关系分析(标量运算)”也可以用“微元法(借助三角函数)”来处理,准确地考察两物体之间的速度牵连关系(矢量运算)往往是求解这类问题的关键。
“绳子(杆)牵连物体”,求解关联速度的问题,是我们将要探究的重点。
由于两个物体相互关联,一般地我们都要按“运动效果”分解成:沿着绳子(或杆)的速度分量[改变绳子(或杆)速度的大小]和垂直于绳子(或杆)方向的速度分量[改变绳子(或杆)速度的方向]。
模型典案:【典案1】如图1所示,汽车以速度v 匀速行驶,当汽车到达图示位置时,绳子与水平方向的夹角是θ,此时物体M 的上升速度大小为多少?(结果用v 和θ表示) 〖解析〗解法一:运动效果分解法物体M 与右段绳子上升的速率相同,而右段绳子上升的速率与左段绳子在沿绳长方向运动的速率v 1是相等的。
与车相连的端点的实际运动速度就是合速度,且与汽车速度v 相同。
分析左段绳子的运动可知,它其实同时参与了两个分运动,即沿绳长方向运动和绕滑轮边缘顺时针转动。
将车速v 分解为沿绳方向的速度v 1和垂直绳子方向的速度v 2,如图2所示。
根据平行四边形定则可得v 1=v cos θ。
所以,物体M 上升速度的大小为 v ’=v cos θ。
【点评】这是我们处理这类问题常用的方法。
物理意义很明显。
这种方法说明了:①物体的运动一定是合运动;②物体的运动才能分解成沿绳子(或杆)——改变绳子速度大小的分量与垂直于绳子(或杆)——改变绳子(或杆)运动方向的分量;③改变物体运动方向的分量是圆周运动向心力的本质。
解法二:位移微元法如图3所示,假设端点A 水平向左匀速移动微小位移△s 至B ,此过程中左段绳子长度增大了△s 1(过A 向OB 作垂线AP ,因顶角很小,故OP ≈OA ),即物体上升了△s 1,显然,△s 1=△s·cos θθcos 1ts t s ∆∆=∆∆ 由于△s 很小、△t 很小,由速度的定义ts v ∆∆=可得v 1=v cos θ。
详析牵连速度

浅析牵连速度玉山一中物理组黄小燕在运动合成与分解中,牵连速度的问题是经常遇到的.其典型的例题是:如图,一个人在岸上通过光滑的定滑轮拉一小船,当绳与竖直方向成θ角度时,人拉绳的速度是V0,求此时船的速度?我们现在知道应该将船的速度沿绳和垂直与绳的方向分解,其中沿绳方向的分速度和人拉绳的速度V0相同.从而得到船的速度V船=V0/sinθ.但是初学的同学很容易犯这样的错误:将船这端的绳的速度沿水平和竖直分解.得到V船=V0sinθ.错误的原因是把速度的方向和力方向混淆起来了,绳拉小船的力是沿绳斜向上的,绳的速度是沿绳斜向上的吗?绳的速度不是沿绳的,其中绑在船头的绳的末端速度应该和船的速度是一样是水平的。
还有一个很重要的问题:定滑轮两边的绳子的速度就一定相等吗?看下面2种情况:1.如图,一个人沿绳竖直向下拉绕过定滑轮的绳一端,左端下降,右端上升,这时,两边绳子都沿绳方向运动,且由于绳不可伸长,很容易得到,此时定滑轮的速度大小两边相等.2.如图,一个拉绕过定滑轮的绳的一端,让绳以定滑轮的顶端O点做圆周运动.即不改变绳的长度,但改变绳的方向(如与竖直方向的夹角).此时很明显,左边绳速度方向不沿绳子,定滑轮两边绳速度大小不相等:左边动了,右边没运动.此时左边绳的速度对右边没有影响.这说明定滑轮两边的绳的速度大小是不一定相等的.绳子的速度也不一定沿绳方向的,那么什么时候定滑轮两边绳子速度相等呢?恰好是当绳的速度是沿绳方向的时候,两边绳的速度相等.我们再看第3种情况,一个人拉绕过定滑轮的一端以V0速度水平向外走.我们应该注意到此时左边绳的长度发生变化,方向也发生变化.此时绳的速度也不是沿绳的。
我们可以认为左边绳同是参与了1.2两种运动.但只有1运动(即只改变绳长度的分运动)对右边绳速度有影响.所以人由A位置水平走到B位置的这个运动过程,可以分解为人沿绳拉绳,使绳升长,和做圆周运动到B点.其中沿绳方向的分运动,使得右边的绳运动,并且两者速度大小相等(绳不可升长)。
牵连(关联)速度问题

牵连(关联)速度问题一、单选题(本大题共8小题,共32.0分)1. 如图,一半圆形碗的边缘上装有一定滑轮,滑轮两边通过一不可伸长的轻质细线挂着两个小物体,质量分别为m 1、m 2, m 1、m 2.现让m 1从靠近定滑轮处由静止开始沿碗内壁下滑.设碗固定不动,其内壁光滑、半径为R .则m 1滑到碗最低点时的速度为 、 、A.B.C.D. 【答案】D 【解析】 【分析】【详解】设m 1到达最低点时,m 2的速度为v 、m 1的速度沿绳子方向的分速度等于m 2的速度则到达最低点时m 1的速度v ′=cos 45v、根据系统机械能守恒有m 1gR -m 2=12m 2v 2+12m 1v ′2 联立两式解得v ′=故选D 。
2.如图,A、B 分别为固定的定滑轮,一根不可伸长的细绳跨过定滑轮,用一外力使细绳上端以v =3m/s 向右匀速运动,下端连接的小物块沿水平地面向左运动,当角度β=θ=530时,小物块的速度大小为(已知:sin53°、0.8、cos53°、0.6 、A. 3m/sB. 4m/sC. 5m/sD. 1.8m/s【答案】C 【解析】【详解】设小物块沿水平地面向左运动速度为1v ,根据运动的合成与分解可知1cos v v β=,解得小物块的速度大小为15/cos vv m s β==,故C 正确,A、B、D 错误; 故选C、3. 如图所示,作用于轻绳端点A 竖直向下的拉力F ,通过跨在光滑小滑轮的轻绳拉一处在较远处的物体B ,初始位置绳与水平方向的夹角很小,使物体沿水平面向右匀速滑动,直到接近滑轮下方,在此过程中( )A. 绳端A 的速度逐渐增大B. 绳端拉力F 逐渐增大C. 物体B 对地面的压力逐渐减小D. 绳端拉力F 的功率逐渐增大【答案】C 【解析】 【分析】【详解】A .对B 的速度分解,设绳与水平夹角为α,则沿绳方向的速度为'cos v v α=由于角度增大,故该速度不断减小,即绳端A 的速度逐渐减小,A 错误; B .由于B 匀速运动,故其在水平方向受力平衡,故有cos (sin )F mg F αμα=-解得gcos sin m F μαμα=+随角度α的增大,力F 先变小后变大,B 错误; C .由于力F 的竖直向上的分力为1gsin 1tan m F F μαμα==+随α的增大力1F 逐渐增大,故物体对地面的压力减小,C 正确; D .由于力F 先变小后变大,故其功率g cos 1tan m vP Fv μαμα==+由表达式可知随角度的增大,功率减小,D 错误。
运动的合成与分解问题归纳

抛体运动;运动的合成与分解问题归纳一. 教学内容:抛体运动;运动的合成与分解问题归纳二. 学习目标:1、理解曲线运动的条件,能够根据条件判断运动的性质及轨迹。
2、掌握运动的合成与分解的方法,理解合运动是物体的实际运动,合运动与分运动的关系。
3、重点理解牵连速度的分解问题及小船渡河类问题的分析方法。
三. 考点地位:曲线运动的条件及运动的合成与分解问题是高中物理问题的难点所在,特别是绳子的牵连速度问题,小般渡河问题是学生们学习曲线运动问题的难点,同时这部分内容也是学习和理解好平抛运动问题的基础,对于本部分内容的考查,在出题的形式上既可以通过选择题的形式单独考查,也可以融合在大型的计算题当中,如2007年广东卷理科基础卷的第5题,第6题,2005年上海卷的第10题是通过选择题目的形式出现的。
四. 重难点解析:(一)抛体运动:1、曲线运动的概念及性质:所有物体的运动从轨迹的不同可以分为两大类,即直线运动和曲线运动。
运动轨迹是直线的运动称为直线运动;运动轨迹是曲线的运动称为曲线运动。
2、曲线运动的速度:曲线运动中质点在某一时刻的(或在某一点的瞬时速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向。
3、曲线运动的性质速度是矢量,速度的变化,不仅指速度大小的变化,也包括速度方向的变化。
物体曲线运动的速度(即轨迹上各点的切线方向)时刻在发生变化,所以曲线运动是一种变速运动,一定具有加速度。
4、物体做曲线运动的条件曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力的作用。
当运动物体所受合外力的方向跟物体的速度方向在一条直线上(同向或反向)时,物体做直线运动。
这时合外力只改变速度大小,不改变速度的方向,当合外力的方向跟速度方向不在同一直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度方向的分力改变速度的方向,这时物体做曲线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动的合成与分解中的牵连速度问题
(1)概念:三种速度(以船渡河为例)
动点—运动的质点(船);
动系—运动的参考系(水);
静系—静止的参考系(河岸)。
.
(2)三种速度
①相对速度—动点对动系的速度(船对水的速度);
②牵连速度—动系对静系的速度(水对岸的速度);
③实际速度—动点对静系的速度(船对岸的速度)。
(3)速度矢量运算公式:水对岸船对水船对岸v v v += (遵循平行四边形定则) 例题
[例1]河宽以d 表示,船的划行速度以v 1表示,水流的速度设为v2,求(1)渡河的最短时间;(2)最小位移。
(1)最短时间:船头指向正对岸时,渡河所用时间为最短。
最短时间为:1v d t =; (2)最小位移 分为两种情况:①当v 1>v2时,且满
足1
2cos v v =θ,渡河位移最小为d ; ②当v 1<v2时,最小位移为d v v d s ⋅==
12cos θ。
[例2]一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ).
解:选取方块上与棒接触点B 为动点,棒为动系,轴O 为静系。
v 1——动点B 对动系的速度(B 点相对棒的速度)
v 2—动系对静系的速度(棒对轴O 转动的线速度)
v —动点对静系的速度(B 点对轴O 的速度)
由速度矢量分解图得:v 2=v sin θ.
设此时OB 长度为a ,则a =h /sin θ
令棒绕O 点转动角速度为ω,则ω=v 2/a =v sin 2θ/h . 故A 的线速度v A =ωL =vL sin 2θ/h . 练习
1.如图所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°时物块的速度v.
2.如图所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A
车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少?
、
3如图所示,均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时A 球速度和加速度大小.
4.一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m.物体m 2由静止从AB 连线为水平位置开始下滑1 m 时,m 1、m 2恰受力平衡如图所示.若此时m 1的速度为v 1,则m 2的速度为多大?..
5.如图所示,两定滑轮间距离为2d,质量均为m的小球A和B通过绕过定滑轮的绳子带动质量也为m小球C上升,在某一时刻连接C球的两绳夹角为2α,绳子张力为T,A、B两球下落的速度为V,不计滑轮摩擦和绳子的质量,绳子也不能伸长。
⑴此时C球上升的速度是多少?
⑵此时C 的加速度是多少?
参考答案:
1.v=v 0cos45°=220v 2.v B =0cos cos v β
α 3.v A =v B tan α;a A =a B tan α 4.又由速度分解知识知v 1=v 2cos ∠ACB ,得v 2=2v 1
5.(1)VC=V/COSα; (2)m
mg T a -=αcos 2。