第四章:核能的开发和利用

合集下载

核能的开发与应用

核能的开发与应用

裂变能
裂变能,重核发生裂变时释放的 能量。重核裂变是指一个重原子 核,分裂成两个或多个中等原子 量的原子核,引起链式反应,从 而释放出巨大的能量。
链式核裂变反应示意图
聚变能
聚变能,轻核发生聚变时释放的 能量。轻核聚变是指在高温下(几 百万度以上)两个质量较小的原子 核结合成质量较大的新核并放出 大量能量的过程,也称热核反应。
2.地球有望供应。世界上有比较丰富的核资源, 核燃料有铀、钍氘、锂、硼等等,全球铀的储 量约为417万吨。地球上可供开发的核燃料资 源、可提供的能量是矿石燃料的十多万倍。
3.运输方便、成本低。核燃料能量密度比起化石 燃料高上几百万倍,故核能电厂所使用的燃料 体积小,运输与储存都Biblioteka 方便。2.2核能发电的弊端
1.核废料处理需严谨。使用过的核燃料,虽然 所占体积不大,但因具有放射性,因此必须慎 重处理。一旦处理不当,就很可能对环境生命 产生致命的影响。核废料的放射性不能用一般 的物理、化学和生物方法消除,只能靠放射性 核素自身的衰变而减少。核废料放出的射线通 过物质时,发生电离和激发作用,对生物体会 引起辐射损伤。
核能的开发与利用
一、认识核能
1.核能基础知识 ·原子核包括质子和中子,质子数决定了 该原子属于何种元素,原子的质量数等 于质子数和中子数之和。 ·核能,又称原子能,它是原子核里的核 子——中子或质子,重新分配和组合时 释放出来的能量。核能分为两类:一类 叫裂变能,一类叫聚变能。核能是不可 再生能源。
2.热污染。核能发电热效率较低,因而比 一般化石燃料电厂排放更多废热到环境 裏,故核能电厂的热污染较严重。
3.核能发电被认为存在风险。核裂变必须 由人通过一定装置进行控制。一旦失去 控制,裂变能不仅不能用于发电,还会 酿成灾害。全球已经发生了数起核泄露 事故,对生态及民众造成了巨大伤害。

(完整版)人教版高中物理目录(必修版新教材课本目录)

(完整版)人教版高中物理目录(必修版新教材课本目录)

高中物理目录新课标教材•必修1第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 自由落体运动5 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿定律解决问题(一)7 用牛顿定律解决问题(二)高中物理目录新课标教材•必修2第五章机械能及其守恒定律1 追寻守恒量2 功3 功率4 重力势能5 探究弹性势能的表达式6 探究功与物体速度变化的关系7 动能和动能定理8 机械能守恒定律9 实验:验证机械能守恒定律10 能量守恒定律与能源第六章曲线运动1 曲线运动2 运动的合成与分解3 探究平抛运动的规律4 抛体运动的规律5 圆周运动6 向心加速度7 向心力8 生活中的圆周运动第七章万有引力与航天1 行星的运动2 太阳与行星间的引力3 万有引力定律4 万有引力理论的成就5 宇宙航行6 经典力学的局限性高中物理目录新课标教材•选修1-1 第一章电流1、电荷库仑定律2、电场3、生活中的静电现象4、电流和电源5、电流的热效应第二章磁场1、指南针与远洋航海2、电流的磁场3、磁场对通电导线的作用4、磁声对运动电荷的作用5、磁性材料第三章电磁感应1、电磁感应现象2、法拉第电磁感应定律3、交变电流4、变压器5、高压输电6、自感现象涡流7、课题研究:电在我家中第四章电磁波及其应用1、电磁波的发现2、电磁光谱3、电磁波的发射和接收4、信息化社会5、课题研究:社会生活中的电磁波高中物理目录新课标教材•选修1-2 第一章分子动理论内能1、分子及其热运动2、物体的内能3、固体和液体4、气体第二章能量的守恒与耗散1、能量守恒定律2、热力学第一定律3、热机的工作原理4、热力学第二定律5、有序、无序和熵6、课题研究:家庭中的热机第三章核能1、放射性的发现2、原子核的结构3、放射性的衰变4、裂变和聚变5、核能的利用第四章能源的开发与利用1、热机的发展和应用2、电力和电信的发展与应用3、新能源的开发4、能源与可持续发展5、课题研究:太阳能综合利用的研究高中物理目录新课标教材•选修2-1 第一章电场直流电路1、电场2、电源3、多用电表4、闭合电路的欧姆定律5、电容器第二章磁场1、磁场磁性材料2、安培力与磁电式仪表3、洛伦兹力和显像管第三章电磁感应1、电磁感应现象2、感应电动势3、电磁感应现象在技术中的应用第四章交变电流电机1、交变电流的产生和描述2、变压器3、三相交变电流第五章电磁波通信技术1、电磁场电磁波2、无线电波的发射、接收和传播3、电视移动电话4、电磁波谱第六章集成电路传感器1、晶体管2、集成电路3、电子计算机4、传感器高中物理目录新课标教材•选修2-2 第一章物体的平衡1、共点力平衡条件的应用2、平动和传动3、力矩和力偶4、力矩的平衡条件5、刚体平衡的条件6、物体平衡的稳定性第二章材料与结构1、物体的形变2、弹性形变与范性形变3、常见承重结构第三章机械与传动装置1、常见的传动装置2、能自锁的传动装置3、液压传动4、常用机构5、机械第四章热机1、热机原理热机效率2、活塞式内燃机3、蒸汽轮机燃气轮机4、喷气发动机第五章制冷机1、制冷机的原理2、电冰箱3、空调器高中物理目录新课标教材•选修2-3 第一章光的折射1、光的折射折射率2、全反射光导纤维3、棱镜和透镜4、透镜成像规律5、透镜成像公式第二章常用光学仪器1、眼睛2、显微镜和望远镜。

核工业基础知识

核工业基础知识
22
第三章 核电站动力装置
核工业基础知识
(四)稳压器 现代大功率压水堆核电站都采用电热式稳压器。 电热式稳压器一般采用立式圆柱形结构。用来 抑制压力升高的喷雾器安置在稳压器上部蒸汽空间 的顶端。限制压力降低的电加热元件安置在稳压器 下部水空间内。
23
第三章 核电站动力装置
核工业基础知识
三、一回路辅助系统 (一)化学和容积控制系统 核电站的化学容积控制系统的作用是调节一回 路系统中稳压器的液位,以保持一回路冷却剂容积; 调节冷却剂中的硼浓度,以补偿反应堆在运行过程 中反应性的缓慢变化;通过净化冷却剂及添加化学 药剂,保持一回路的水质。 (二)主循环泵轴密封水系统 (三)硼回收系统 (四)补给水系统 (五)取样系统及分析室
9
核工业基础知识
第二章 核反应堆
反应堆本体的组成和结构
第三节
反应堆总体结构均可分为反应堆本体和回路系统 两部分。 反应堆本体通常由反应堆(压力)容器、堆芯 (活性区)、堆内构件及控制棒驱动机构等几部分组 成,如图3所示。
10
核工业基础知识
第二章 核反应堆
图 3 反 应 堆 的 构 成
11
核工业基础知识
核工业基础知识核工业基础知识前言第一章核燃料循环第二章核反应堆第三章核电站动力装置第四章核燃料的开采冶炼和浓缩第五章核燃料元件的制造第六章乏燃料后处理第七章带电粒子加速器第八章核聚变装置第九章核设施退役第十章放射性废物的贮存处理和处置核工业基础知识核工业基础知识简要介绍核燃料循环体系核反应堆核动力堆装置核燃料开采冶炼和浓缩核燃料元件制造核燃料后处理带电粒子加速器核聚变装置核设施退役及放射性三废处理处置等
18
第三章 核电站动力装置
核工业基础知识
二、一回路系统及主要设备 压水堆核电站的一回路系统除了反应堆之外的 主要设备有:蒸汽发生器、冷却剂主循环泵、稳压 器及主管道等。 (一)反应堆压力容器 压力容器是压水堆核电站中最关键的高温高压 设备。

人教物理选修1-2课件:第四章第三节

人教物理选修1-2课件:第四章第三节
利用有两个关键:一是廉价的________ (利 制氢方法 用聚焦太阳能获得高温来分解水,从而得到 氢);二是________,目前公认最有前途的方 氢的储存 金属储氢 法是“________”.
栏目 导引
第四章
能源的开发与利用
想一想
2.家用太阳能热水器有哪些优点? 提示:经济、安全、卫生、环保、节能等优 点.
栏目 导引
第四章
能源的开发与利用
也不过维持开采 200 多年.自从煤炭和石油成 为人类社会的主要能源以后,人类便开始大量 消耗自然界用几十亿年积累起来的(财富)资 源.随着生产的发展和生活水平的提高,迅速 增长的能量消耗与日益耗竭的能源之间矛盾 加剧,如果没有新的能源供应,世界将面临能 源短缺的危机.
物理学曾经为人类能源开发作出过巨大贡献, 在当今人类社会以化石能源(煤、 石油、 天然气 等)为主的常规能源时期, 向以核能及可再生能 源(太阳能、风能、生物质能等)为主的新能源 时期的过渡中,物理学仍将发挥指导作用.
栏目 导引
第四章
能源的开发与利用
以氢气为燃料的汽车发动机在燃烧过 程中,只会排出水蒸气而无二氧化碳等其他废 气排出,因而不会产生温室效应,具有环保意 义. 某汽车重 6 t,阻力为车重的 0.05 倍,最大输 出功率为 60 kW.若此车以最大速度匀速行驶 300 km,发动机的效率为 50%,则需要多少氢 气做燃料?(g=10 m/s2,已知每摩尔氢气燃烧 后生成水蒸气并放出 285.8 kJ 的热量).
A

×
×
×
【答案】
栏目 导引
第四章
能源的开发与利用
变式训练
1.利用太阳能发电的优势是( A.无污染 C.分布集中 答案:AB B.可再生 D.投资小,效率高 )

核能的开发和利用

核能的开发和利用
LCES-2011
❖ 中国于1964年成功地爆炸了第一颗原子弹. ❖ 1967年成功地爆炸了第一颗氢弹.
LCES-2011
核能的利用 核能: 原子核发生变化时所释放出的能量。 获得核能的两条途径是:核裂变和核聚变 核能的优点: 清洁能源 高密度能量 储量丰富
LCES-2011
核裂变
用中子轰击铀235,铀核会分裂成2个新原子核, 并释放能量的过程。
核能的开发和利用
国内外的核能现状
截止2005年1月,30个国家和地区共439座核电 机组在运行,总装机容量36000万千瓦,总发电量
25000亿度,占16%。
中国大陆目前9台机组,装机容量660万千瓦,占
1.7%,发电量420亿度,占2.2%。
2020年计划核电装机容量达到3600万千瓦,占 4%,平均每年新增2-3套百万千瓦级核电机组。
LCES-2011
反应堆简介
1.压水堆 (Pressurized Water Reactor)
总体特点 a.以净化的普通水作冷却剂和慢化剂 b.轻水慢化性能好堆芯较小
吸收截面大低富集度加浓铀 c.一回路冷却剂压力一般为15.5MPa d.压水堆核电站有放射性的一回路和二回路系统分开,放
射性冷却剂不会进入二污染二回路设备,运行和维护方 便,需要处理的废气、废水、废物量较少。
原子弹
LCES-2011
聚变
2个质量较小的原子核结合成较大的新核, 并释放能量的过程。 氢弹就是利用聚变原理制成的。 聚变需要在几百万摄氏度的高温下才能发生, 因此聚变又叫热核反应.
LCES-2011
核能的和平利用—核电站
核能
内能
Байду номын сангаас机械能

核能的开发和利用

核能的开发和利用

核能的开发和利用1、核能的来源从1932 年发现中子到1939 年发现裂变,结果经历了七年之久才把巨大的裂变能从铀核中解放出来。

它同已知的只有几个电子伏的化学能相比要大几百万倍,而同一般的核反应能相比也要大十倍左右。

科学家们为了能很好利用它,就需要设法找到产生这种巨大能量的根源。

早在发现放射性和放射性核素的初期,人们从贝克勒尔和皮埃尔·居里曾经被镭射线烧伤过皮肤的现象中觉察到,各种射线的确具有很大能量。

例如,铀原子核衰变能量要比碳原子化合时所释放的能量大两百万倍。

而人类对各种化学能的应用早就开始了,但对放射能的实际应用却迟迟不得实现。

这是由于这些放射能的释放过程非常缓慢,也就是说这些天然放射性核素哀变时的能量释放率太小,故没有开发应用的价值。

即使这样,科学家们还是对放射能的来源问题很感兴趣。

从唯物主义者对物质世界的认识论观点出发,各种能量都不能凭空臆造或无中生有,它只能隐藏在物质之中。

当时人们已知原子是组成物质的最小单位,因此很自然地认为放射能是存在于原子内部。

那是在1903 年,当卢瑟福研究了α射线的能量后曾经指出:“这些需要加以思考的事实都指向同一个结论,即潜藏在原子里面的能量必是巨大无比的”。

所以至今人们仍把放射能叫做“原子能”。

然而,随着核科学的不断发展,在1911 年,卢瑟福又发现了原子中存在着某一核心部分,即找到了原子核。

并从它的特性中知道,原子质量的绝大部分都集中在原子核上。

这样,人们就认为原子核中储藏着巨大能量的说法更能反映客观实际。

而放射能实际上也就是由于原子核自身发生变化时所释放出的能量。

另外,原子能的提法又很容易和化学能相混混淆,所以把放射能称之为“核能”更符合实际情况。

但是,有些唯心论的学者曾经企图从原子核的放射性衰变现象中,作出物质似乎可以转变为能量的错误结论。

他们认为,在放射性核素的衰变过程中,物质似乎消失了,而能量却无中生有了。

然而,随着核科学的迅速发展,很快就驳斥了唯心论者的谬误。

核能源的开发和利用技术

核能源的开发和利用技术

核能源的开发和利用技术核能源是一种强大的能源源,它可以产生大量的电力和热能,被广泛应用于发电、医疗、科学等领域。

随着能源需求的增加和环境污染问题的日益突出,科学家们不断探索利用核能源进行可持续发展的技术。

本文将介绍核能源的开发和利用技术。

一、核裂变技术核能源的主要利用方式之一是核裂变技术,即将稳定核素通过中子碰撞使其裂变产生能量。

核裂变产生的热能可以被转化为电能,用于驱动发电机发电。

目前世界上大多数核电站都采用核裂变技术,其中最为常用的是基于铀的核裂变技术。

铀是一种稳定的核素,但其同位素铀-235具有相对高的裂变截面。

核电厂采用铀-235的裂变作为发电的源头。

在核电站中,铀-235经过精制之后,将加热到一定温度,在核反应堆中,中子将被释放,与铀-235碰撞导致其裂变并释放大量热能,进而转化为电能。

尽管核裂变技术现在在发电方面已经非常成熟,但是安全性问题一直是其争议所在。

事故可能会导致大规模的放射性污染,这样的后果不可挽回。

因此,开发更为安全、清洁的技术成为了核能源领域探索的重中之重。

二、核聚变技术核聚变技术是核能领域的另一个发展方向。

核聚变是指将轻元素(如氢、氦等)在极高的温度和压力下融合成重元素,同时释放出大量的能量。

这种技术的燃料是容易获取的,而且非常充足,基本上不会排放任何有害物质。

核聚变技术具有非常巨大的潜力,即使是微小的核聚变反应也能提供数倍于核裂变的能量,而且这种反应的燃料——氢,可以通过水分解来获得,因此不会引起核废料问题。

但是,目前核聚变技术还面临相当多的难题,最大的问题就是目前的技术无法稳定地控制聚变反应。

此外,核聚变反应的温度需要达到数亿度才能进行,这也极大地增加了实现此技术的困难。

三、核能安全技术核能安全技术涉及到安全措施、预防措施和响应措施等,可以防范事故发生或减少事故的影响。

例如,核电厂通常建在人烟稀少的地方,以减少风险。

核电站在设计时也会考虑受到自然灾害的影响,使其满足完整性和稳定性的要求。

第四章核能材料.解析

第四章核能材料.解析

4.改进型水冷动力反应堆材料
4.1 压水堆堆芯新材料 压水堆堆芯部件的工作条件十分苛刻,因而 对其运行的可靠性、经济性和安全性要求越来越 高。为了满足这种要求,一方面堆芯设计不断更 新,另一方面制造部件所使用的材料也将随之改 进。目前没根据核能发展需要而开发的压水堆堆 芯新型材料最具有典型的锆合金包壳材料。水冷 动力堆堆芯的另一种改进型材料是可燃毒物材料 。研究表明,Gd2O3是一种良好的材料。
4.1.2 锆-2.5铌合金
锆-2.5铌合金主要成分是2.5%-2.8%(质量) Nb和1000×10-6-1300×10-6O.添加Nb可以使合 金得到强化并提高耐蚀性,少量的氧也可以强化 合金,在合金重要严格的控制有害杂质氢和碳、 氯和磷。前者容易造成合金氢化开裂;后者会降 低其断裂韧性。 锆-2.5铌合金主要性能: 微观组织和断裂韧性 晶粒结构由β-Zr薄膜围绕α晶粒组成。该薄膜 可以连续或轻度破损;α粒子基极基本上呈现平行 于周向的织构;位错密度等于10-14,断裂韧性大 于250MPa.m1/2。
核能就是指原子能,即原子核结构发生变化时释放出的 能量,包括重核裂变或轻核聚变释放的能量。1938年德国化 学家哈恩首次揭示了核裂变反应,他通过研究发现,铀235在中子的轰击下分裂成两个原子核,同时放出三个中 子,这一过程伴随着能量的放出,这个过程就是核裂变反 应,放出的能量就是核能。物质所具有的原子能比化学能 大几百万倍以至上千万倍。
238U和232Th资源丰富,为核能的利用提供 了广阔的材料来源。此外,由于铀238和钍232是 能够转换成易裂变核素的重要原料,且其本身在 一定条件下也可产生裂变,所以习惯上也称其为 核燃料。聚变燃料包含氢的同位素氘、氚,锂和 其它化合物等。核工程材料是指反应堆及核燃料 循环和核技术中用的各种特殊材料,如反应堆结 构材料、元件包壳材料、反应堆控制材料、慢化 剂、冷却剂、屏蔽材料等等。核材料必须置于设 有多重实体屏障的保护区内,并实行全面管制与 统计,防止损失与扩散。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核能史话第四章:核能的开发和利用1、核能的来源从1932年发现中子到1939年发现裂变,结果经历了七年之久才把巨大的裂变能从铀核中解放出来。

它同已知的只有几个电子伏的化学能相比要大几百万倍,而同一般的核反应能相比也要大十倍左右。

科学家们为了能很好利用它,就需要设法找到产生这种巨大能量的根源。

早在发现放射性和放射性核素的初期,人们从贝克勒尔和皮埃尔·居里曾经被镭射线烧伤过皮肤的现象中觉察到,各种射线的确具有很大能量。

例如,铀原子核衰变能量要比碳原子化合时所释放的能量大两百万倍。

而人类对各种化学能的应用早就开始了,但对放射能的实际应用却迟迟不得实现。

这是由于这些放射能的释放过程非常缓慢,也就是说这些天然放射性核素哀变时的能量释放率太小,故没有开发应用的价值。

即使这样,科学家们还是对放射能的来源问题很感兴趣。

从唯物主义者对物质世界的认识论观点出发,各种能量都不能凭空臆造或无中生有,它只能隐藏在物质之中。

当时人们已知原子是组成物质的最小单位,因此很自然地认为放射能是存在于原子内部。

那是在1903年,当卢瑟福研究了α射线的能量后曾经指出:“这些需要加以思考的事实都指向同一个结论,即潜藏在原子里面的能量必是巨大无比的”。

所以至今人们仍把放射能叫做“原子能”。

然而,随着核科学的不断发展,在1911年,卢瑟福又发现了原子中存在着某一核心部分,即找到了原子核。

并从它的特性中知道,原子质量的绝大部分都集中在原子核上。

这样,人们就认为原子核中储藏着巨大能量的说法更能反映客观实际。

而放射能实际上也就是由于原子核自身发生变化时所释放出的能量。

另外,原子能的提法又很容易和化学能相混混淆,所以把放射能称之为“核能”更符合实际情况。

但是,有些唯心论的学者曾经企图从原子核的放射性衰变现象中,作出物质似乎可以转变为能量的错误结论。

他们认为,在放射性核素的衰变过程中,物质似乎消失了,而能量却无中生有了。

然而,随着核科学的迅速发展,很快就驳斥了唯心论者的谬误。

这就是在1905年,由杰出的天才理论物理学家爱因斯坦发现了能量和质量关系式后才实现的。

他是一个出生在德国,后来先后加入过瑞士和美国国籍的犹太人。

他所提出的“狭义相对论”理论不仅能证实能量转变和守恒定律的正确性,而且完全适用于核衰变的过程。

根据他对各种运动物体的观察(特别是那些作高速运动的物体)和分析的结果。

发现随着物质运动速度的增大,特别是接近光速(每秒30万公里)时,运动物质在运动方向上的长度(即由静止观察者所测得的长度)就越来越短;而其质量却越来越大。

根据爱因斯坦的相对论理论,对于高速运动的电子(如阴极射线),它的运动速度已很接近光速,为260000公里/秒。

此时电子质量可猛增到原来的两倍。

这一结果由德国物理学家布赫雷尔在1908年直接从实验测量中得到证明,且和爱因斯坦的理论预测值刚好相一致。

由此不难看出,能量的增加并不意味着质量的减少。

相反实际上物体运动速度加快后,不但能量增加,而且质量也变大。

这就驳倒了唯心论者认为放射性现象的发现,物质似乎可以转变为能量的错误说法。

微观世界中的这种奇妙现象再次证明了“自然界中的一切运动都可以归结为由一种形式向另一种形式不断转化的过程”和“把能量理解为物质的运动”的精辟见解的正确性。

另外,爱因斯坦在自己论述相对论的论文中,又大胆地用一个非常简单的关系式E=mc?,把以前一直认为相互毫无关系的、性质也截然不同的质量和能量连结在一起。

公式表示了能量和质量间互相换算的数量关系,即质量和能量是互为正比关系的。

但这决不表示能量就是质量或能量和质量间相互可以转化。

我们知道能量是物质运动的量度,它和物质运动的状态有关,是物质的一种属性;而质量是物质惯性和引力的量度,它也和物质的本性有关,是物质的另一种属性。

例如,我们可从质能公式算得一克质量所相当的能量为九万亿亿尔格。

虽然尔格本身是一个很小的能量单位,但是九万亿亿个尔格相加起来相当于把1000万吨重的东西提升到1公里的高度,或可供一个100瓦的灯泡点亮35000年。

但是实际上人类对这种能量的利用率仅为千分之一左右,所以它是一种威力巨大无比的能源。

正是由于这种微小质量与巨大能量在数值上有着天渊之别,才使得人们在自己的科学实验中,很长时期未能发现它们之间的关系。

而在一般化学反应中,与释放能量相对应的反应物质量也能稍微减少一点。

然而,这个微小量的改变,人们几乎觉察不到。

如果我们燃烧l加仑(等于3.785升)汽油,其相当的质量是2800克。

它在燃烧过程中与10000克左右的氧气化合成二氧化碳和水,并能产生1.35亿焦耳的能量,能驱动一辆汽车行驶25~30公里路程。

但从质能关系式中可看出,这些能量所相当的质量仅比百万分之一克略多一点。

这就是说,最初参加化学反应的反应物重量是2800克加上10000克等于12800克。

而反应后的生成物包括二氧化碳和水的重量是从12800克中减去一个微小量(百万分之一克)。

当时,十九世纪的化学家所用的测重仪是量不出这样微小变化的,所以那时科学家们都深信质量是永远守恒的。

2、核力和结合能我们知道化学反应过程中所释放的能量,主要来源于把原子保持在分子中的力,这种力的大小与原子的外层电子分布结构有关。

当两个以上原子合拢在一起组成分子时,各原子的电子云就会发生变化,将组成共同的电子云把分子中的所有原子核笼罩在一起。

在此同时并释放出能量,通常称为化学结合能。

所以化合物分子的能量总是低于它所包含的各原子能量的总和。

与此类似,隐藏在原子核中的核能,就是起源于组成原子核的核子(质子和中子的统称)之间的很强的作用力。

特别是对于那些原子序数高的、质量大的原子核,它们聚拢着为数众多的质子和中子。

例如第83号元素铋,在核中有83个带正电荷的质子和126个不带电的中子,总共209个核子彼此居然能挤成一团,在核内排列得如此紧密,也不因为质子间的静电斥力而飞散开来。

那么核子间到底是由一种什么样的奇异力把它们连结在一起的呢?当然,除了由电磁作用所造成的质子之间的静电斥力外,根据具有质量的物体之间的相互作用核子间还存在着万有引力。

虽然核子间距离很小,可产生大的引力。

但同时我们也知道,质子和中子的质量是那样微小,所以它们之间的万有引力一定是微不足道的,可略去不计。

如果核内再也没有其它作用力的影响,那么比万有引力强10^37倍的电磁力,将使原子核处于极不稳定的状态,这样核内的质子势必因巨大的静电斥力向四面八方飞散开来。

然而,事实恰恰相反,各种元素的原子核在自然界中都能稳定地存在着。

质子不仅没有随便飞出核外,相反地还和中子紧密地结合在一起,这就意味着核子间必定还有另外一种远比电磁力强得多的吸引力。

由于中于不带电荷,故这种“力”一定不同于既包括吸引力,又包括排斥力的电磁相互作用力。

当然更不同于微小的万有引力,而是一种特别强大的短程相互作用力,并被称作为“核力”。

它也是目前所知的最强大的作用力,这种强相互作用也叫做第三种相互作用。

虽然人们对其作用过程还不十分清楚,但核力本身却有着许多很明显的特性。

首先,它比电磁相互作用强130倍左右。

而且核力是必须在很小的距离内才能起作用的短程力。

随着核子间距离增加,核力将迅速减弱,一日超出核半径,核力就很快下降到零。

但是万有引力和电磁力都是长程力,它们的强度都随着距离的增加而减小,即和距离平方成反化。

如能把地球和太阳之间的距离增加10倍,那末万有引力就下降到原来的百分之一。

所以即使相隔数百万公里,仍然可感受到万有引力和电磁力的作用,而决不会下降到零。

其次,除氢核仅由一个质子组成外,其它核中都包括质子和中子。

核力不仅存在于质子间,而且在中子间或中子和质子间都有核力存在,它们所表现的性质也基本相同。

此外,从它们之间的结合能进行分析比较,发现它们的数值几乎是相等的。

由此可得强大的核力近似和电荷无关。

最后,核内所有核子之间并不是都有核力相互作用的。

也就是说在核中,某个核子只与相互邻近的数目有限的几个核子之间存在着核力的作用。

而与那些远离的核子之间不发生任何作用,这种现象被称为核力的饱和性。

相比之下,库仑力的范围就要大得多,而且也不受带电粒子数的限制,故是一种不会饱和的长程力。

当然,如果假设核力不存在饱和性,这样由于核子间强相互作用,使得核子数多的原子核,核子间的排列就更紧密。

也就是说,质量数越大的核,其单位体积内聚拢的核子数也越多。

这样就和前面所述,原子核单位体积中的平均核子数与质量数无关的结论发生矛盾。

由此可知,核力确是具有饱和性的。

此外,核力与核子的自旋等也有关。

但是核力的性质至今尚未完全搞清,这是有待于核科学家们继续解决的难题。

然而值得注意的是,对核质量作精确测定时,发现它总比核所包含的质子和中子质量之和要小。

这就表明,单个核子的质量和要比多个核子结合成核的质数致大。

即由于核子间强大的核力作用,迫使核子间排列得很紧密,结果发生了质量减小的现象。

为此,核科学家把核子结合前后的质量差值,称作谓核的“质量亏损”。

例如,氦核是由4个核子(2个质子和2个中于)所组成,2个质子的质量加上2个中子的质量2×1.007875+2×1.008665=4.032980u,而质谱仪测得的氦核质量为4.002603u,这样结合前后的质量亏损4.032980-4.002603=0.030377u。

根据爱因斯坦的质能公式,把氦核的质量亏损换算成能量为28.30电子伏。

就单个氦核而言,此数值可能很小。

然而,我们如能形成1克氦,则所释放的能量将大得惊人,相当于190000千瓦小时电能。

后来,人们通常把这种由核子结合成原子核时所放出的能量叫做核的总结合能。

它随原子核中的核子数不同而不同,即核子数越多,则核的总结合能也越大。

另外,为了便于对各种原子核的结合能进行比较,往往采用每个核子的平均结合能更为有利,有时也称它们比结合能。

在科学家们利用质谱仪对各种元素的核质量精确测定后,就能方便地从质量亏损计算出不同核的总结合能。

发现它们随着核子数的增加,总结合能也不断增加。

如果把质量数作为横坐标,而纵坐标为对应的比结合能,就可得到核的比结合能曲线。

显然由单个核子所组成的氢核(一个质子),其结合能为零。

而质量数低于20的核,它们的比结合能变化比较复杂,并出现了几个值得注意的峰值。

其中氦、碳、氮和氧的比结合能峰值分别为7.08,7.69,7.48和7.98兆电子伏。

相反锂和重氢(氖核)的比结合能都很小,分别为5.34和1.12兆电子伏。

随着质量数的增加,在40~100之间的最大比结合能约为8.7兆电子伏。

当质量数再大时比结合能又逐渐下降,直到铀核以后降为7.6兆电子伏左右。

此现象也证明了核力的饱和性。

随着核内核子数的改变,各种原子核结合的紧密程度是不一样的,这可从它们不同的比结合能上反应出来。

相关文档
最新文档