高三数学集合,逻辑用语,不等式

合集下载

精品高中数学专题:集合与常用逻辑用语、不等式、函数

精品高中数学专题:集合与常用逻辑用语、不等式、函数

专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。

自习篇一 集合、常用逻辑用语、复数、不等式的性质及解法、线性规划

自习篇一 集合、常用逻辑用语、复数、不等式的性质及解法、线性规划
1−i
1+i
(3)利用复数相等a+bi=c+di(a,b,c d∈R)列方程(组)时,注意a,b,c,d∈R这个
前提条件;
(4)注意不能把实数集中的所有运算法则和运算性质都照搬到复数集中来,
2
2
2
例如,若z1,z2∈C,1 +2 =0,则不能推出z1=z2=0,z <0在复数范围内有可能成立.
自习四
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[解析]
2
2
由m >1,得m<-1或m>1,∴“m>1”是“m >1”的充分不必要条件,故选A.
3. [2021·浙江卷] 已知非零向量a,b,c,则“a·c=b·c”是“a=b”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
1−3i2021
已知i为虚数单位,则复数z=
的虚部是
1+i
4.
A.-2
[解析]
B.2
C.-2i
( A )
D.2i
1−3i2021 1−3i (1−3i)(1−i) −2−4i
z=
=
=
=
=-1-2i,故z的虚部为-2.故选A.
1+i
1+i
2
(1+i)(1−i)
5. [2019·浙江卷]
[解析]
1
复数z= (i为虚数单位),则|z|=
RA)∩B=(
RA)∩B={x|x≥4}.
C )
5. 已知集合A={x|-2≤x≤-1},B={y|y=-2x+a,x∈A},若A⊆B,则实数a的取值范围

【高考数学考点预测】专题1集合、常用逻辑用语、不等式思维方法总结及18类常考题型归纳(新高考)原卷版

【高考数学考点预测】专题1集合、常用逻辑用语、不等式思维方法总结及18类常考题型归纳(新高考)原卷版

1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.3.若B⊆A,应分B=∅和B≠∅两种情况讨论.4.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.5.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.6.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.7.充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.8.根据充分、必要条件求解参数取值范围需抓住“两”关键(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.9.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.探求充要条件的关键在于转化的等价性,解题时要考虑条件包含的各种情况,保证条件的充分性和必要性.10.判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断存在量词命题是真命题,只要在限定集合内找到一个x,使p(x)成立即可.否定全称量词命题和存在量词命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.11.已知命题的真假,可根据每个命题的真假利用集合的运算求解参数的取值范围.12.对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.13.作差法一般步骤:(1)作差;(2)变形;(3)定号;(4)结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.14.作商法一般步骤:(1)作商;(2)变形;(3)判断商与1的大小;(4)结论.15.函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.16.特殊值法:对于选择、填空题,可以选取符合条件的特殊值比较大小.17.解决此类题目常用的三种方法:(1)直接利用不等式的性质逐个验证;(2)利用特殊值法排除错误答案,利用不等式的性质判断不等式是否成立时要特别注意前提条件;(3)利用函数的单调性,当直接利用不等式的性质不能比较大小时,可以利用指数函数、对数函数、幂函数等函数的单调性进行判断.18.解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.19.利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.20.利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.21.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.22.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.23.设变量时一般要把求最大值或最小值的变量定义为函数.24.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.25.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.26.解一元二次不等式的一般步骤(1)化为标准形式.(2)确定判别式Δ的符号,若Δ≥0,则求出该不等式对应的一元二次方程的根,若Δ<0,则对应的一元二次方程无根.(3)结合二次函数的图象得出不等式的解集,特别地,若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集.27.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.28.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.29.给出一元二次不等式的解集,相当于知道了相应二次函数的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.30.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 31.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【查缺补漏】【考点一】集合的基本概念【典例1】已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6【典例2】已知集合A={2a-1,a2,0},B={1-a,a-5,9},且A∩B={9},则a=()A.±3,5B.3,5C.-3D.5【典例3】已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A.2B.3C.4D.5【考点二】集合间的基本关系【典例1】若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M【典例2】已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________.【典例3】(多选题)已知集合M ={x |x 2=1},N ={x |ax =1}.若N ⊆M ,则实数a 的值可能为( ) A.-1B.0C.1D.2【考点三】集合的运算【典例1】集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1)D.(-∞,1]【典例2】已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( ) A.[3,6) B.[1,2) C.[2,4)D.(2,4]【典例3】已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( ) A.(-∞,-3]∪[2,+∞) B.[-1,2] C.[-2,1]D.[2,+∞)【考点四】充分条件与必要条件的判定【典例1】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【典例2】已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sin α=sin β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【典例3】已知两条直线l,m及三个平面α,β,γ,则α⊥β的充分条件是() A.l⊂α,l⊥β B.l⊥α,m⊥β,l⊥mC.α⊥γ,β∥γD.l⊂α,m⊂β,l⊥m【考点五】充分、必要条件的应用【典例1】设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要不充分条件,则实数a的取值范围是________.【典例2】设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且非p是非q【典例3】已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.【考点六】充要条件的探求【典例1】命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是()A.a≥4B.a>4C.a≥1D.a>1【典例2】关于x的方程ax2+bx+c=0(a≠0)有一个正根和一个负根的充要条件是________.【典例3】已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.【考点七】全称量词命题、存在量词命题的真假判断 【典例1】(多选题)下列四个命题中为真命题的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13xB.∃x ∈(0,1),log 12x >log 13xC.∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x>log 12xD.∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x【典例2】以下四个命题既是存在量词命题又是真命题的是( ) A.锐角三角形有一个内角是钝角 B.至少有一个实数x ,使x 2≤0 C.两个无理数的和必是无理数 D.存在一个负数x ,使1x >2【典例3】(多选题)下列命题中是真命题的有( ) A.∀x ∈R ,2x -1>0 B.∀x ∈N *,(x -1)2>0 C.∃x ∈R ,lg x <1 D.∃x ∈R ,tan x =2【考点八】含有一个量词的命题的否定【典例1】已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为( )A.∃x ∈R ,e x -x -1≥0B.∃x ∈R ,e x -x -1>0C.∀x ∈R ,e x -x -1>0D.∀x ∈R ,e x -x -1≥0【典例2】设命题p :所有正方形都是平行四边形,则綈p 为( ) A.所有正方形都不是平行四边形 B.有的平行四边形不是正方形 C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形【典例3】已知集合A 是奇函数集,B 是偶函数集.若命题p :∀f (x )∈A ,|f (x )|∈B ,则非p 为( )A.∀f (x )∈A ,|f (x )|∉BB.∀f (x )∉A ,|f (x )|∉BC.∃f (x )∈A ,|f (x )|∉BD.∃f (x )∉A ,|f (x )|∉B 【考点九】由命题的真假求参数的取值范围【典例1】已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为________.【典例2】已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.【典例3】若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________.【考点十】比较两个数(式)的大小【典例1】已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定【典例2】若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c【典例3】若a =1816,b =1618,则a 与b 的大小关系为________. 【考点十一】不等式的性质【典例1】已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0【典例2】若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有( ) A .①② B .②③ C .①④ D .③④【典例3】若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( ) A .1 B .2 C .3 D .4 【考点十二】不等式性质的应用【典例1】已知a >b >0,给出下列四个不等式: ①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b . 其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④D .②③④【典例2】已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.【典例3】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.【考点十三】一元二次不等式的求解 【典例1】求不等式-2x 2+x +3<0的解集.【典例2】解关于x 的不等式:x 2-(a +1)x +a <0.【典例3】求不等式12x2-ax>a2(a∈R)的解集.【考点十四】一元二次不等式恒成立问题【典例1】若一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为()A.(-3,0] B.[-3,0)C.[-3,0]D.(-3,0)【典例2】设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求m 的取值范围.【典例3】对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.【考点十五】一元二次不等式的应用【典例1】某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.【考点十六】利用基本不等式求最值【典例1】已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 【典例2】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【典例3】已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m =________.【考点十七】基本不等式的实际应用【典例1】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【考点十八】基本不等式的综合应用【典例1】已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( ) A .9 B .8 C .4 D .2【典例2】已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24【典例3】已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( ) A.12 B.32 C .1 D .2 【真题训练】1. (2021•天津)设集合A ={﹣1,0,1},B ={1,3,5},C ={0,2,4},则(A ∩B )∪C =( ) A .{0}B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}2. (2021•新高考Ⅱ)若全集U ={1,2,3,4,5,6},集合A ={1,3,6},B ={2,3,4},则A ∩∁U B =( ) A .{3}B .{1,6}C .{5,6}D .{1,3}3. (2021•北京)已知集合A ={x |﹣1<x <1},B ={x |0≤x ≤2},则A ∪B =( ) A .{x |﹣1<x <2} B .{x |﹣1<x ≤2} C .{x |0≤x <1}D .{x |0≤x ≤2}4. (2021•浙江)设集合A ={x |x ≥1},B ={x |﹣1<x <2},则A ∩B =( ) A .{x |x >﹣1}B .{x |x ≥1}C .{x |﹣1<x <1}D .{x |1≤x <2}5. (2021•甲卷)设集合M ={1,3,5,7,9},N ={x |2x >7},则M ∩N =( ) A .{7,9} B .{5,7,9}C .{3,5,7,9}D .{1,3,5,7,9}6. (2021•乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( ) A .∅B .SC .TD .Z7. (2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}8. (2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是()A.A⊆B B.∁R A⊆∁R B C.A∩B=∅D.A∪B=R9.(2021•天津)已知a∈R,则“a>6”是“a2>36”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知两两不相等的x1,y1,x2,y2,x3,y3,同时满足①x1<y1,x2<y2,x3<y3;②x1+y1=x2+y2=x3+y3;③x1y1+x3y3=2x2y2,以下哪个选项恒成立()A.2x2<x1+x3B.2x2>x1+x3C.x22<x1x3D.x22>x1x311.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+12.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=.13.(2022•新高考Ⅰ)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.{x|≤x<2}C.{x|3≤x<16}D.{x|≤x<16} 14.(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M15.(2022•乙卷)集合M={2,4,6,8,10},N={x|﹣1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}16.(2022•新高考Ⅱ)已知集合A={﹣1,1,2,4},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,2}B.{1,2}C.{1,4}D.{﹣1,4}17.(2022•甲卷)设全集U={﹣2,﹣1,0,1,2,3},集合A={﹣1,2},B={x|x2﹣4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{﹣2,1}D.{﹣2,0}18.(2022•新高考Ⅱ)若x,y满足x2+y2﹣xy=1,则()A.x+y≤1B.x+y≥﹣2C.x2+y2≤2D.x2+y2≥119.(2022•上海)为有效塑造城市景观、提升城市环境品质,上海市正在努力推进新一轮架空线入地工程的建设.如图是一处要架空线入地的矩形地块ABCD,AB=30m,AD=15m.为保护D处的一棵古树,有关部门划定了以D 为圆心、DA为半径的四分之一圆的地块为历史古迹封闭区.若空线入线口为AB边上的点E,出线口为CD边上的点F,施工要求EF与封闭区边界相切,EF右侧的四边形地块BCFE将作为绿地保护生态区.(计算长度精确到0.1m,计算面积精确到0.01m2)(1)若∠ADE=20°,求EF的长;(2)当入线口E在AB上的什么位置时,生态区的面积最大?最大面积是多少?【热点预测】【单选题】1.设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]2.已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±13.已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)4.设集合A={x|(x+2)(x-3)≤0},B={a},若A∪B=A,则a的最大值为()A.-2B.2C.3D.45.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 王昌龄的《从军行》中的两句诗为“黄沙百战穿金甲, 不破楼兰终不还”,从中可知“攻破楼兰”是“返回家乡”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件7. 命题若“x 2+y 2=0,则x =y =0”的否命题为( ) A.若x 2+y 2=0,则x ,y 中至少有一个不为0 B.若x 2+y 2≠0,则x ,y 中至少有一个不为0 C.若x 2+y 2≠0,则x ,y 都不为0 D.若x 2+y 2=0,则x ,y 都不为0 8. 对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“a +5是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A.1B.2C.3D.49. 已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A.M <N B.M >N C.M =ND.不确定10. 若0<a <b <1,c >1,则下列选项错误的是( ) A.c a <c b B.ba c <ab c C.b -a c -a <b cD.log a c <log b c11. 不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞D.⎝ ⎛⎭⎪⎫0,12 12. 若不等式ax 2+bx +c >0的解集为{x |-1<x <2},那么不等式a (x 2+1)+b (x -1)+c >2ax 的解集为( ) A.{x |-2<x <1} B.{x |x <-2或x >1} C.{x |0<x <3} D.{x |x <0或x >3}13. 已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A.3B.5C.7D.914. 已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.15. 已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.16. 已知a ,b ,c ∈(0,+∞),且a >4,ab +ac =4,则2a +2b +c +32a +b +c 的最小值是( ) A.8B.6C.4D.217. 《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形的长为a +b ,宽为内接正方形的边长d ,由刘徽构造的图形可以得到许多重要的结论.如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推断正确的是( )①由图1和图2面积相等可得d=aba+b;②由AE≥AF可得a2+b22≥a+b2;③由AD≥AE可得a2+b22≥21a+1b;④由AD≥AF可得a2+b2≥2ab.A.①②③④B.①②④C.②③④D.①③18.若a,b∈R,ab>0,则a4+4b4+1ab的最小值为________.19.已知函数f(x)=x2+ax+11x+1(a∈R),若对于任意的x∈N*,f(x)≥3恒成立,则a的取值范围是________.20.已知x>0,y>0,且2x+5y=20.(1)求u=lg x+lg y的最大值;(2)求1x+1y的最小值.。

高考数学一轮复习第一章 《集合与常用逻辑用语、不等式》第5节二次函数与一元二次方程、不等式

高考数学一轮复习第一章 《集合与常用逻辑用语、不等式》第5节二次函数与一元二次方程、不等式

第五节二次函数与一元二次方程、不等式课标要求1.会从实际情景中抽象出一元二次不等式,了解一元二次不等式的现实意义.2.结合二次函数的图象,会判断一元二次方程根的个数,以及二次函数的零点与一元二次方程根的关系.3.掌握利用二次函数的图象解一元二次不等式.必备知识·整合〔知识梳理〕1.一元二次不等式只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a,b,c为常数,且a≠0).提醒解不等式ax2+bx+c>0(<0)时,不要忘记讨论当a=0时的情况.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2−4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+ bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=−b2a没有实根ax2+bx+c>0(a> 0)的解集{x|x<x1或x>x2}{xx≠−b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}⌀⌀提醒a>0时的一元二次不等式的解法口诀:大于取两边,小于取中间. 知识拓展1.简单分式不等式(1)f(x)g(x)≥0(≤0)⇔{f(x)g(x)≥0(≤0),g(x)≠0.(2)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0).2.不等式ax2+bx+c>0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax2+bx+c>0对任意实数x恒成立⇔{a=b=0, c>0或{a>0,Δ<0.(2)不等式ax2+bx+c<0对任意实数x恒成立⇔{a=b=0,c<0或{a<0,Δ<0.〔课前自测〕1. 概念辨析(正确的打“√”,错误的打“×”).(1)ax2+bx+c<0为一元二次不等式.( × )(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )(3)如果二次函数y=ax2+bx+c的图象开口向下,那么不等式ax2+bx+ c<0的解集一定不是空集.( √ )(4)x−ax−b≥0等价于(x−a)(x−b)≥0.( × )2. [2020全国Ⅰ,1,5分]已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=( D )A. {−4,1}B. {1,5}C. {3,5}D. {1,3}[解析]由x2−3x−4<0解得−1<x<4,所以A={x|−1<x<4},因为B={−4,1,3,5},所以A∩B={1,3}.3. [2021辽宁大连质检]若不等式ax2+bx+2>0的解集为{x−12<x<13},则a−b的值是( A )A. −10B. −14C. 10D. 144. 易错题不等式(x−2)(3−2x)≥0的解集为( B )A. (32,+∞) B. [32,2] C. [2,+∞) D. (−∞,32][解析]由(x−2)(3−2x)≥0,得(x−2)(2x−3)≤0,解得32≤x≤2,故原不等式的解集为[32,2].易错提醒本题容易忽视二次项的符号致错.5. (新教材改编题)若关于x的不等式x2−2ax+18>0恒成立,则实数a的取值范围为(−3√2,3√2).[解析]由题意得4a2−4×18<0,解得−3√2<a<3√2.关键能力·突破考点一一元二次不等式的解法角度1 简单分式不等式的解法例1≥0的解集为( C )(1)不等式1−x2+xA. [−2,1]B. (−∞,−2)∪(1,+∞)C. (−2,1]D. (−∞,−2]∪(1,+∞)≥2的解集为( B )(2)[2022山东烟台二中模拟]不等式3x−2x+3A. (−∞,−3]∪[8,+∞)B. (−∞,−3)∪[8,+∞)C. (−3,8]D. (−∞,−3)∪(8,+∞)−2≥0,[解析]原不等式可化为3x−2x+3≥0,即(x−8)(x+3)≥0且x+3≠0,即x−8x+3∴x<−3或x≥8.所以原不等式的解集为(−∞,−3)∪[8,+∞).方法感悟将分式不等式进行同解变形,利用不等式的同解原理将其转化为整式不等式(组)即可求解.角度2 不含参数的不等式的解法例2(1)[2022重庆八中模拟]已知集合A={3,8},B={x|x2−x−6≤0},则A∩(∁R B)=( B )A. {3}B. {8}C. {−2,3,8}D. {−2}[解析]由x2−x−6≤0,得−2≤x≤3,则B ={x|x 2−x −6≤0}=[−2,3],∁R B ={x|x <−2或x >3} ,则A ∩(∁R B)={8} .(2) [2022广东潮州月考]不等式0<x 2−x −2≤4 的解集为{x|−2≤x < −1或2<x ≤3} .[解析]原不等式等价于{x 2−x −2>0,x 2−x −2≤4,即{x 2−x −2>0,x 2−x −6≤0,即{(x −2)(x +1)>0,(x −3)(x +2)≤0,解得{x >2或x <−1,−2≤x ≤3. 借助数轴,如图所示,原不等式的解集为{x|−2≤x <−1或2<x ≤3} .方法感悟解一元二次不等式的步骤角度3 含参数的不等式的解法例3 解关于x的不等式ax2−2≥2x−ax(a∈R).[答案]原不等式可化为ax2+(a−2)x−2≥0.①当a=0时,原不等式可化为x+1≤0,解得x≤−1.②当a>0时,原不等式可化为(x−2a )(x+1)≥0,解得x≥2a或x≤−1.③当a<0时,原不等式化为(x−2a)(x+1)≤0.当2a >−1,即a<−2时,解得−1≤x≤2a;当2a=−1,即a=−2时,解得x=−1;当2a <−1,即−2<a<0时,解得2a≤x≤−1.综上所述,当a=0时,不等式的解集为{x|x≤−1};当a>0时,不等式的解集为{x|x≥2a 或x≤−1};当−2<a<0时,不等式的解集为{x|2a≤x≤−1};当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为{x|−1≤x≤2a}.方法感悟含参数的一元二次不等式的解题策略(1)二次项中若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式;(2)当不等式对应方程的根的个数不确定时,需要讨论判别式Δ与0的关系;(3)确定无根时可直接写出解集,确定方程有两个根时,需要讨论两根的大小关系,从而确定解集的形式.1. [2023广东湛江模拟]已知全集U=R,集合A={x|2x2−3x−2<0,x∈R},B={x12<x<3},则(∁U A)∩B=( B )A. (12,1)∪(1,3) B. [2,3) C. {0,1} D. {1}[解析]由2x2−3x−2=(2x+1)(x−2)<0,得−12<x<2,所以A={x−12<x<2},则∁U A={xx≤−12或x≥2},又B={x12<x<3},则(∁U A)∩B={x|2≤x<3}=[2,3).2. [2023山东济南一模]不等式x−12x+1≥0的解集为(−∞,−12)∪[1,+∞).[解析]x−12x+1≥0⇒{(x−1)(2x+1)≥0,2x+1≠0⇒x≥1或x<−12.3. 求不等式12x2−ax>a2(a∈R)的解集. [答案]原不等式可化为12x2−ax−a2>0,即(4x+a)(3x−a)>0,令(4x+a)(3x−a)=0,解得x1=−a4,x2=a3.当a>0时,不等式的解集为{x<x−a4或x>a3};当a=0时,不等式的解集为{x|x≠0};当a<0时,不等式的解集为{x|x<a3或x>−a4}.考点二三个两次的关系例4 [2021广东东莞高三期末]多选题若不等式ax2−bx+c>0的解集是(−1,2),则( AD )A. 相应的一元二次函数的图象开口向下B. b >0 且c >0C. a +b +c >0D. 不等式ax 2−cx +b ≤0 的解集是R[解析]由题意知a <0 ,所以A 正确;由题意可得−1 ,2是方程ax 2−bx +c =0 的两个根,所以{−1+2=ba ,−1×2=c a ,所以{b =a,c =−2a ,得b <0,c >0 ,所以B 不正确;因为−1 是方程ax 2−bx +c =0 的根,所以把x =−1 代入方程得a +b +c =0 ,所以C 不正确;把b =a ,c =−2a 代入不等式ax 2−cx +b ≤0 ,可得ax 2+2ax +a ≤0 ,因为a <0 ,所以x 2+2x +1≥0 ,此时不等式的解集为R ,所以D 正确. 方法感悟(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的图象开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.4. 已知关于x 的不等式ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,则不等式cx 2+bx +a <0 的解集是( A ) A. {x −1<x <12} B. {x <x −1或x >12} C. {x −12<x <1}D. {x <x −12或x >1}[解析]因为ax 2+bx +c >0(a ≠0) 的解集是{x|−1<x <2} ,所以−1 ,2是方程ax 2+bx +c =0 的两实数根,且a <0 ,由根与系数的关系得{−1+2=−ba ,−1×2=ca , 所以b =−a ,c =−2a ,所以不等式cx 2+bx +a <0⇒−2ax 2−ax +a <0 ,即2x 2+x −1<0 ,解得−1<x <12 ,故不等式cx 2+bx +a <0 的解集为{x −1<x <12} .考点三 一元二次不等式恒成立问题角度1 在R 上的恒成立问题例5 不等式ax(x +1)−1<0 对任意x ∈R 恒成立,则实数a 的取值范围是 (−4,0] .[解析]由ax(x +1)−1<0 ,得ax 2+ax −1<0 .当a =0 时,−1<0 恒成立;当a ≠0 时,有{a <0,Δ=a 2+4a <0⇒−4<a <0 .综上所述,实数a 的取值范围是(−4,0] .角度2 在给定区间上的恒成立问题例6 [2022广东深圳月考]若对于任意的x ∈[0,2] ,不等式x 2−2x +a >0 恒成立,则a 的取值范围为( B ) A. (−∞,1)B. (1,+∞)C. (0,+∞)D. [1,+∞)[解析]不等式x 2−2x +a >0 可化为a >−x 2+2x ,设f(x)=−x 2+2x ,x ∈[0,2] ,则f(x)=−(x −1)2+1 ,当x =1 时,f(x)max =f(1)=1 ,所以实数a 的取值范围是(1,+∞) .角度3 给定参数范围的恒成立问题例7 若mx2−mx−1<0对任意m∈[1,2]恒成立,则实数x的取值范围是(1−32,1+32).[解析]设g(m)=mx2−mx−1=(x2−x)m−1,其图象是直线,当m∈[1,2]时,图象为一条线段,则{g(1)<0, g(2)<0,即{x2−x−1<0, 2x2−2x−1<0,解得1−√32<x<1+√32,故x的取值范围为(1−√32,1+√32).方法感悟(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.(2)一元二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.对第一种情况,恒大于0就是相应的二次函数的图象全部在x轴上方,恒小于0就是相应的二次函数的图象全部在x轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法求解).5. 函数f(x)=x2+ax+3.(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;[答案]当x∈R时,x2+ax+3−a≥0恒成立,只需Δ=a2−4(3−a)≤0,即a2+4a−12≤0,解得−6≤a≤2,∴实数a的取值范围是[−6,2].(2)当x∈[−2,2]时,f(x)≥a恒成立,求实数a的取值范围;[答案]由题意,可得x2+ax+3−a≥0在[−2,2]上恒成立,令g(x)=x2+ ax+3−a,则有①g(x)中Δ≤0或②{Δ>0,−a2<−2,g(−2)=7−3a≥0或③{Δ>0,−a2>2,g(2)=7+a≥0,解①得−6≤a≤2,解②得无实数解,解③得−7≤a<−6.综上可得,满足条件的实数a的取值范围是[−7,2].(3)当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围. [答案]令ℎ(a)=xa+x2+3.当a∈[4,6]时,ℎ(a)≥0恒成立,只需{ℎ(4)≥0,ℎ(6)≥0,即{x2+4x+3≥0, x2+6x+3≥0,解得x≤−3−√6或x≥−3+√6.∴实数x的取值范围是(−∞,−3−√6]∪[−3+√6,+∞).考点四一元二次方程根的分布例8 [2023湖南益阳开学考]已知关于x的二次方程x2+2mx+2m+1=0. [解析]设函数f(x)=x2+2mx+2m+1.(1)若方程有两根,其中一根在区间(−1,0)内,另一根在区间(1,2)内,求m 的取值范围;[答案]易知f(x)的图象与x轴的交点分别在区间(−1,0)和(1,2)内,画出示意图,得{ f(0)=2m +1<0,f(−1)=2>0,f(1)=4m +2<0,f(2)=6m +5>0,∴{m <−12,m ∈R m <−12,m >−56,∴−56<m <−12 .(2) 若方程两根均在区间(0,1) 内,求m 的取值范围.[答案]易知f(x) 的图象与x 轴的交点在区间(0,1) 内,画出示意图,得{ f(0)>0,f(1)>0,Δ≥0,0<−m <1,∴{ m >−12,m >−12,m ≥1+√2或m ≤1−√2,−1<m <0,∴−12<m ≤1−√2 .方法感悟一元二次方程根的分布一般要考虑以下几点: (1)一元二次函数图象的开口方向; (2)一元二次函数对应方程的根的判别式;(3)一元二次函数图象的对称轴与区间的关系; (4)一元二次函数在区间端点处函数值的符号.6. [2023广东茂名期中]已知方程2x 2−(m +1)x +m =0 有两个不等的正实根,则实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) . [解析]设f(x)=2x 2−(m +1)x +m , 由{Δ>0,−−(m+1)2×2>0,f(0)>0,得{(m +1)2−8m >0,m >−1,m >0,∴{m <3−2√2或m >3+2√2,m >−1,m >0,∴0<m <3−2√2 或m >3+2√2 ,即实数m 的取值范围为(0,3−2√2)∪(3+2√2,+∞) .分层突破训练 基础达标练1. 不等式−x 2+3x +10>0 的解集为( A ) A. (−2,5) B. (−∞,−2)∪(5,+∞) C. (−5,2)D. (−∞,−5)∪(2,+∞)[解析]由x 2−3x −10<0 ,解得−2<x <5 .2. 多选题 下列不等式的解集为R 的是( BC ) A. x 2+2√5x +5>0 B. x 2+6x +10>0 C. −x 2+x −2<0D. 2x 2−3x −3<0[解析]对于A 选项,x 2+2√5x +5=(x +√5)2>0 ,故解集为{x|x ≠−√5} ; 对于B 选项,x 2+6x +10=(x +3)2+1>0 ,解集为R ; 对于C 选项,−x 2+x −2=−(x −12)2−74<0 ,解集为R ;对于D 选项,2x 2−3x −3<0 ,对应的二次函数图象开口向上,Δ=9−4×2×(−3)=33>0 ,故不等式的解集不是R .故选BC.3. [2023山东东营模拟]设x ∈R ,则“x ≤3 ”是“x 2≤3x ”的( B ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件[解析]由x 2≤3x ,得0≤x ≤3 ,所以“x ≤3 ”是“x 2≤3x ”的必要不充分条件.4. [2022江苏南通模拟]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,则实数a 的取值范围是( A ) A. (−∞,−2]B. (−∞,−2)C. (−∞,0]D. (−∞,0)[解析]当x ∈R 时,不等式x 2−2x −1−a ≥0 恒成立,故Δ=(−2)2+4(1+a)≤0 ,解得a ≤−2 ,故实数a 的取值范围是(−∞,−2] . 5. [2022湖北华中师大一附中模拟]不等式2x+1≤1 的解集是( A ) A. (−∞,−1)∪[1,+∞) B. (−∞,−1]∪[1,+∞) C. (−∞,−1)D. (−1,1)[解析]原不等式可化为2x+1−1≤0 ,即x−1x+1≥0 ,得(x −1)(x +1)≥0 且x +1≠0 ,得x <−1 或x ≥1 ,所以原不等式的解集为(−∞,−1)∪[1,+∞) . 6. [2022天津耀华中学模拟]对于任意实数x ,不等式(a −1)x 2−2(a −1)x −4<0 恒成立,则实数a 的取值范围是( D ) A. (−∞,3)B. (−∞,3]C. (−3,1)D. (−3,1][解析]当a =1 时,−4<0 恒成立; 当a ≠1 时,有{a −1<0,Δ<0, 解得−3<a <1 .综上,实数a 的取值范围是(−3,1] .7. 已知二次函数f(x)=(m +2)x 2−(2m +4)x +3m +3 的图象与x 轴有两个交点,一个大于1,一个小于1,则实数m 的取值范围为(−2,−12) . [解析]由题意得,(m +2)⋅f(1)<0 , 即(m +2)⋅(2m +1)<0 , ∴−2<m <−12 ,即m 的取值范围为(−2,−12) .8. [2023辽宁丹东期末]某种杂志以每本2.5 元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1 元,销售量就可能减少2 000本.要使提价后的销售总收入不低于20万元,则定价的最大值为4元.[解析]设定价为x 元,销售总收入为y 元,由题意得,y =(80 000−x−2.50.1×2 000)x =−2 0000x 2+130 000x ,因为要使提价后的销售总收入不低于20万元,所以y =−20 000x 2+130 000x ≥200 000 ,解得52≤x ≤4 ,所以要使提价后的销售总收入不低于20万元,则定价的最大值为4元.9. [2023河北保定模拟]已知集合A ={x ∈R ||x +2|<3} ,集合B ={x ∈R ∣x−m x−2<0} ,且A ∩B =(−1,n) ,则m = −1 ,n = 1.[解析]A ={x ∈R ||x +2|<3}={x|−5<x <1} ,B ={x ∈R ∣x−m x−2<0}={x ∣(x −m)(x −2)<0} ,因为A ∩B =(−1,n) ,所以−1 是方程(x −m)(x −2)=0 的根,则−1−m =0 ,解得m =−1 ,所以B ={x|−1<x <2} ,A ∩B =(−1,1) ,则n =1 .10. [2022广东化州第三中学月考]已知集合A ={−5,−1,2,4,5} ,请写出一个一元二次不等式,使得该不等式的解集与集合A 有且只有一个公共元素,这个不等式可以是(x +4)(x −6)>0 (答案不唯一).[解析]不等式(x +4)(x −6)>0 的解集为{x|x >6或x <−4} ,解集中只有−5 在集合A 中.11. [2021江西南昌莲塘第一中学模拟]已知f(x)=−3x 2+a(6−a)x +6 . (1) 解关于a 的不等式f(1)>0 ; [答案]∵f(x)=−3x 2+a(6−a)x +6 , ∴f(1)=−3+a(6−a)+6=−a 2+6a +3 , ∴ 原不等式可化为a 2−6a −3<0 , 解得3−2√3<a <3+2√3 .∴ 原不等式的解集为{a|3−2√3<a <3+2√3} .(2) 若不等式f(x)>b 的解集为(−1,3) ,求实数a ,b 的值.[答案]f(x)>b 的解集为(−1,3) 等价于方程−3x 2+a(6−a)x +6−b =0 的两根为−1 ,3, 即{−1+3=a(6−a)3,−1×3=−6−b3,解得{a =3±√3,b =−3.能力强化练12. [2022重庆南开中学模拟]三位同学合作学习,对问题“已知不等式xy ≤ax 2+2y 2 对任意x ∈[1,2] ,y ∈[2,3] 恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析.” 乙说:“寻找x 与y 的关系,再进行分析.” 丙说:“把字母a 单独放在一边,再进行分析.”参考上述思路,或自己的其他解法,可求出实数a 的取值范围是( B ) A. [1,+∞)B. [−1,+∞)C. [−1,4)D. [−1,6][解析]选择用丙的方法.因为xy ≤ax 2+2y 2 ,x ∈[1,2] ,y ∈[2,3] , 所以xy −2y 2≤ax 2 等价于xy−2y 2x 2≤a ,即yx −2(yx )2≤a . 令y x =t ,则t ∈[1,3] .原式化为t −2t 2≤a 对任意t ∈[1,3] 恒成立,因为t −2t 2=−2(t −14)2+18 ,所以当t =1 时,(t −2t 2)max =−1 . 所以−1≤a ,即a ∈[−1,+∞) . 故选B.13. [2022重庆质量检测]若方程x 2+(m −2)x +6−m =0 的两根都大于2,则m 的取值范围是(−6,−2√5] .[解析]令f(x)=x 2+(m −2)x +6−m ,其图象的对称轴方程为x =2−m 2,由题意得,{2−m2>2,f(2)>0,Δ≥0,即{2−m2>2,4+2m −4+6−m >0,(m −2)2−4(6−m)≥0,解得−6<m ≤−2√5 ,故m 的取值范围是(−6,−2√5] .14. [2023江苏南京二模]已知定义在R 上的奇函数f(x) 满足f(1−x)+f(1+x)=2 ,当x ∈[0,1] 时,f(x)=2x −x 2 ,若f(x)≥x +b 对一切x ∈R 恒成立,则实数b 的最大值为−14 .[解析]因为f(1+x)+f(1−x)=2 ,所以f(x) 的图象关于点(1,1) 中心对称, 当x ∈[−1,0] 时,f(x)=−f(−x)=x 2+2x ,作出f(x) 的图象和直线y =x +b ,如图所示,结合图象可得,只需当x ∈[−1,0] 时,f(x)=x 2+2x ≥x +b 即可, 即b ≤(x +12)2−14 , 故b ≤−14 .故b的最大值为−1.415. 某地区上年度电价为0.8元/kW⋅h,年用电量为a kW⋅h.本年度计划将电价降到0.55元/kW⋅h至0.75元/kW⋅h之间,而用户期望电价为0.4元/kW⋅h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW⋅h.(1)写出本年度电价下调后,电力部门的收益y(元)与实际电价x(元/kW⋅h)的函数关系式;kW⋅h,∴下调电价后的总用电量为(a+ [答案]下调电价后新增的用电量为kx−0.4k)kW⋅h,x−0.4)(x−0.3)(0.55≤x≤0.75).∴y=(a+kx−0.4(2)设k=0.2a,问:电价最低定为多少时,仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价−成本价).)(x−0.3)≥a×(0.8−0.3)×(1+20%),0.55≤x≤[答案]由已知得(a+0.2ax−0.40.75,整理得x2−1.1x+0.3≥0,0.55≤x≤0.75,解得0.60≤x≤0.75.故电价最低定为0.60元/kW⋅h时,仍可保证电力部门的收益比上年度至少增长20%.+b,关于x的不等式xf(x)<0的解集为(1,3). 16. 已知函数f(x)=x+ax(1)求实数a,b的值;[答案]因为关于x的不等式xf(x)<0的解集为(1,3),所以不等式x2+bx+a<0的解集为(1,3),所以{1+3=−b,1×3=a,解得{a=3,b=−4,所以f(x)=x+3x−4.(2)求关于x的不等式xf(x)<(m−3)(x−1)(m∈R)的解集;[答案]由xf(x)<(m−3)(x−1)(m∈R),得x2+3−4x<(m−3)(x−1),即x2−(m+1)x+m<0,即(x−1)(x−m)<0.所以当m<1时,不等式的解集为(m,1);当m=1时,不等式无解;当m>1时,不等式的解集为(1,m).(3)若不等式f(2x)−k⋅2−x−2k≥0在R上恒成立,求实数k的取值范围.[答案]令t=2x(t>0),则f(t)−kt−2k≥0在(0,+∞)上恒成立,即t+3t −4−kt−2k≥0在(0,+∞)上恒成立,即t 2−(2k+4)t+3−kt≥0在(0,+∞)上恒成立,即t2−(2k+4)t+3−k≥0在(0,+∞)上恒成立,令g(t)=t2−(2k+4)t+3−k.当2k+42≤0,即k≤−2时,g(t)图象的对称轴在y轴的左侧,所以g(0)=3−k≥0,即k≤3,所以k≤−2;当2k+42>0 ,即k >−2 时,g(t) 图象的对称轴在y 轴的右侧,则Δ=(2k −4)2−4(3−k)≤0 ,所以3−√52≤k ≤3+√52 .综上,k ≤−2 或3−√52≤k ≤3+√52 .素养综合练17. [2022河北石家庄二中模拟]若函数f(x) 满足对任意的x ∈[n,m](n <m) ,都有n k ≤f(x)≤km 成立,则称函数f(x) 在区间[n,m](n <m) 上是“被k 约束的”.若函数f(x)=x 2−ax +a 2 在区间[1a ,a](a >0) 上是“被2约束的”,则实数a 的取值范围是( A )A. (1,2]B. (1,√323]C. (1,√2]D. (√2,2] [解析]由题意得12a ≤x 2−ax +a 2≤2a 对任意的x ∈[1a ,a](a >0) 都成立.由a >1a 且a >0 ,得a >1 ,则f(1a )=1a 2−1+a 2>2−1=1>12a 恒成立. 由f(a)=a 2−a 2+a 2=a 2≤2a ,且a >1 ,得1<a ≤2 .因为a >1 ,所以f(1a )=1a 2−1+a 2<1−1+a 2=a 2 .f(x)=x 2−ax +a 2 图象的对称轴方程为x =a 2 ,由f(a 2)=3a 24≥12a , 得a ≥√233 .因为√233<1 ,所以a 的取值范围为(1,2] .故选A.。

集合、常用逻辑用语、不等式

集合、常用逻辑用语、不等式
个非空真子集.
第1课时
集合
链接教材 夯基固本
典例精研
核心考点
课时分层作业
3.集合的基本运算
表示
{x|x∈A,且x∈B} ∁ A=_______________
{x|x∈A,或x∈B} A∩B=________________
{x|x∈U,且x∉A}
A∪B=________________
则(
)
A.M N
B.N

M
C.M=N
D.M∩N=⌀
(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是
[-1,+∞)
_____________.
1
2
2+1
,因为k∈Z,所以2k+1为奇数,故N
2
(1)B (2)[-1,+∞) [(1)因为x=k+ =
综上,S={0,1},或S={-1,1}.]
名师点评
解决集合含义问题的注意点
一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条
件)构造关系式解决相应问题.
第1课时
集合
链接教材
夯基固本
典例精研
核心考点
课时分层作业
[跟进训练]
1.(1)(2023·上海高考)已知集合P={1,2},Q={2,3},若M={x|x∈P且
(4)五个特定的数集的表示
集合
自然数集
正整数集
整数集
有理数集
实数集
记法
N
N* (或N+ )
____________
Z
___
Q
___
R
___
第1课时

高考复习-集合、常用逻辑用语、不等式

高考复习-集合、常用逻辑用语、不等式

2.全称命题、特称命题及其否定 (1)全称命题p:Ax∈M,p(x),其否定为特称命题:__p_:__E_x0_∈__M__,_p_(_x_0)____.
(2)特称命题p:Ex0∈M,p(x0),其否定为全称命题:__p_:__Ax_∈__M__,__p_(x_)____.
பைடு நூலகம்
3.充分条件与必要条件的三种判定方法 (1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q, 且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件). (2)集合法:利用集合间的包含关系.例如,命题p:x∈A,命题q:x∈B, 若A⊆B,则p是q的充分条件(q是p的必要条件);若A B,则p是q的充 分不必要条件(q是p的必要不充分条件);若A=B,则p是q的充要条件. (3)等价法:将命题等价转化为另一个便于判断真假的命题.
考前复习
回归教材
1.集合 (1)集合间的关系与运算 A∪B=A⇔ B ⊆A;A∩B=B⇔B ⊆ A. (2)子集、真子集个数计算公式 对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真 子集的个数依次为 2n,2n-1,2n-1,2n-2 . (3)集合运算中的常用方法 若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集, 用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.
易错提醒
1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元 素.如{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x, y)|y=lg x}——函数图象上的点集. 2.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时, 尤其要注意元素的互异性. 3.空集是任何集合的子集.解题时勿漏A=∅的情况. 4.判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取 值范围,还可以从集合的角度来思考,将问题转化为集合间的运算.

专题一 集合、常用逻辑用语、不等式、

专题一 集合、常用逻辑用语、不等式、

3.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是 ( )
A.[0,1] B.[-1,2] C.(-∞,-1]∪[2,+∞) D.(-∞,-1)∪(2,+∞) 答案 D 因为A={x|x2-2x≤0}={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以 A∪B=[-1,2],所以∁R(A∪B)=(-∞,-1)∪(2,+∞).
跟踪集训
1.(2016河北石家庄模拟)已知集合A={-2,-1,2,3},B={x|-1<x<3},则A∩B=( A.(-2,3) B.(-1,3) C.{2} D.{-1,2,3} 答案 C 由交集定义可得A∩B={2},选项C正确. )
答案 C 由题意知A=[0,1],B=(-∞,1),所以A∩B=[0,1).
答案 A
若a<0,b<0,则一定有a+b<0,故选A.
答案 ①② 解析 易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.
若A=B,则A是B的充要条件.
(3)等价法:将命题等价转化为另一个便于判断真假的命题. 2.判断充分、必要条件时应关注三点 (1)要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出
B;“A是B的充分不必要条件”是指A能推出B,且B不能推出A.
(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时, 可以通过举出恰当的反例来说明. (3)要注意转化:¬ p是¬ q的必要不充分条件⇔p是q的充分不必要条件;¬ p是¬ q 的充要条件⇔p是q的充要条件.
跟踪集训
3.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是 . 答案 ∀x∈(0,+∞),ln x≠x-1 解析 “∃”改为“∀”,“x0”改为“x”,否定结论,即ln x≠x-1,故该命题的否定为 ∀x∈(0,+∞),ln x≠x-1.

第一章 必刷小题1 集合、常用逻辑用语、不等式-2025高中数学大一轮复习讲义人教A版

第一章 必刷小题1 集合、常用逻辑用语、不等式-2025高中数学大一轮复习讲义人教A版

必刷小题1集合、常用逻辑用语、不等式一、单项选择题1.已知全集U=R,集合A={x||x-1|≤3},B x |x-5x+1<0A∪B等于()A.(-1,4)B.(-1,4] C.(-2,5)D.[-2,5)答案D解析由|x-1|≤3,解得-2≤x≤4,即A=[-2,4].由x-5x+1<0,解得-1<x<5,即B=(-1,5),所以A∪B=[-2,5).2.“x<1”是“x2-4x+3>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式x2-4x+3>0,得x>3或x<1,所以“x<1”是“x2-4x+3>0”的充分不必要条件.3.若不等式2x2+2kx+3k>0对一切实数x都成立,则k的取值范围是() A.0≤k≤6B.-6<k<0C.0<k<6D.k<0或k>6答案C解析由题意,函数y=2x2+2kx+3k的图象开口向上,又不等式2x2+2kx+3k>0对一切实数x都成立,∴对应方程的判别式Δ=(2k)2-4×2×3k<0,解得0<k<6.4.若关于x 的一元二次方程x 2+qx +8-q =0有两个正实数根,则q 的取值范围是()A .q >8B .q <-4C .q >8或q <-4D .q <-8答案D解析=q 2-4(8-q )>0,q >0,-q >0,解得q <-8.5.若-π<α<β<π,则α-β的取值范围是()A .-2π<α-β<2πB .0<α-β<2πC .-2π<α-β<0D .{0}答案C 解析∵-π<β<π,∴-π<-β<π,又-π<α<π,∴-2π<α-β<2π,又α<β,∴α-β<0,∴-2π<α-β<0.6.若正实数a ,b 满足(a +1)(2b +1)=4,则a +2b +1的最小值为()A .2B .3 C.103D .4答案B 解析因为a ,b 为正实数,所以a +2b +1=a +1+2b +1-1≥2(a +1)(2b +1)-1=24-1=3,当且仅当a +1=2b +1,即a =1,b =12时等号成立.7.若关于x 的方程x 2+9=0有两个不相等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是()-27,-211,答案D解析令f (x )=x 2+9,-36>0,1)=11+2a<0,解得-211<a <0,即a -211,8.已知x 1>0,x 2>0,x 1+x 2<e x 1x 2(e 为自然对数的底数),则()A .x 1+x 2>1B .x 1+x 2<1C.1x 1+1x 2<1eD.1x 1+1x 2>1e 答案A 解析由题意得x 1+x 2x 1x 2=x 1x 1x 2+x 2x 1x 2=1x 1+1x 2<e.又(x 1+x 21+x 1x 2+x 2x 1+1≥2+2x 1x 2·x 2x 1=4,当且仅当x 1=x 2时等号成立,所以x 1+x 2>4e>1.二、多项选择题9.下列各结论正确的是()A .“xy >0”是“x y>0”的充要条件B.x 2+9+1x 2+9的最小值为2C .命题“∀x >1,x 2-x >0”的否定是“∃x ≤1,x 2-x ≤0”D .“二次函数y =ax 2+bx +c 的图象过点(1,0)”是“a +b +c =0”的充要条件答案AD 解析xy >0⇔x y>0,故A 正确;由基本不等式知,x 2+9+1x 2+9≥2,当且仅当x 2+9=1x 2+9,即x 2=-8时等号成立,由于x 2=-8无解,所以等号不成立,所以取不到最小值2,故B 错误;命题“∀x >1,x 2-x >0”的否定是“∃x >1,x 2-x ≤0”,故C 错误;二次函数y =ax 2+bx +c 的图象过点(1,0),显然有a +b +c =0,反之亦可,故D 正确.10.若实数a ,b 满足a <b <0,则()A.1a <1bB .ln a 2>ln b 2C .a |a |<b |b |D .a +1b <b +1a答案BCD 解析由a <b <0⇒ab >0⇒a ab <b ab ⇒1b <1a ,故A 不正确;由a <b <0⇒-a >-b >0⇒a 2>b 2>0⇒ln a 2>ln b 2,故B 正确;因为a <b <0,所以a |a |-b |b |=-a 2+b 2=(b -a )(b +a )<0⇒a |a |<b |b |,故C 正确;因为a <b <0,所以a +1b -b -1a =(a -b )(ab +1)ab<0⇒a +1b <b +1a ,故D 正确.11.若不等式ax 2-bx +c >0的解集是(-1,2),则下列选项正确的是()A .a <0B .b <0且c >0C .a +b +c >0D .不等式ax 2-cx +b <0的解集是R答案AB 解析由题意得,方程ax 2-bx +c =0的两根为-1,2,且a <0,故A 正确;1+2=b a,1×2=c a ,=a ,=-2a ,则b <0,c >0,故B 正确;所以a +b +c =a +a +(-2a )=0,故C 错误;不等式ax 2-cx +b <0即ax 2+2ax +a =a (x +1)2<0,又a <0,所以不等式为(x +1)2>0,该不等式的解集为{x |x ≠-1},故D 错误.12.已知a >0,b >0,且2a +b =2,则下列说法正确的是()A .a 2+b 2的最小值为54B .ab 的最大值为12C .4a 2+b 2的最小值为4D.1a +1b 的最小值为32+2答案BD解析由题意得,a >0,b =2-2a >0,从而0<a <1,所以a 2+b 2=a 2+(2-2a )2=5a 2-8a +4=+45.当a =45时,a 2+b 2有最小值45,故A 错误;因为2=2a +b ≥22ab ,所以ab ≤12,当且仅当a =12,b =1时等号成立,故B 正确;4a 2+b 2=(2a +b )2-4ab =4-4ab ≥4-4×12=2,当且仅当a =12,b =1时等号成立,故C 错误;1a +1b =12(2a +b +b a ++=3+222=32+2,当且仅当b a =2a b,即a =2-2,b =22-2时等号成立,故D 正确.三、填空题13.“α=β”是“sin α=sin β”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个)答案充分不必要解析若α=β,则sin α=sin β,当α=0,β=2π时,sin α=sin β,此时α≠β,所以“α=β”是“sin α=sin β”的充分不必要条件.14.已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},若B ⊆A ,则m 的取值范围为________.答案[-1,+∞)解析∵B ⊆A ,∴当B =∅时,2m -1>m +1,解得m >2,符合题意;当B ≠∅m -1≥-3,+1≤4,m -1≤m +1,解得-1≤m ≤2,综上所述,m ≥-1,即m 的取值范围为[-1,+∞).15.若对∀1≤x ≤4,不等式x 2-(a +2)x +4≥-a -1恒成立,则实数a 的取值范围为________.答案{a |a ≤4}解析对∀1≤x ≤4,不等式x 2-(a +2)x +4≥-a -1恒成立,即对∀1≤x ≤4,a (x -1)≤x 2-2x +5恒成立.当x =1时,不等式为0≤4,恒成立,此时a ∈R ;当1<x ≤4时,a ≤x 2-2x +5x -1=x -1+4x -1,∵1<x ≤4,∴0<x -1≤3,∴x -1+4x -1≥2(x -1)·4x -1=4,当且仅当x -1=4x -1,即x =3时取等号,∴a ≤4.综上,实数a 的取值范围为{a |a ≤4}.16.运货卡车以x 千米/时的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是6元/升,司机的工资是24元/时.则这次行车的总费用最低为________元.答案260解析设所用时间为t =130x 小时,这次行车的总费用为y 元.则由题意知y =130x ×624×130x =7800x +13x 6,x ∈[50,100].y =7800x +13x 6≥27800x ·13x 6=260,当且仅当7800x =13x 6,即x =60时等号成立.故当x =60千米/时,这次行车的总费用最低,最低为260元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学闯关练习----集合、逻辑用语、不等式1.设变量x 、y 满足约束条件122x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则目标函数22z x y =+的取值范围为( )A.[]2,8B.[]4,13C.[]2,13D.1.C 【解析】 试题分析:作出可行域图形,将目标函数看作是可行域内的点到原点的距离的平方的取值范故正确答案为C.考点:1.简单线性规划;2.点到直线、两点间的距离.2.如果实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤--≤-+103203x y x y x ,目标函数y kx z -=的最大值为6,最小值为0,则实数k 的值为( )A.1B.2C.3D.4 2.B 【解析】试题分析:不等式组表示的可行域如图,()()()0,3,1,1,2,1C B A -∵目标函数y kx z -=的最小值为0,∴目标函数y kx z -=的最小值可能在A 或B 时取得; ∴①若在A 上取得,则02=-k ,则2=k ,此时,y x z -=2在C 点有最大值,6032=-⨯=z ,成立;②若在B 上取得,则01=+k ,则1-=k ,此时,y x z --=,在B 点取得的应是最大值, 故不成立,2=∴k ,故答案为B.考点:线性规划的应用.3.若不等式()()042222<--+-x a x a 对一切R x ∈恒成立,则a 的取值范围是( )A 、(]2,∞- B 、[]22,- C 、(]22,- D 、()2-∞-, 3.C 【解析】试题分析:当2=a 时,不等式04<-恒成立,因此2=a 满足, 当2≠a 时,不等式()()042222<--+-x a x a 恒成立,满足()()()⎩⎨⎧<----<-042424022a a a ,解得22<<-a 综上,22≤<-a .考点:不等式恒成立的问题.4.已知函数 2()2(,)f x x bx c b c R =++∈的值域为 [)0,+∞,若关于x 的不等式()f x m <的解集为(,10)n n +,则实数m 的值为A .25B .-25C .50D .-50 4.C 【解析】试题分析:由函数 2()2(,)f x x bx c b c R =++∈的值域为 [)0,+∞知,∆=280b c -=,所以c =,不等式()f x m <,即(,10)n n +,的两根为1x ,2x ,,12x x =所以10=|(n+10)-n|=|1x -2x |=m =50,故选C .考点:二次函数性质,二次函数与不等式的关系,根与系数关系5.设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x m x y xy 下,目标函数my x z +=的最大值大于2,则m 的取值范围为( ).C.()3,1D.()+∞,3 5.B 【解析】系,当截距最大时,z 最大,当过点考点:线性规划的应用.6.若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是( ).. A.31≤<-a B.31≤≤-a C.42<≤-a D.42≤≤-a6.D 【解析】试题分析:存在实数x 使|||1|3x a x -+-≤成立得313≤-≤-a ,即42≤≤-x . 考点:绝对值不等式.7.设二次函数())(42R x c x ax x f ∈+-=的值域为[0,+∞)( )B.2D.17.C【解析】试题分析:由二次函数特点可知,在定义域R 上其值域为),0[+∞,则0>a ,且最大值,利用前面关系,建立,由C. 考点:(1)二次函数性质;(2)函数最值;(3)基本不等式. 8.已知0,0,lg2lg8lg2x y x y >>+=,则 ) A. 4 B. 3 C. 2D. 1 8.A 【解析】试题分析:由lg 2lg8lg 2x y +=,得()lg 28lg 2x y ⋅=,即322x y+=,亦即31x y +=,且0,0x y >>,从而,又31x y +=,即取得最小值4,注意乘“1”法技巧的使用.考点:指数、对数的运算和基本不等式求最值.9. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) A.充分条件 B.必要条件C.充分必要条件D.既非充分又非必要条件 9.B 【解析】试题分析:因为a =1,b =4,满足4>+b a ,但2,2>>b a 且不成立,故命题:若4>+b a ,则2,2>>b a 且是假命题,根据不等式性质知,若2,2>>b a 且,则4>+b a 是真命题,故“4>+b a ”是“2,2>>b a 且”的必要条件,故选B 考点:充要条件10.设,a b R ∈,则a b >是2()0a b b ->的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要10.B 【解析】试题分析:当b=0时,显然结论是错误的;反之,若2()0a b b ->成立,又02>b ,显然得a>b 成立. 故选B.考点:充要条件的定义. 11.命题“12,0200<+-∈∃x x R x ”的否定是 。

11.012,2≥+-∈∀x x R x 【解析】试题分析:∵命题“012,0200<+-∈∃x x R x ”是特称命题,∴命题的否定为:012,2≥+-∈∀x x R x .考点:命题的否定.12.下列有关命题的说法正确的是_____①命题“若21x =则1x =”否命题为:21x =则1x ≠;②“1x =-” 是2560x x --=的必要不充分条件;③命题“sin 0x R x ∃∈<使得”的否定是:x R ∀∈,均有“sin 0x <”; ④命题“若x y =,则sin sin x y =”的逆否命题为真。

12.④ 【解析】13.已知:44;:(2)(3)0p a x a q x x -<<+-->,若⌝p 是⌝q 的充分不必要条件,则实数a 的取值范围为 .13.[-1,6] 【解析】试题分析:因为⌝p 是⌝q 的充分不必要条件,所以q 是p 的充分不必要条件.又因为:23q x <<,所以4243a a -≤⎧⎨+≥⎩,解得:1 6.a -≤≤16a a =-=当或时,.p q ≠考点:不等式解集,充要关系 14.已知0,0>>y x ,若恒成立,则实数m 的取值范围是 .14.-4m 2≤≤. 【解析】试题分析:因为0,0>>y x ,所以由基本不等式知,x y 2=等号成立.m m 282+≥,由一元二次不等式解法知,-4m 2≤≤.考点:一元二次不等式及其解法;均值不等式的应用.15.不等式组280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域的面积为______________.15.11 【解析】试题分析:作出可行域如图中阴影部分所示,易求得C (4,0),B (4,2),D (0,3),A(2,3),所以阴影部分面积为考点:二元一次不等式组表示的平面区域16.已知{}31|≤<-=x x A ,{}m x m x B 31|+<≤=. (1)当m =1时,求A ∪B ;(2)若B ⊆A C R ,求实数m 的取值范围. 16.试题解析:(1)当m =1时,{}{}41|31|<≤=+<≤=x x m x m x B ,所以{}41|<<-=⋃x x B A ;因为{}31|≤<-=x x A 所以 {}{}3|1|>⋃-≤=x x x x A C R , 又因为⊆B A C R 所以当φ=B 时应满足 当φ≠B 时,应满足⎩⎨⎧-≤+>+⎩⎨⎧>>+13131331m mm m m m 或即3>m ; 综上可得:3>m 或 考点:集合间的基本关系及运算.17的解集为R ,求实数m 的取值范围。

17.m 22820(4)40x x x -+=-+>,不等式的解集为R ∴不等式22(1)940mx m x m ++++<①的解集为R当0m =时,不等式①可化为240x +<,解集不为R ,不合题意.当0m ≠时,则[]22(1)4(94)0m m m m <⎧⎪⎨+-+<⎪⎩ ∴m 考点:不等式恒成立问题;考查数学转化思想方法;分类讨论的数学思想方法.18.某工厂建一个长方形无盖蓄水池,其容积为4800m 3,深度为3m 。

如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,怎么设计水池能使造价最低?最低造价多少元?18.297600,xm 设池底长为,则宽为当40 x m 时,等号成立。

所以设计池底为40m ,宽为40 m 时,总造价最低位297600元。

考点:基本不等式在最值问题中的应用;函数的最值及其几何意义.。

相关文档
最新文档