2019-2020年八年级数学上学期第一次月考试题沪科版

合集下载

沪科版八年级数学上册第一次月考试卷

沪科版八年级数学上册第一次月考试卷

沪科版八年级数学上册第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)点A(2,6)与点B(-4, 6)关于直线()对称A . x=0B . y=0C . x=-1D . y=-12. (2分)(2017·冠县模拟) 函数y= 的自变量x的取值范围是()A . x≥0且x≠2B . x≥0C . x≠2D . x>23. (2分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1 ,已知在AC上一点P(2.4,2)平移后的对应点为P1 ,点P1绕点O逆时针旋转180°,得到对应点P2 ,则P2点的坐标为()A . (1.4,﹣1)B . (1.5,2)C . (1.6,1)D . (2.4,1)4. (2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A . 4小时B . 4.4小时C . 4.8小时D . 5小时5. (2分) (2017七下·三台期中) 以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2019八下·哈尔滨期中) 圆周长公式C=2πr ,下列说法正确是().A . 是变量,2是常量B . 是变量,是常量C . 是变量,是常量D . 是变量 ,是常量7. (2分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A . 汉城与纽约的时差为13小时B . 汉城与多伦多的时差为13小时C . 北京与纽约的时差为14小时D . 北京与多伦多的时差为14小时8. (2分) (2017八上·郑州期中) 下列说法正确的是()A . 点在第一象限B . 纵坐标为0的点在y轴上C . 已知一点到x轴的距离为2,到y轴的距离为5,则这个点的坐标为(5,2)D . 横坐标是负数,纵坐标是正数的点在第二象限9. (2分)如图,直角梯形ABCD中D点的坐标为(3,7),AD=5,则A的坐标为()A . (2,7)B . (-2,7)C . (2,-7)D . (-5,7)10. (2分)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟时,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A . (4,0)B . (5,0)C . (0,5)D . (5,5)11. (2分)(2017·天桥模拟) 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是()A . (﹣2,﹣4)B . (﹣2,4)C . (2,﹣3)D . (﹣1,﹣3)12. (2分) (2018八上·秀洲月考) 函数的图象大致为()A .B .C .D .二、填空题 (共6题;共10分)13. (1分) (2019七上·道里期末) 若排列用有序数对表示,那么表示排列的有序数对为________.14. (1分) (2015九上·盘锦期末) 函数的自变量x的取值范围是________.15. (1分) (2015七下·徐闻期中) 一只蚂蚁在点A(1,﹣2)向下平移5个单位长度得到点B,则点B的坐标是________.16. (5分)点P(-2,m)在第二象限的角平分线上,则m=____。

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案

2019-2020学年初二数学八年级上学期第一次月考数学试卷和答案一、选择题1、如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点.若GH 的长为10cm ,求△PAB 的周长为( ) A .5cm B .10cm C .20cm D .15cm(第1题) (第2题) (第3题)2、如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC 成轴对称的格点三角形一共有( ) A .2个 B .3个 C .4个 D .5个3、一块三角形玻璃样板不慎被张宇同学碰破,成了四片完整碎片(如图所示),聪明的他经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是 ( ) A .带其中的任意两块去都可以 B .带1,2或2,3去就可以了 C .带1,4或3,4去就可以了 D .带1,4或2,4或3,4去均可4、如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 长是( )A .3B .4C .6D .5(第4题) (第5题) (第7题)5、如图,AC=AD ,BC=BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ACB6、下列图形中,不是轴对称图形的是( )7、如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A'O'B'=∠AOB 的依据是( ) A .SAS B .ASA C .AAS D .SSS 8、下列不能推得△ABC 和△A ′B ′C ′全等的条件是( )A .AB=A ′B ′,∠A=∠A ′, ∠C=∠C ′ B .AB= A ′B ′,AC=A ′C ′,BC=B ′C′C .AB=A ′B ′,AC=A ′C ′,∠B=∠B ′D .AB=A ′B ′,∠A=∠A ′,∠B=∠B 9、如图,在Rt △ABC 中,∠ACB=90°,E 是AB 上一点,且BE=BC ,过E 作DE ⊥AB 交AC 于点D ,如果AC=5 cm ,则AD+DE= ( )A .3 cmB .4 cmC .5 cmD .6 cm二、填空题10、木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB 、CD 两个木条),这样做根据的数学道理是 。

2022-2023学年沪科版八年级数学上册第一次月考测试题(附答案)

2022-2023学年沪科版八年级数学上册第一次月考测试题(附答案)

2022-2023学年沪科版八年级数学上册第一次月考测试题(附答案)一、单项选择题(每小题4分,共40分)1.在平面直角坐标系中,点A(﹣2021,2021)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图象中,表示y是x的函数的是()A.B.C.D.3.下列线段长度能组成三角形的是()A.1cm,2cm,3cm B.2cm,4cm,1cmC.5cm,12cm,13cm D.2cm,1cm,1cm4.若直线l的函数表达式为y=﹣x+1,则下列说法不正确的是()A.直线l与y轴交于点(0,1)B.直线l不经过第三象限C.直线l与x轴交于点(﹣1,0)D.y随x的增大而减小5.直线y=﹣2x+2向下平移1个单位长度得到的直线的解析式是()A.y=﹣2x+3B.y=﹣3x+2C.y=﹣x+2D.y=﹣2x+1 6.点A(﹣5,y1)和B(﹣2,y2)都在直线y=﹣3x+2上,则y1与y2的关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y27.已知一次函数y=kx+b(k≠0)图象如图所示,则一次函数y=bx﹣k的图象大致是()A.B.C.D.8.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=16cm2,则S阴影等于()A.8cm2B.4cm2C.2cm2D.1cm29.如图所示,一次函数y=kx﹣3(k是常数,k≠0)与正比例函数y=﹣x+b(b是常数)的图象相交于点A(2,1),下列判断错误的是()A.关于x的方程kx﹣3=﹣x+b的解是x=2B.关于x的不等式﹣x+b>kx﹣3的解集是x>2C.当x<0时,函数y=kx﹣3的值比函数y=﹣x+b的值小D.关于x,y的方程组的解是10.在平面直角坐标系中,如果点P(x,y)经过某种变换后得到点P′(y﹣1,3﹣x),我们把点P′(y﹣1,3﹣x)叫做点P(x,y)的终结点.已知点P的终结点为P1,点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P的坐标为(1,0),则点P2021的坐标为()A.(1,0)B.(﹣1,2)C.(1,4)D.(3,2)二、填空题(每小题5分,共20分)11.在平面直角坐标系中,点P(4,﹣5)到x轴的距离为.12.在函数y=中,自变量x的取值范围是.13.如图,将三角形纸片ABC延DE折叠,当点A落在四边形BCED的外部时,∠1=72°,∠2=26°,则∠A=.14.已知一次函数y=kx+3在﹣2≤x≤2时,均有y≥1成立,则k的取值范围是.三、解答题(共90分)15.已知一次函数的图象经过点A(﹣1,3)和点B(2,﹣3).(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.16.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)当点P在y轴上;(2)点P到两坐标轴的距离相等.17.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′;(2)写出A′,B′的坐标;(3)求三角形ABC的面积.18.如图,在△ABC中,AM是△ABC的高线,AN是△ABC的角平分线,已知∠B=50°,∠BAC=100°,分别求出∠C和∠MAN的度数.19.如图,直线P A是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△P AB的面积.20.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分成12cm和15cm的两部分,求三角形各边的长.21.如图,直线l1:y=x+1与直线l2:y=﹣x+a相交于点P(1,b),直线l1,l2分别交x轴于A,B两点,点Q在y轴上,回答下列问题:(1)求a和b的值;(2)根据图象,则不等式x+1>﹣x+a的解集是;(3)若△ABQ的面积与△ABP的面积相等,直接写出点Q的坐标.22.如图,l1,l2分别表示A步行与B骑车在同一条路上行驶的路程与时间t的关系,观察图象回答问题:(1)直接写出B出发时与A相距的路程;(2)B走了一段路后,自行车发生故障,进行修理,直接写出修理自行车所用时间;(3)求出A步行的速度;(4)若B的自行车没有发生故障,保持出发时的速度,求A,B相遇的时间及相遇点离B出发点的路程.23.为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如表:单价(元/棵)成活率植树费(元/棵)A2090%5B3095%5设购买A种树苗x棵,绿化村道的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?参考答案一、单项选择题(每小题4分,共40分)1.解:点A(﹣2021,2021),它的横坐标为负,纵坐标为正,故它位于第二象限,故选:B.2.解:A、对于x的每一个取值,y都有唯一确定的值与之对应,故A正确;B、对于x的每一个取值,y可能有三个值与之对应,故B错误;C、对于x的每一个取值,y可能有两个值与之对应,故C错误;D、对于x的每一个取值,y可能有两个值与之对应,故D错误;故选:A.3.解:A、1+2=3,不能构成三角形,故此选项不合题意;B、1+2<4,不能构成三角形,故此选项不合题意;C、5+12>13,能构成三角形,故此选项符合题意;D、1+1=2,不能构成三角形,故此选项不合题意.故选:C.4.解:A.当x=0时,y=﹣1×0+1=1,∴直线l与y轴交于点(0,1),选项A不符合题意;B.∵k=﹣1<0,b=1>0,∴直线l经过第一、二、四象限,即直线l不经过第三象限,选项B不符合题意;C.当y=0时,﹣x+1=0,解得:x=1,∴直线l与x轴交于点(1,0),选项C符合题意;D.∵k=﹣1<0,∴y随x的增大而减小,选项D不符合题意.故选:C.5.解:直线y=﹣2x+2向下平移1个单位长度得到的直线的解析式是y=﹣2x+2﹣1,即y=﹣2x+1.故选:D.6.解:根据题意,得y1=﹣3×(﹣5)+2=17,即y1=17,y2=﹣3×(﹣2)+2=8;∵8<17,∴y1>y2.故选:D.7.解:∵一次函数y=kx+b(k,b都是常数)的图象经过第一、三、四象限,∴k>0,b<0,∴一次函数y=bx﹣k的图象经过第二、三、四象限,故选:B.8.解:∵点E是AD的中点,∴S△DBE=S△ABD,S△DCE=S△ADC,∴S△BCE=S△ABC=×16=8(cm2),∵点F是CE的中点,∴S△BEF=S△BCE=×8=4(cm2).故选:B.9.解:∵一次函数y=kx﹣3(k是常数,k≠0)与正比例函数y=﹣x+b(b是常数)的图象相交于点A(2,1),∴关于x的方程mx=kx+b的解是x=2,选项A判断正确,不符合题意;关于x的不等式﹣x+b>kx﹣3的解集是x<2,选项B判断错误,符合题意;当x<0时,函数y=kx﹣3的值比函数y=﹣x+b的值小,选项C判断正确,不符合题意;关于x,y的方程组的解是选项D判断正确,不符合题意;故选:B.10.解:根据题意得点P1的坐标为(﹣1,2),则点P2的坐标为(1,4),点P3的坐标为(3,2),点P4的坐标为(1,0),…,从P5开始,4个应该循环,而2021=4×505+1,所以点P2021的坐标与点P1的坐标相同,为(﹣1,2).故选:B.二、填空题(每小题5分,共20分)11.解:在平面直角坐标系中,点P(4,﹣5)到x轴的距离为5.故答案为:5.12.解:由题意得,4x﹣3≥0且x﹣2≠0,解得x≥且x≠2.故答案为:x≥且x≠2.13.解:如图,延长BD、CE相交于A,∵∠1=72°,∠2=26°,根据翻折的性质,∠3=(180°﹣∠1)=(180°﹣72°)=54°,∠4=(180°﹣∠2)=(180°﹣26°)=77°,在△ADE中,∠A=∠DEC﹣∠ADE=∠4﹣∠3=77°﹣54°=23°.故答案为:23°.14.解:当x=2时,y=2k+3,根据题意,得2k+3≥1,解得k≥﹣1;当x=﹣2时,y=﹣2k+3,根据题意,得﹣2k+3≥1,解得k≤1;∴﹣1≤k≤1,∵y=kx+3是一次函数,∴k≠0,故答案为:﹣1≤k≤1且k≠0.三、解答题(共90分)15.解:(1)设一次函数解析式为y=kx+b,把(﹣1,3)和(2,﹣3)分别代入得,解得,∴一次函数解析式为y=﹣2x+1;(2)∵x=﹣2时,y=﹣2×(﹣2)+1=5,∴点C(﹣2,5)在函数y=﹣2x+1的图象上.16.解:(1)∵点P在y轴上,∴2m+4=0,∴m=﹣2,∴m﹣1=﹣3,∴P(0,﹣3).(2)∵点P到两坐标轴的距离相等,∴①当2m+4=m﹣1时,m=﹣5,∴2m+4=﹣6,m﹣1=﹣6,∴P(﹣6,﹣6),∴②当2m+4+(m﹣1)=0时,m=﹣1,∴2m+4=2,m﹣1=﹣2,∴P(2,﹣2).综上所述,当点P到两坐标轴的距离相等时,P(﹣6,﹣6)或(2,﹣2).17.解:(1)△A′B′C′如图所示.(2)A′(0,4),B′(﹣1,1).(3)S△ABC=×4×3=6.18.解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣100°=30°.在△ABM中,∠B=50°,AM⊥BM,∴∠AMB=90°,∴∠BAM=90°﹣∠B=40°.∵AN平分∠BAC,∴∠BAN=∠BAC=50°,∴∠MAN=∠BAN﹣∠BAM=50°﹣40°=10°.19.解:(1)把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,);(2)S△P AB=×(1+1)×=.20.解:如图,∵AB=AC,BD是AC边上的中线,即AD=CD,∴|(AB+AD)﹣(BC+CD)|=|AB﹣BC|=15﹣12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,若AB>BC,则AB﹣BC=3cm,又∵2AB+BC=27cm,联立方程组并求解得:AB=10cm,BC=7cm,10cm、10cm、7cm三边能够组成三角形;若AB<BC,则BC﹣AB=3cm,又∵2AB+BC=27cm,联立方程组并求解得:AB=8cm,BC=11cm,8cm、8cm、11cm三边能够组成三角形;∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.21.解:(1)把P(1,b)代入y=x+1得b=1+1=2,∴P点坐标为(1,2),把P(1,2)代入y=﹣x+a得﹣×1+a=2,解得a=,即a的值为,b的值为2;(2)∵当x>1时,x+1>﹣x+a,∴不等式x+1>﹣x+a的解集是x>1;故答案为:x>1;(3)设点Q的坐标为(0,t),∵△ABQ的面积与△ABP的面积相等,∴×AB×|t|=×AB×2,解得t=±2,∴点Q的坐标为(0,2)或(0,﹣2).22.解:(1)B出发时与A相距15千米;(2)修理自行车所用时间是1.5﹣0.5=1(小时);(3)(30﹣15)÷3=5(千米/小时),答:A步行的速度为5千米/小时;(4)设A,B两人t小时相遇,则7.5÷0.5=15(千米/小时),15t﹣5t=15,解得t=1.5,15×1.5=22.5(千米),答:B出发1.5小时A,B相遇,相遇点离B的出发点22.5千米.23.解:(1)设购买A种树苗x棵,则购买B种树苗(1000﹣x)棵,由题意,得y=(20+5)x+(30+5)(1000﹣x)=﹣10x+35000(x≤1000);(2)由题意,可得0.90x+0.95(1000﹣x)=925,解得x=500.当x=500时,y=﹣10×500+35000=30000,即绿化村道的总费用需要30000元;(3)由(1)知购买A种树苗x棵,B种树苗(1000﹣x)棵时,总费用y=﹣10x+35000,由题意,得﹣10x+35000≤31000,解得x≥400,所以1000﹣x≤600,故最多可购买B种树苗600棵.。

沪科版2019-2020学年度第二学期第一次月考八年级数学试卷

沪科版2019-2020学年度第二学期第一次月考八年级数学试卷

试卷第1页,总4页绝密★启用前沪科版2019-2020学年度第二学期第一次月考八年级数学试卷一、单选题1.(3分)方程x 2﹣4x +5=0根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根D .没有实数根2.(3分)下列计算正确的是( ) A =B =C .3=D .3+=3.(3分)已知x =3是关于x 的方程x 2+kx ﹣6=0的一个根,则另一个根是( ) A .x =1B .x =﹣2C .x =﹣1D .x =24.(3x 的取值范围是( ) A .x≥1B .x≥0C .x >1D .x >05.(3分)参加一次聚会的每两人都握了一次手,所有人共握手10 次,若共有 x 人参加聚会,则根据题意,可列方程( ) A .(1)10x x -=B .(1)10x x +=C .1(1)102x x -= D .1(1)102x x +=6.(3a 的值是( ) A .52-B .-1C .1D .27.(3分)一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有( ) A .12人B .18人C .9人D .10人8.(3分)下列式子中,为最简二次根式的是( )试卷第2页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .12B .2C .4D .129.(3分)如果a 、b 是关于x 的方程(x+c)(x+d)=1的两个根,那么(a+c)(b+c)等于( ) A .1B .-1C .0D .c 210.(3分)已知52a =-,52b =+,则227a b ++的值为( )A .5B .6C .3D .4评卷人 得分二、填空题11.(4分)一元二次方程x 2=2x 的解为________. 12.(4分)计算12733-的结果是__________. 13.(4分)已知方程x 2+mx +3=0的一个根是1,则它的另一个根是_____,m 的值是______. 14.(4分)设7的小数部分为a ,则(4+a )a 的值是__________. 15.(4分)已知一元二次方程的两根为、,则__.16.(4分)若1+23x x --x 的范围是_____. 17.(4分)若()215m m x--=是一元一次方程,则m =__________.18.(4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价_________元. 评卷人 得分三、解答题19.(10分)计算: (1127123(2)))2515151-.试卷第3页,总4页20.(10分)解方程(1)x 2﹣6x ﹣7=0 (2)(x ﹣1)(x +3)=1221.(12分)阅读下面计算过程:﹣1; ;2. 试求:(1= .(21(n 为正整数)= .(3+的值.试卷第4页,总4页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………22.(12分)已知关于x 的方程x 2-(m +2)x +(2m -1)=0。

沪科版八年级数学上册月考试题及答案(2020版)

沪科版八年级数学上册月考试题及答案(2020版)

沪科版八年级数学(上册)月考试卷▶考试范围:第12章——第14章◀注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页:3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分) 1.在平面直角坐标系中,点P (6,-a2-3)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.小明不慎将一块三角形的玻璃打碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小形状完全一样的三角形玻璃?应该带( )去。

A.第1块 B.第2块 C.第3块 D.第4块3.下列长度的三条线段不能组成三角形的是( ) A.5、8、11 B.5、6、11 C.6、8、11 D.5、6、84.如图,已知AB=AC ,则不一定能使△ABD △ACD 的条件是( ) A.BD=DC B.∠ABD=∠ACD=90° C.∠BDA=∠CDA D.∠BAD=∠CAD5.方程组⎩⎨⎧=+=+2164732y x y x 的解的情况是( )A.无解B.有一组解C.有无穷多组解D.不确定6.如图所示,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A=25°,则∠BDC 等于( ) A.50 B.60° C.70° D.80°7.如图,AB//CD ,AD//BC ,AELBD ,CF1BD 垂足分别为E 、F 两点,则图中全等的三角形有( ) A.1对 B.2对 C.3对 D.4对8.等腰三角形的一条边长为3cm ,另一条边长为6cm ,则它的周长是( ) A.12cm B.15cm C.12cm 或15cm D.不确定 9.△ABC 中,AC=5,中线AD=6,则AB 边的取值范围是( ) A.1<AB<11 B.4<AB<16 C.5<AB<17 D.7<AB<1710.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (-0.5,0)、B (2,0),则不等式(kx+b )(mx+n )>0的解集为( )A.-0.5<x<2B.0<x<2C.x>2D.x<-0.5或x>2 二、填空题(每小题5分,共20分)11.已知点P (a ,b )在一次函数y=-5x+3的图象上,则5a+b -2=________。

沪科版八年级数学上册第一次月考试卷

沪科版八年级数学上册第一次月考试卷

沪科版八年级数学上册第一次月考试卷一、选择题1. 如图所示,网格中画有一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A . (1,0)B . (-1,0)C . (-1,1)D . (1,-1)2. 在函数中,自变量x的取值范围是()A . x≥5B . x≤5C . x>5D . x<53. 如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1, B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A . (a-2,b+3)B . (a-2,b-3)C . (a+2,b+3)D . (a+2,b-3)4. 汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q(升)与行驶时间(t小时)之间的函数关系图象是()A .B .C .D .5. 已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A . (4,﹣2)B . (﹣4,2)C . (﹣2,4)D . (2,﹣4)6. 在球的体积公式V= πr3中,下列说法正确的是( )A . V、π、r是变量,是常量B . V、r是变量,是常量C . V、r是变量,π是常量D . 以上都不对7. 数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是()A . -6B . 2C . -6或2D . 都不正确8. 排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果我的位置用(0,0)来表示,你的位置用(2,1)表示,那么丙的位置是()A . (5,4)B . (4,5)C . (3,4)D . (4、3)9. 已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是()A . (4,2)或(﹣4,2) B . (4,﹣2)或(﹣4,﹣2) C . (4,﹣2)或(﹣5,﹣2) D . (4,﹣2)或(﹣1,﹣2)10. 点A(1,2)先向右平移2个单位长度,再向下平移1个单位长度得到点A′,则点A′的坐标是( )A . (3,3)B . (-1,3)C . (-1,-1)D . (3,1)11. 如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )A . (2,2)→(2,5)→(5,6)B . (2,2)→(2,5)→(6,5)C . (2,2)→(6,2)→(6,5) D . (2,2)→(2,3)→(6,3)→(6,5)12. 教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A . ①②B . ①③C . ②④D . ①④二、填空题13. 如果电影票上的“3排4号”记作(3,4),那么(4,3)表示________排________号。

沪科版八年级数学第一次月考试卷95086

八年级数学上册第一次月考模拟试卷一、选择题(每题4分,共40分)1、点P 位于x 轴上方,距x 轴4个单位长度,又在y 轴左方,距y 轴3个单位长度,则点P 的坐标是( )A 、(3,-4) B 、(―3,4) C 、(4,―3) D 、(―4,3)2、若点P (a ,―b )在第二象限,则点Q (a+b ,ab )在第( )象限。

A 、一B 、二C 、三D 、四3、在平面直角坐标系中,点P (2,3)先向左平移3个单位,再向下平移4个单位,得到点的坐标为( ) A 、(5,7) B 、(―1,―1) C 、(―1,1) D 、(5,―1)4、如果在平面直角坐标系中,△ABC 的项点坐标分别为A (―4,―3)、B (0,―3)、C (―2,1),将点B 向右平移2个单位后再向上平移4个单位到达点B 1,若设△ABC 的面积为S 1,△AB 1C 的面积为S 2,则S 1与S 2的大小关系为( )A 、S 1>S 2B 、S 1=S 2C 、S 1<S 2D 、不能确定5、如图所示,已知某函数自变量x 的取值范围是0≤x ≤4,函数值y 的取值范围是2≤y ≤4,下列各图中,可能是这个函数的图象是( )6、函数0)1(421++-=x xy 的自变量x 的取值范围是( ) A 、x >21 B 、x <21 C 、x ≠21 D 、x <21且x ≠-1 7、下列函数中,是正比例函数的是( ) A 、x y 21= B 、xy 4= C 、35-=x y D 、1262--=x x y 8、下列函数中,当x <0时,y 随x 的增大而减小的是( )A 、13+-=x yB 、x y 4=C 、xy 2-= D 、13+=x y 9、在平面直角坐标系中,以(3,0)为圆心,2为半径画圆,则圆与坐标轴交点坐标是( )A 、(1,0)、(5,0)B 、(1,0)、(4,0)C 、(1,0)、(2,0)D 、(0,1)、(0,5)10、小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜后,余下的每千克降价0.4元,全部售完,售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了( )元A 、32B 、36C 、38D 、44二、填空题(每题5分,共20分)11、若电影院的5排2号记为(2,5),则3排5号记为 。

2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。

2019—2020学年度安徽省第一学期八年级沪科版数学第一次月考试题及参考答案

2019—2020学年度安徽省第一学期八年级数学第一次月考试题一、选择题(本大题共10个小题,每小题4分,满分40分)1.2019年8月10日9号台风利奇马在浙江省象山一带登陆,登陆后给浙江等地带来了严重灾害,气象台为预备它,首先要确定它的位置。

下列说法能确定台风位置的是()A.北纬26.7度,东经123.1度B.西太平洋C.距离浙江省温岭市300海里D.在日本与中国之间2.点P(2019,-2020)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)4.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)5.函数2xyx=中,自变量x的取值范围是()A.x≠0B.x>﹣2C.x>0D.x≥﹣2且x≠06.下面哪个点不在函数y=-2x+3的图象上()A.(-5,13)B.(0.5,2)C.(1,2)D.(1,1)7.对于一次函数y=x+2,下列结论中正确的是()A.函数的图像与x轴交点坐标是(0,-2)B.函数的图像不经过第四象限C.函数的图像向上平移2个单位长度得到函数y=x的图像D.函数值随自变量的增大而减小8.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()第8题图第10题图第13题图A.20kgB.25kgC.28kgD.30kg9..一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图像是A.B.C.D.10.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7二、填空题(本大题共4个小题,每小题5分,满分20分)11.已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标_________.12.中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,)2﹣,“马”位于点(4,)2﹣,则“兵”位于点__________.13.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s关于行走的时间t和函数图象,则两图象交点P的坐标是_____.14.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)三、(本大题共2个小题,每小题8分,满分16分)15.已知y是x的一次函数,当x=3时,y=1,;当x=2时,y=-4,求这个一次函数的解析式.16.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴.y轴.只知道游乐园D的坐标为(2,﹣2),请你帮她画出坐标系,并写出其他各景点的坐标.四、(本大题共2个小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的顶点都在格点上,其中A点的坐标为(2,-1).(1)如图,平移ABC,使点A与原点O是对应点,请画出平移后11OB CV并写出11B C、坐标;(2)求11OB CV的面积。

最新沪科版八年级数学上册第一次月考质量检测试卷(含答案)

最新沪科版八年级数学上册第一次月考质量检测试卷(含答案)时间:100分钟 满分:120分学校: __________姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A 、B 、C 、D 四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑。

1.下列函数中,正比例函数是( )A .y =﹣8xB .y =x 8C .y =8x 2D .y =8x ﹣42.若点A (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.函数y =xx 42中自变量x 的取值范围是( ) A .x ≠﹣4B .x ≠4C .x ≤﹣4D .x ≤4 4.一次函数y =(k ﹣2)x +3的图象如图所示,则k 的取值范围是( )A .k >3B .k <3C .k >2D .k <2 5.一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)6.若一次函数y =(k ﹣2)x +1的函数值y 随x 的增大而增大,则( )A .k <2B .k >2C .k >0D .k <07.如图,直线l 是一次函数y =kx +b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .23C .25D .7 8.下列各点中在函数y =2x +2的图象上的是( )A .(1,﹣2)B .(﹣1,﹣1)C .(0,2)D .(2,0)9.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >010.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2),将△ABC 向左平移5个单位后,A 的对应点A 1的坐标是( )A .(0,5)B .(﹣1,5)C .(9,5)D .(﹣1,0) 11.一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )(第4题图)(第7题图)A .x =2B .y =2C .x =﹣1D .y =﹣1 12.如图,点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2019次碰到矩形的边时点P 的坐标为( )A .( 1,4 )B .( 5,0 )C .( 8,3 )D .( 6,4 )二.填空题(共6小题,满分18分).13.已知点P (m ,1)在第二象限,则点Q (﹣m ,3)在第 象限. 14.把点Q (﹣2,3)沿y 轴方向平移2个单位,则点Q 的对应坐标是 .15.当直线y =(2﹣2k )x +k ﹣3经过第二、三、四象限时,则k 的取值范围是 .16.在函数2+=x y 中,自变量x 的取值范围是 .17.如图,一次函数y =﹣x ﹣2与y =2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组⎩⎨⎧<----<+0222x x m x 的解集为 .18.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A 1O 1B 1,与点A 对应的点A 1恰好在直线y =x 23上,则BB 1= . 三.解答题(共8小题,满分66分)19.(6分)已知直线y =(1﹣3k )x +2k ﹣1(1)k 为何值吋,y 随x 的增大而减小;(2)k 为何值时,与直线y =﹣3x +5平行.20.(6分)已知正比例函数y =kx 经过点A (﹣1,4)(1)求正比例函数的表达式;(2)将(1)中正比例函数向下平移5个单位长度后得到的函数表达式是 .21.(8分)如图是某学校的平面示意图,已知旗杆的位置是(﹣2,3),实验室的位置是(1,4)(1)根据所给条件在图中建立适当的平面直角坐标系;(2)用坐标表示位置:食堂 ,图书馆 .(3)已知办公楼的位置是(﹣2,1),教学楼的位置是(第18题图)(第12题图)(第11题图) (第17题图)(2,2),在图中标出办公楼和教学楼的位置;(4)如果一个单位长度表示30米,则宿舍楼到教学楼的实际距离为 米.22.(8分)已知一次函数的图象经过点(﹣2,﹣7)和(2,5),求该一次函数解析式并求出函数图象与y 轴的交点坐标.23.(8分)在平面直角坐标系中,已知点M (m ,2m +3).(1)若点M 在x 轴上,求m 的值;(2)若点M 在第二象限内,求m 的取值范围;(3)若点M 在第一、三象限的角平分线上,求m 的值.24.(8分)已知如图:直线y 1=kx ﹣2和直线y 2=﹣3x +b 相交于点A (2,﹣1),B 、C 分别为两条直线与y 轴的交点.(1)求两直线的解析式;(2)试求△ABC 的面积.25.(10分)近日,某区提出了“绿色环保,安全骑行”的倡议,号召中学生在骑自行车时要遵守交通规则,注意交通安全.周末,小峰骑共享单车到图书馆,他骑行一段时间后,在某一路口等红绿灯,等绿灯亮起后继续向图书馆方向前进,途中突然发现钥匙不见了,于是立即原路返回,在等红绿灯的路口处找到了钥匙,便继续前往图书馆,小峰离家的距离y (米)与所用时间x (分钟)的关系示意图如图所示,请根据图中提供的信息回答下列问题:(1)图中自变量是 ,因变量是 .(2)小峰等红绿灯用了 分钟;(3)在前往图书馆的途中,小峰一共骑行了多少米?(4)求直线OA 的表达式.26.(12分)直线L 的解析式为y =﹣x 32+4,分別交x 轴、y 轴于点A 、B . (第24题图) (第25题)(1)写出A,B两点的坐标,并画出直线L的图象(不需列表);(2)将直线l向下平移6个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)过△AOB的顶点能否画出直线把△AOB分成面积相等的两部分?若能,可以画几条?直接写出满足条件的直线解析式.(不必在图中画出直线)参考答案一.选择题(共3小题,满分36分)1.A.2.B.3.B.4.D.5.A.6.B.7.C.8.C.9.D.10.B.11.C.12.C.二.填空题(共3小题,满分18分)13.一.14.(﹣2,5)或(﹣2,1).15.1<k<3;16.x≥﹣2.17.﹣2<x<2.18.2.三.解答题(共8小题,满分66分)19.解:(1)1﹣3k<0时,y随x的增大而减小,解得:k31;..........3分(2)直线y=(1﹣3k)x+2k﹣1,与直线y=﹣3x+5平行,则1﹣3k=﹣3,解得:k=34..........................................................6分20.解:(1)将点A(﹣1,4)代入y=kx,得4=﹣k,即k=﹣4.故函数解析式为:y=﹣4x;..............................................................3分(2)将y=﹣4x向下平移5个单位长度后得到的函数表达式是:y=﹣4x﹣5.故答案是:y=﹣4x﹣5............................................................................6分21.解:(1)建立的平面直角坐标系如图所示:..............................................2分(2)(﹣5,5),(2,5);.............................................4分(3)如图所示;.............................................6分(4)宿舍楼到教学楼的实际距离为8×30=240(米),(第26题图)故答案为:240..............................................................................................8分22.解:设该一次函数解析式为y =kx +b (k ≠0),....................................1分把点(﹣2,﹣7)和(2,5)代入得:2725k b k b -+=-⎧⎨+=⎩, ........................................................................3分解得:31k b =⎧⎨=-⎩,.......∴y =3x ﹣1........................................................6分 图象如图,当x =0时,y =﹣1, 则与y 轴交点坐标为(0,﹣1)..................8分23.解:(1)∵点M 在x 轴上, ∴2m +3=0解得:m =﹣1.5;.......................................................................2分(2)∵点M 在第二象限内,∴0230m m <⎧⎨+>⎩, 解得:﹣1.5<m <0;..........5分(3)∵点M 在第一、三象限的角平分线上,∴m =2m +3,解得:m =﹣3. ....................................................8分24.解:(1)将点A 的坐标分别代入y 1、y 2的表达式得:﹣1=2k ﹣2,﹣1=﹣3×2+b ,解得:k =21,b =5,.............................3分 则函数的表达式为:y 1=21x ﹣2和直线y 2=﹣3x +5;.............................5分 (2)由函数的表达式得:点B (0,﹣2)、C (0,5),S △ABC =21×BC ×x A =21×7×2=7. ....................................................8分 25.(10分)解:(1)由图象可知,图中自变量是x ,因变量是y ,故答案为:x ,y ;.......................................................................................2分(2)小峰等红绿灯用了10﹣8=2(分钟),故答案为:2;..........................................................................................4分(3)1500+(1200﹣960)×2=1980(米),即在前往图书馆的途中,小峰一共骑行了1980米;........................7分(4)设直线OA 的函数解析式为y =kx ,8k =960,得k =120,即直线OA 的函数解析式为y =120x ,..............................10分26.解:(1)令x =0,y =﹣32x +4=4, ∴点B 的坐标为(0,4);令y =﹣32x +4=0,解得:x =6, ∴点A 的坐标为(6,0).画出直线l 如图:.......................................................4分(2)将直线l 向下平移6个单位得到l 1,则l 1的解析式为:y =﹣32x +4-6=﹣32x-2, 故答案为:y =﹣32x-2;...............................................6分 (3)能画出三条,如图所示.∵A (6,0),B (0,4),O (0,0),∴AB 的中点D (3,2),OA 的中点E (3,0),OB 的中点F (0,2);设OD 解析式为y =kx ,将D (3,2)代入解析式得,k =32,函数解析式为y =32x ; 设BE 解析式为y =mx +4,将E (3,0)代入解析式得,0=3m +4, 解得m =﹣34,函数解析式为y =﹣34x +4; 设AF 解析式为y =ax +2,将A (6,0)代入解析式得,0=6a +2, 解得a =﹣31, 函数解析式为y =﹣31x +2................................................12分(每个解析式2分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学上学期第一次月考试题
沪科版
A .第一象
限 B
.第二象限 C
.第三象限 D
.第四象限
2.点P 在第二象限内,P 点到x 、y 轴的距离分别是
4、3,则点P 的坐标为()
A .(-4,3) B
.(-3,-4) C
.(-3,4) D .(3,﹣4)
3.一次函数y=﹣2x ﹣3不经过


A .第一象限
B .第二象限 C
.第三象限 D .第四象限 4



P(m+3,2m+4)在
y


,



P


标是
( )
A .(-2,0)
B .(0,-2) C
.(1,0) D
.(0,1)
5.函数y=
2
1x 的自变量x 的取值范围是


A .x ≠2
B . x <2
C .x ≥2
D .x >2
6.已知点
P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 (
)
A .一、二、三象限
B .一、三、四象限
C .二、三、四象限 D
.一、二、四象限
7.下列一次函数中,
y 的值随着x 的值增大而减小的是
(
)
A .y=x
B .y=x+1
C .y= x -1
D .y= -x+1
8.如图,直线
y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0
的解集是


A .x ﹥-2
B .x ﹥3
C .x ﹤-2
D .x ﹤3
9.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,
那么


A . k ﹥0,b ﹥0 B
. k ﹥0,b ﹤0 C
.k ﹤0,b ﹥0
D
. k ﹤0, b ﹤0
10.一次函数y=3x+p 和y=x+q 的图象都经过点A(-2,0),且与y 轴分别交于B 、C 两点,
题号一



总分
得分题号 1
2
3
4
5
6
7
8
9
10
11
答案
则△ABC
的面积是 (
)
A.4 B.2 C.8 D.6 11.两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()
A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)
二、填空题(本题共4小题,每小题4分,满分16分)
12.写一个图象交y轴于点(0,-3),且y随x的增大而增大的一次函数关系式
________ .
13.已知:y是x的一次函数,右表列出了部分对应值,则m=
x 1 0 2
y 3 m 5
14.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,
则点B’的坐标是 .
15.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,
水价为每吨 1.2元;超过10吨时,超过部分按每吨 1.8元收费,该市某户居民5月份用水x吨(x>10),
应交水费y元,则y关于x的关系式____________。

三(本题共3小题,每题9分,满分27分)
16.已知一次函数y kx b的图象经过点(1,5)和(3,1),求这个一次函数的解析式。

【解】
17.张师傅驾车运送货物到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中
在加油站
加油若干升,油箱中剩余油量
y (升)与行驶时间t (小时)之间的关系如图所示。

请根据图象回答下列问题:(1)汽车行驶
小时后加油,中途加油升;
(2)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,
要到
达目的地,问油箱中的油是否够用?请说明理由。

【解】
18.如图,已知直线1l :121y x 与坐标轴交于A、C 两点,直线2l :2
2y x 与坐标
轴交于
B 、D 两点,两线的交点为
P 点,
(1)求△APB 的面积;(2)利用图象求当x 取何值时,
12y y 。

【解】
四、(本题满分13分)
19.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品。

经过了解
,两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记得知,该超市的A B
本共30
本。

(1)如果他们购买奖品共花费了300元,则这两种笔记本各买了多少本?
(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要不少于B种笔记本数
量,但又不多于B种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花
费W元.
请写出W(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
请你帮他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
【解】
八年级数学试题答案
一、选择题
1.D
2.C
3.A
4.B
5.D
6.B
7.D
8.A
9.B 10.A 11.A 二、填空题12. 略
13. 1
14.(-3,4) 15.
1.86
y x 三、16.解:∵一次函数
y kx b 的图象经过点(1,5)和(3,1),

513k b k b ,
……4′
解得
27
k b ……7′
∴这个一次函数的解析式为
27
y x ……9′17.解:(1)3,31。

……4′(每空2分)
(2)由图可知汽车前3小时用油36(升),加油后到目的地还需
3小时,∴还需油36升,
现油箱中还有
45升油,所以油箱中的油够用。

……9′
18.解:(1)联立
1l 、2
l 212y x y x ,
……2′
解得
11x y

……3′∴P 点坐标为(―1,―1),……4′
又∵A (0,1)B (0,-2),∴3132
2ABP
S △……6′
(2)由图可知,当
1x
时,1
2y y ……9′
19.解:(1)设A 种笔记本买了
n 本,则B 种笔记本买了(30-n )本,
由题意得300)30(812n n ,
……2′
解得15n

∴A 、B 种笔记本均为15本。

……4′
(2)
由题意可知
128(30)
w n n ……6′
又∵
A 种笔记本不少于
B 种笔记本,又不多于
B 种笔记本的2倍,

2(30)n n
n n ,
解得 15≤n ≤20,……8′∴
4240w n (15≤n ≤20)
……10′
∵k =4>0,∴w 随n 的增大而增大,∴当n =15时,w 取到最小值为
300元。

……13′。

相关文档
最新文档